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�  DVCS – an overview 

�  epàepγprocess 

�  BH Cross section calculation 

�  Monte-Carlo Event Generator 



Brief  History on 
Understanding Nucleons 

�  1910 Rutherford scattering (Gold 
foil)- Electrons orbiting Nucleus  

�  1919 Rutherford scattering (Nitrogen 
Gas)- Discovery of  Protons and Hint 
for Neutron  

�  1932 Chadwick - Neutron  

�  Robert Hofstadter - Started around 
1953 in an accelerator at Stanford 
University 

 



Elastic Electron Scattering 

�  Cross-Section: 

 

�  Form Factors => spatial distribution 

SLAC 1954 – Robert Hofstadter 



Probing Nucleus (α) … 

�  Energetic electron’s 
can see the nucleons 
inside a nucleus 

�  Can more energetic 
electrons see 
something inside a 
nucleon too? 

SLAC 1954 – Robert Hofstadter 



Inclusive Deep Inelastic 
Scattering (DIS) 

�  Differential Cross-Section:  

�  Dimensionless Structure 
functions 

June 24, 2009 S. R. Magill - 2009 CTEQ 

Summer School 

13 

νW2 

x = 0.125 
Bjorken Scaling? Partons! 

SLAC-MIT (1969) 



Scaling and Scaling 
Violation 

June 24, 2009 S. R. Magill - 2009 CTEQ 

Summer School 

15 

At high x : 

At low x : 

Gluon splitting enhances quark density 

           F2 rises with Q2 

Gluon radiation shifts quark to lower x 

            F2 falls with Q2 

- 



QPM and Beyond 

�  Quarks and Gluons  

�  Gluons radiates Quark— 
Anti-Quark pairs 

�  3 more quarks than anti-
quarks (Nucleons) 

 



Kinematics of  DIS and 
DVCS 

Four-Momentum transfer squared 

Energy transferred from the lepton to proton 

Fractional Energy transfer 

Bjorken Scaling Variable 

Four momentum transfer squared at proton vertex 

Generalized Bjorken variable 

Using a polarized beam 
on an unpolarized target, 

two observables can be measured:

Experimental observables linked to GPDs
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DVCS - Overview 

�  Underling process is a virtual photon scattering off  of  a 
quark which produces a real photon 

Deeply Exclusive Scattering
Generalized Parton Distributions

*γ γ

ξx-ξx+

p'p
t

GPDs

factorization

*γ φ, ω, ρ

ξx-ξx+

p'p
t

GPDs

DAs

Bjorken regime :
Q2 ! 1, xB fixed

t fixed ⌧ Q2 , ⇠ ! x
B

2�x
B

P+

2⇡

Z
dy� eixP

+
y

� hp0| ̄
q

(0)�+(1+�5) (y)|pi

= N̄(p0)

Hq (x, ⇠, t)�+ + Eq (x, ⇠, t)i�+⌫ �⌫

2M

+ H̃q (x, ⇠, t)�+�5 + Ẽq (x, ⇠, t)�5 �+
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epàepγ 

Using a polarized beam 
on an unpolarized target, 

two observables can be measured:

Experimental observables linked to GPDs
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Generalized Parton 
Distributions (GPDs) 

�  …. generalized parton distributions (GPDs), which are 
hybrids of  the usual form factors and parton distributions, 
but in addition include correlations between states of  different 
longitudinal and transverse momenta. – JLab page 

where we have chosen α = 1/2 for symmetrical reason. H , H̃ , E and Ẽ are off-forward,
twist-two parton distributions defined through the following light-cone correlation functions,

∫ dλ

2π
eiλx〈P ′|ψ̄(−λn/2)γµψ(λn/2)|P 〉 = H(x, ξ, ∆2)Ū(P ′)γµU(P )

+E(x, ξ∆2)Ū(P ′)
iσµν∆ν

2M
U(P ) + ... ,

∫ dλ

2π
eiλx〈P ′|ψ̄(−λn/2)γµγ5ψ(λn/2)|P 〉 = H̃(x, ξ, ∆2)Ū(P ′)γµγ5U(P )

+Ẽ(x, ξ, ∆2)Ū(P ′)
γ5∆µ

2M
U(P ) + ... , (5)

where the ellipses denote higher-twist distributions. According to our definition, the initial
nucleon and the active quark have the longitudinal momentum 1 + ξ/2 and x + ξ/2, respec-

tively. [In covariant gauge, the longitudinal gluons produce a gauge link exp(−ig
∫−λ/2
λ/2 n ·

A(αn)dα) between the two quark fields, restoring explicit gauge invariance of the light-cone
correlations. Here we are working in the light-cone gauge n · A = 0, hence the longitudinal
gluons and the gauge link never appear. Nonetheless, the result shall be taken as implicitly
gauge-invariant.]

