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QCD

I Start with the (Euclidean) Lagrangian for QCD

I L = −1

4
FµνFµν +

∑
f

ψf (γµDµ + mf )ψf

I Where Fµν = ∂µAν − ∂νAµ + ig [Aµ,Aν ]

I and Dµ = ∂µ + igAµ

I Path integral formalism

Z =

∫
DAµ

∫
DψDψ e−(ψMψ+SG )
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Lattice

I QCD is hard! Lets use computers to do physics for us!

I Discretize space and time onto a grid e.g. 243 × 128 and
323 × 256

I Compute gauge configurations on the lattice to perform
Monte Carlo integration of path integrals.

I Challenge is in the details.

I Time and space are actually continuous so this introduces
discretization errors, minimized using a series of clever tricks.

I Grid is very large so requires huge computing resources and
would want many configurations to get good statistics

I Sophisticated approximation methods required to reduce
computing resources.
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Interested in the low energy spectrum

I Introduce “smearing” of the fields suppress high frequency
modes easing the calculation of lower energy spectrum.

I f = {u, d , s} ignoring the heavy quarks c , b, t

I Set the light quark masses equal mu = md giving perfect
SU(2) isospin symmetry

I However we must set parameters to give nonphysical masses
so we have a heavier pion. This allows us to calculate low
energy resonances without dealing with multihadron states
which are still challenging.

Brendan Fahy Hugs 2012



Extract Energy/Mass
I Construct hadron operators couple to specific symmetry

channel of hadron states. A simple example ⇒ single-site
meson operator:

O(t) =
∑

CAB
αβ δab ψ̃

A

aα(x, t)γ4ψ̃
B
bβ(x, t)

with appropriate choice of spin α β and flavor A B
combinations in CAB

αβ to represent different particles.
I Construct the correlation function by inserting complete set of

states:

C (t) =
〈
0|O(t)O(0)|0

〉
=
∑

n

〈O(t)|n〉
〈
n|O(0)

〉
e−Ent

For large t, E0 term dominate. Fit C (t) to obtain E0.
I Define effective mass as:

Meff (t) =
1

dt
ln
[ C (t)

C (t + dt)

]
−→ E0 for large t.
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Computing with lattice QCD

I Physical observables can be expressed as:

〈O〉 =
1

Z

∫
DAµ

∫
DψDψO e−(ψMψ+SG )

I The Aµ integral done using Monte Carlo, the ψ integrals done using
Gaussian integration.

I Example with common operators∫
DψDψ ψ(x)ψ(y) e−ψMψ = M−1(x , y) det(M)∫
DψDψ ψaψbψx ψy e

−ψMψ =
(
M−1ay M−1bx −M−1ax M−1by

)
det(M)

I Need to compute M−1 but M is very large!
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Stochastic Inversion with Dilution

I Solve the inversion stochastically! Introduce Nr of Z4 random
noise vectors ηr , with expectation value: E (ηrηr †) = 1.

I Solve MX r = ηr for X so that X = M−1η then

E (Xiη
∗
j ) =

∑
k

M−1ik E
(
ηkη
∗
j

)
= M−1ij

I Projected onto dilution subspace:

ηr [a] = P(a)ηr

I Solve Mx r [a] = ηr [a] separately in each subspace, M−1 can be
approximated as:

M−1 ≈
1

Nr

Nr∑
r=1

∑
a

x r [a]ηr [a]†
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Laplacian Heaviside (LAPH) Smearing

I Define the covariant Laplacian operator

∆ab =
∑

k

[
Uab

k (x)δ(y , x + k̂) + U†k
ab

(y)δ(y , x − k̂)− 2δ(x , y)δab
]

I ∆ is self adjoint so the eigenvalues are real. Eigenvalues are also
gauge invariant.

I Laph quark field smearing picks out low-frequency modes:

ψ̃(x) = Θ(σ2s + ∆)ψ(x)

Θ is the heaviside function so this picks off the first N Laplacian
eigen-modes up to an eigenvalue cutoff σs .

I Perform dilution on spin-time-Laph eigenspace rather than
spin-color-space-time.

Brendan Fahy Hugs 2012



Comparison of eta isoscalar meson effective masses, using exact
Dirac matrix inversion (black) versus stochastic inversion with
dilution in LapH space (red). Especially when the “full” correlator
is considered (including Wick contractions of fermion fields on
same time), the stochastic method allows much greater statistics
per computation time.

Eta Effective Mass, Exact vs. Stochastic
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Scalar Glueball

I One of the benefits of computing the covariant Laplacian
eigenvalues is the we can use the eigenvalues directly as an
operator.

I The eigenvalues of the Laplacian are invariant under rotations
and gauge transformations. Since any quantity with the same
transformation properties works as an operator the
eigenvalues can be used for a scalar Glueball.

I After testing it was found that any of the eigenvalues worked
equally well and what was used is linear combinations of all
the eigenvalues below the cutoff.
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I Results for the effective mass of the Glueball operator on
243 × 128 and 323 × 256 lattices.

I This channel will couple with other scalar multihadron
operators (e.g. two pion states.) To extract the spectrum of
the scalar sector it is required to mix and diagonalize our
Glueball operator with other scalar operators.
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Thank you
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