A systematic counting indicates that the virtual Compton scattering depends on twelve
helicity amplitudes [12]. The above result implies that only four of them survive the Bjorken
limit. An quick inspection shows all amplitudes with longitudinally-polarized virtual photons
are sub-leading. For the transversely-polarized virtual photon scattering, the emitted photon
retains the helicity of the incident photon at the leading order. This selection rule can serve
as a useful check that deeply-virtual Compton scattering is indeed dominated by the single
quark process. Of the four off-forward parton distributions, H and H̃ conserve the nucleon
helicity, while E and Ẽ flip the nucleon helicity.

The off-forward parton distributions just defined have characters of both the ordinary
parton distributions and nucleon form factors. In fact, in the limit of ∆µ → 0, we have

H(x, 0, 0) = q(x), H̃(x, 0, 0) = ∆q(x), (6)

where q(x) and ∆q(x) are quark and quark helicity distributions, defined through simi-
lar light-cone correlations [13]. On the other hand, forming the first moment of the new
distributions, one gets the following sum rules [8,11],

∫ 1

−1
dxH(x, ξ, ∆2) = F1(∆

2) ,
∫ 1

−1
dxE(x, ξ, ∆2) = F2(∆

2) ,
∫ 1

−1
dxH̃(x, ξ, ∆2) = GA(∆2) ,

∫ 1

−1
dxẼ(x, ξ, ∆2) = GP (∆2) . (7)

where F1(∆2) and F2(∆2) are the Dirac and Pauli form factors and GA(∆2) and GP (∆2)
are the axial-vector and pseudo-scalar form factors. [Usually the argument of form factors
is the positive −∆2. Here we omit the minus sign for simplicity.]
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DVCS Process 

�  The actual epàepγ process is a combination of  
DVCS and Bethe-Heitler. 

The two-dimensional metric g?µ⌫ = gµ⌫ � nµn
⇤
⌫ � n⇤µn⌫ is defined in terms of two light-like vectors

n and n⇤, such that n2 = n⇤2 = 0 and n · n⇤ = 1. The o↵-forward matrix element of this operator

is parametrized via four GPDs [37] (see [38, 39] for an earlier discussion)

GT
µ⌫(x, ⇠, �2) ⌘ 4(P · n)�1

Z d

2⇡
eix(P ·n)hP2|GOT

µ⌫(,�)|P1i (19)

=
⌧?µ⌫;↵�

2M
�↵Ū(P2)

(

HT (x, ⇠, �2)
q�

P · q i��� + fHT (x, ⇠, �2)
��

2M2

+ET (x, ⇠, �2)
1

2M

 

� · q
P · q�� � ⌘ ��

!

� eET (x, ⇠, �2)
��

2M

)

U(P1) ,

The traceless symmetric projector ⌧? in Eq. (19) possesses the properties

⌧?µ⌫;⇢�⌧?µ⌫;⇢0�0 = ⌧?⇢�;⇢0�0 , ⌧?µ⌫;⇢� = ⌧?⇢�;µ⌫ , ⌧?µµ;⇢� = 0 , ⌧?µ⌫;µ⌫ = 2 .

A simple calculation of one-loop diagrams [38, 39] gives us the following result for the real final-

state photon DVCS amplitude

Tµ⌫ =
↵s

2⇡
TF

X

i=u,d,s

Z 1

�1
dx C

(+)
(0)i(x, ⇠) GT

µ⌫(x, ⇠, �2) , (20)

with TF = 1/2 and the coe�cient function C
(+)
i(0) defined in Eq. (11). Substituting Eq. (19) into the

above expression gives the amplitude, which we will use in our computation of the cross section.

We define the CFFs similarly to Eqs. (9) via

n

HT , ET , fHT , eET

o

(⇠) =
↵s

2⇡
TF

X

i=u,d,s

Z 1

�1
dxC

(+)
(0)i(⇠, x)

n

HT , ET , fHT , eET

o

(x, ⇠) . (21)

Below we will use unifying conventions for these CFFs, i.e., FT = {HT , . . . , eET}.

4 Angular dependence of the cross section

Now we are in a position to turn to physical observables, which give direct access to GPDs in a

measurement of the five-fold cross section for the process e(k)h(P1) ! e(k0)h(P2)�(q2),

d�

dxBdyd|�2|d�d'
=

↵3xBy

16 ⇡2 Q2
p

1 + ✏2

�

�

�

�

T
e3

�

�

�

�

2

. (22)

This cross section depends on the Bjorken variable xB, the squared momentum transfer �2 =

(P2 � P1)2, the lepton energy fraction y = P1 · q1/P1 · k, with q1 = k � k0, and, in general, two

azimuthal angles. We use throughout our presentation the convention

✏ ⌘ 2xB
M

Q .
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BH Cross-section  
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Figure 1: The kinematics of the leptoproduction in the target rest frame. The z-direction is

chosen counter-along the three-momentum of the incoming virtual photon. The lepton three-

momenta form the lepton scattering plane, while the recoiled proton and outgoing real photon

define the hadron scattering plane. In this reference system the azimuthal angle of the scattered

lepton is �l = 0, while the azimuthal angle between the lepton plane and the recoiled proton

momentum is �N = �. When the hadron is transversely polarized (in this reference frame)

S? = (0, cos �, sin �, 0), the angle between the polarization vector and the scattered hadron is

denoted as ' = �� �N .

In Eq. (22), � = �N � �l is the angle between the lepton and hadron scattering planes and

' = � � �N is the di↵erence of the azimuthal angle � of the transverse part of the nucleon

polarization vector S, i.e., S? = (0, cos�, sin �, 0), and the azimuthal angle �N of the recoiled

hadron. Our frame is rotated with respect to the laboratory one in such a way that the virtual

photon four-momentum has no transverse components, see Fig. 1. We fix our kinematics by

choosing the z-component of the virtual photon momentum to be negative and the positive x-

component of the incoming lepton: k = (E, E sin ✓l, 0, E cos ✓l), q1 = (q0
1, 0, 0,�|q3

1|). Other

vectors are P1 = (M, 0, 0, 0) and P2 = (E2, |P 2| cos � sin ✓N , |P 2| sin� sin ✓N , |P 2| cos ✓N ). The

longitudinal part of the polarization vector is SLP = (0, 0, 0, ⇤).

The amplitude T is the sum of the DVCS TDVCS and Bethe-Heitler (BH) TBH amplitudes. The

latter one is real (to the lowest order in the QED fine structure constant) and is parametrized in

terms of electromagnetic form factors, which we assume to be known from other measurements.

The azimuthal angular dependence of each of the three terms in

T 2 = |TBH|2 + |TDVCS|2 + I , (23)

9
with the interference term

I = TDVCST ⇤
BH + T ⇤

DVCSTBH , (24)

arises from the contraction of leptonic and handronic tensors (see also [42]). In our frame these

contractions yield finite sums of Fourier harmonics, whose maximal frequencies are defined by the

the rank-m of the corresponding leptonic tensor in the incoming lepton momentum kµ. Note,

however, that in the polarized part of the leptonic tensors, proportional to � times the ✏-tensor,

one has one four-vector kµ less than in the unpolarized part. Thus, the highest harmonic which is

proportional to � will be cos / sin([m�1]�) instead of cos / sin(m�). The parity and time reversal

invariance provide further constraints on the Fourier coe�cients.

The BH term |TBH|2, squared DVCS amplitude |TDVCS|2, and interference term I read

|TBH|2 =
e6

x2
By2(1 + ✏2)2�2 P1(�)P2(�)

(

cBH
0 +

2
X

n=1

cBH
n cos (n�) + sBH

1 sin (�)

)

, (25)

|TDVCS|2 =
e6

y2Q2

(

cDVCS
0 +

2
X

n=1

h

cDVCS
n cos(n�) + sDVCS

n sin(n�)
i

)

, (26)

I =
±e6

xBy3P1(�)P2(�)�2

(

cI0 +
3

X

n=1

h

cIn cos(n�) + sIn sin(n�)
i

)

, (27)

where the + (�) sign in the interference stands for the negatively (positively) charged lepton

beam2. The results for the Fourier coe�cients, presented below, show that the generation of

new harmonics in the azimuthal angular dependence is terminated at the twist-three level. The

coe�cients cI1 , sI1 as well as cDVCS
0 arise at the twist-two level, and their dependence on GPDs has

been elaborated in Refs. [42, 43]. The rest provides an additional angular dependence and is given

in terms of twist-two, i.e., cI0 , and twist-three, i.e., cDVCS
1 , sDVCS

1 , cI2 , and sI2 , GPDs. The harmonics

proportional to cos (3�) [cos (2�)] or sin (3�) [sin (2�)] in the interference [squared DVCS] term

stem from the twist-two double helicity-flip gluonic GPDs alone. They are not contaminated

by twist-two quark amplitudes, however, will be a↵ected by twist-four power corrections [44].

We neglect in our consequent considerations the e↵ects of dynamical higher-twist (larger than

three) contributions. They will give power-suppressed corrections to the Fourier coe�cients, we

discussed.

There is an important di↵erence between the interference term and the squared DVCS ampli-

tude. The former has a contaminating �-dependence due to the lepton BH propagators,

Q2P1 ⌘ (k � q2)
2 = Q2 + 2k · � , Q2P2 ⌘ (k ��)2 = �2k · � + �2 , (28)

2Note that only in the case of massless leptons, a partial cancellation of propagators occurs in the squared BH
term [41].
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stem from the twist-two double helicity-flip gluonic GPDs alone. They are not contaminated

by twist-two quark amplitudes, however, will be a↵ected by twist-four power corrections [44].

We neglect in our consequent considerations the e↵ects of dynamical higher-twist (larger than

three) contributions. They will give power-suppressed corrections to the Fourier coe�cients, we

discussed.

There is an important di↵erence between the interference term and the squared DVCS ampli-

tude. The former has a contaminating �-dependence due to the lepton BH propagators,

Q2P1 ⌘ (k � q2)
2 = Q2 + 2k · � , Q2P2 ⌘ (k ��)2 = �2k · � + �2 , (28)

2Note that only in the case of massless leptons, a partial cancellation of propagators occurs in the squared BH
term [41].

10

where

k · � = � Q2

2y(1 + ✏2)

(

1 + 2K cos �� �2

Q2

 

1� xB(2� y) +
y✏2

2

!

+
y✏2

2

)

. (29)

The 1/Q-power suppressed kinematical factor K appearing here also shows up in the Fourier series

(25-27),

K2 = ��2

Q2
(1� xB)

 

1� y � y2✏2

4

! 

1� �2
min

�2

!(p
1 + ✏2 +

4xB(1� xB) + ✏2

4(1� xB)

�2 ��2
min

Q2

)

,

(30)

(with the plus sign taken for the square root in Eq. (29)). It vanishes at the kinematical boundary

�2 = �2
min, determined by the minimal value

��2
min = Q2

2(1� xB)
⇣

1�
p

1 + ✏2
⌘

+ ✏2

4xB(1� xB) + ✏2
⇡ M2x2

B

1� xB + xBM2/Q2
, (31)

as well as at

y(x,Q2) = ymax ⌘ 2

p
1 + ✏2 � 1

✏2
⇡ 1� M2x2

B

Q2
.

The square of the transverse momentum transfer is given by

�2
? ⇡ (1� ⇠2)(�2 ��2

min) ,

up to corrections suppressed by the hard-photon virtuality.

According to Eqs. (28) and (29), we introduce the following parametrization:

P1 = � 1

y(1 + ✏2)
{J + 2K cos(�)} , P2 =

1

y(1 + ✏2)

(

1 + J +
�2

Q2
+ 2K cos(�)

)

, (32)

where

J =

 

1� y � y✏2

2

! 

1 +
�2

Q2

!

� (1� x)(2� y)
�2

Q2
.

As we see, the denominator of the u-channel lepton propagator, i.e., P1, can be of order 1/Q2 at

large y. In the Bjorken limit it behaves like (1� y). Moreover, if the outgoing photon is collinear

to the incoming lepton, it vanishes. Of course, the photon then lies in the lepton scattering plane,

i.e., �� = � + ⇡ = 0, and both polar angles coincide with each other. The latter condition is

fulfilled if

y = ycol ⌘
Q2 + �2

Q2 + x�2
⇡ 1 + (1� xB)

�2

Q2
,

11

�x2
B

 

1� �2

Q2

!2

(F1 + F2)
2

)

,

cBH
1,unp = 8K(2� y)

( 

4x2
BM2

�2
� 2xB � ✏2

! 

F 2
1 �

�2

4M2
F 2

2

!

(36)

+ 2 x2
B

 

1� (1� 2xB)
�2

Q2

!

(F1 + F2)
2

)

,

cBH
2,unp = 8x2

BK2

(

4M2

�2

 

F 2
1 �

�2

4M2
F 2

2

!

+ 2 (F1 + F2)
2

)

. (37)

• Longitudinally polarized target:

cBH
0,LP = 8�⇤xB(2� y)y

p
1 + ✏2

1� �2

4M2

(F1 + F2)

(

1

2

"

xB

2

 

1� �2

Q2

!

� �2

4M2

# "

2� xB (38)

� 2(1� xB)2�2

Q2
+ ✏2

 

1� �2

Q2

!

� xB(1� 2xB)
�4

Q4

#

(F1 + F2)

+

 

1� (1� xB)
�2

Q2

!

2

4

x2
BM2

�2

 

1 +
�2

Q2

!2

+ (1� xB)

 

1 + xB
�2

Q2

!

3

5

 

F1 +
�2

4M2
F2

!)

,

cBH
1,LP = �8�⇤xByK

p
1 + ✏2

1� �2

4M2

(F1 + F2)

("

�2

2M2
� xB

 

1� �2

Q2

!# 

1� xB + xB
�2

Q2

!

(F1 + F2)

+

"

1 + xB � (3� 2xB)

 

1 + xB
�2

Q2

!

� 4x2
BM2

�2

 

1 +
�4

Q4

!# 

F1 +
�2

4M2
F2

!)

. (39)

• Transversely polarized target:

cBH
0,TP = �8� cos (')(2� y)y

Q
M

p
1 + ✏2K

q

1� y � ✏2y2

4

(F1 + F2)

(

x3
BM2

Q2

 

1� �2

Q2

!

(F1 + F2) (40)

+

 

1� (1� xB)
�2

Q2

! "

x2
BM2

�2

 

1� �2

Q2

!

F1 +
xB

2
F2

#)

,

cBH
1,TP = �16� cos (')xBy

s

1� y � ✏2y2

4

M

Q
p

1 + ✏2 (F1 + F2)

(

2K2Q2

�2
⇣

1� y � ✏2y2

4

⌘

"

xB

 

1� �2

Q2

!

F1

+
�2

4M2
F2

#

+ (1 + ✏2)xB

 

1� �2

Q2

! 

F1 +
�2

4M2
F2

!)

, (41)

sBH
1,TP = 16� sin (')yx2

B

s

1� y � ✏2y2

4

M

Q
q

(1 + ✏2)3

 

1� �2

Q2

!

(F1 + F2)

 

F1 +
�2

4M2
F2

!

. (42)

4.2 DVCS amplitude squared

|TDVCS|2 is bilinear in the CFFs, and its coe�cients read in terms of CDVCS functions, which are

specified in section 4.4:
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Belitsky, Mueller, Kirchner  

Contains a typo  



 Warm-up calculation of  
BH Cross-Section 

�  Didn’t Work! 
Calculated 

Fit for Kivel 



Exact Calculation of  
Propagators 

�  ρ2 was 
the culprit  

Lepton Propagators 

Q
2 ρ

1 
an

d 
Q

2 ρ
2 

φ 



BH Cross-section with 
adjusted propagators 



Monte-Carlo Event 
Generator 

�  Five fold differential space for 
final state of  epàepγ 

�  Includes radiative corrections 

�  To be used as an input for 
GEANT4 simulation 

Momentum Acceptance   
Δk = 4.5% 
 
Angular acceptance 
ΔθH = 30 mr 
ΔθV = 60 mr 

HRS 

z 



Q2 – Xb Space 

Q2 

Q2 

Xb 

Xb 



-t – Xb space 

-t 

Xb 
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