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Outline

The meaning of “duality” in physics 
(Example: The Ising model)

Quark-Hadron duality (experimental and 
theoretical evidence)

Electric-Magnetic Duality (monopole 
condensation and confinement)

The AdS/CFT correspondence (gauge/gravity 
duality, holographic QCD)



The AdS/CFT Correspondence

Perhaps the most surprising of dualities is the 
AdS/CFT correspondence, which relates theories 
in different numbers of spacetime dimensions.

It is a strong-weak coupling duality in certain 
limits of theory parameters.

It is one of the most active areas of string 
theory research, and has motivated models of 
QCD, superconductors, cold atoms, fermi 
liquids, ...

Maldacena - 1997
Witten; Gubser,Klebanov,Polyakov - 1998



The AdS/CFT Correspondence

The motivation for the correspondence begins 
with Black Hole Thermodynamics.

S = AH/4G�

Black holes radiate with a temperature that 
depends on the black hole mass.  The relation 
between mass and temperature determines an 
entropy:

Entropy is usually an extensive quantity: it 
grows with Volume.  With gravity, the maximum 
entropy of a system grows with Area!

Horizon area



The AdS/CFT Correspondence

It is as if a nongravitational theory contains 
the same information as a theory with gravity 
in one additional dimension.

Could a weakly-coupled theory with gravity 
describe strogly-coupled QCD at low energies 
(in the resonance region)?

To explore this possibility we will first explore 
what the AdS/CFT correspondence really means.

“holography”
(‘t Hooft, Susskind)



D3 branes
3 spatial

dimensions
Dirichlet 
(strings end here)

Massless spectrum of 
open strings attached to 
D3-branes in Type IIB 
String Theory is 
described by N=4 SUSY 
SU(N) Yang-Mills theory

N

The AdS/CFT Correspondence
Maldacena, hep-th/9711200

@ N      with fixed large 
g N: 
Closed strings describe 
Type IIB SUGRA in a 
background with near-
horizon geometry 
AdS  x S55

s

→∞



Anti-de Sitter Space (AdS )
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3 − dX2
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Closed 
timelike 
curves?!!
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Poincare coordinates:
X4 = 1

2z

�
z2 −R2 + x2 − t2

�
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1 − dX2

2 − dX2
3 − dX2
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t21 + t22 −X2
1 −X2

2 −X2
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z = R2

t2−X4

ds2 = R2

z2

�
dt2 − dx2

1 − dx2
2 − dx2

3 − dz2
�

z>0 covers half of the spacetime

Anti-de Sitter Space (AdS )5



Hints of a Conformal Theory
t21 + t22 − x2

1 − x2
2 − x2

3 − x2
4 = R2

ds2 = dt21 + dt22 − dX2
1 − dX2

2 − dX2
3 − dX2
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Isometries of AdS : SO(2,4)5

SO(2,4) is also the group of conformal 
symmetry transformations in 4D
(Poincare symmetry, dilations, inversions)



The AdS/CFT Dictionary

z=0: boundary of the spacetime

ds2 = R2

z2

�
dt2 − dx2

1 − dx2
2 − dx2

3 − dz2
�

Gauge
Operator Field

Scaling dimension of operator Mass of field

Source for operator
non-normalizable background 

profile for field near AdS 
boundary

Generating functional for 
connected correlation functions

Action with background profiles 
for fields near AdS boundary

Gravity



Adding Flavor to AdS/CFT
(Karch, Katz)

D3
D7

Strings from N D3-
branes to D7-branes 
are fundamentals
under SU(N)

With N  D7-branes, SU(N )
gauge fields couple to the 
flavor current.

f f

The spectrum of those gauge 
fields corresponds to the 
spectrum of vector mesons.



Confinement and AdS/CFT
There is no mass gap in a conformal 
theory.  To match QCD we need to break 
the conformal invariance and generate a 
mass gap.

One way to do this is to introduce a hard 
wall into the geometry
(Polchinski-Strassler).

AdS
ds2 = R2

z2

�
dt2 − dx2

1 − dx2
2 − dx2

3 − dz2
�

z ∈ (�, zIR)



Particles in Extra Dimensions
Suppose every proton had the same 
momentum p  in a flat extra dimension - 
like a certain mode of a particle in a box

5

E2 = p2 + p2
5

looks like a mass 
from the 3+1 dim’l 

perspective



Kaluza-Klein Modes

Vector field in slice of 5D 
Minkowski space

Example

S = −1
4

�
d4x dz (FµνFµν + FµzF

µz)

z

Fµν = ∂µAν − ∂νAµ

Fµz = ∂µAz − ∂zAµ

µ ∈ {0, 1, 2, 3}

z ∈ {0, L}



Example

z

∂µ(∂µAν − ∂νAµ) + ∂z(∂zAν − ∂νAz) = 0A EOM:ν

A EOM:z ∂µAµ = f(x)∂µ(∂µAz − ∂zAµ) = 0

A =0 gaugez

Vector field in slice of 5D 
Minkowski space z ∈ {0, L}

Kaluza-Klein Modes



Example

z

∂µ(∂µAν − ∂νAµ) + ∂z(∂zAν − ∂νAz) = 0

∂µ(∂µAz − ∂zAµ) = 0

A EOM:ν

A EOM:z

A =0 gauge, z

∂µAµ = f(x)

∂µAµ = 0

Vector field in slice of 5D 
Minkowski space z ∈ {0, L}

Kaluza-Klein Modes



Example

z

A EOM:ν ∂µ∂µAν − ∂2Aν

∂z2
= 0

Separation of Variables: Aν(x, z) = Ãν(x)ψ(z)

ψ��(z) = −q2 ψ(z)
∂µ∂µÃν(x) = −q2 Ãν(x)

Vector field in slice of 5D 
Minkowski space z ∈ {0, L}

Kaluza-Klein Modes



Example

z

ψ��(z) = −q2 ψ(z)
∂µ∂µÃν(x) = −q2 Ãν(x)

Boundary conditions on      determine 
eigenvalues of

ψ(z)

q2

Vector field in slice of 5D 
Minkowski space z ∈ {0, L}

mass  of 4D field Ãν(x)2

Kaluza-Klein Modes



Example

z

ψ��(z) = −q2 ψ(z)
∂µ∂µÃν(x) = −q2 Ãν(x)

Vector field in slice of 5D 
Minkowski space

ψ�(0) = ψ�(L) = 0

z ∈ {0, L}

q2
n =

n2π2

L2
Kaluza-Klein masses

ψn(z) = cos(nπz/L)

Fµz(0) = Fµz(L) = 0

Kaluza-Klein Modes

2



Example

z

Vector field in slice of 5D 
AdS space

Kaluza-Klein Modes in AdS

z ∈ {�, zIR}

S = −1
4

�
d4x dz

√
gFMNFAB gMAgNB

determinant
of metric

inverse
of metric

ds2 = R2

z2

�
dt2 − dx2

1 − dx2
2 − dx2

3 − dz2
�

= −1
4

�
d4x dz

R

z
FMNFAB ηMAηNB



Vector field in AdS

Exampleψ1(z)

∂z

�
1
z ∂zVν(x, z)

�
= 1

z ∂µ∂µVν(x, z)

Vν(x, z) = Vν(x)ψn(z)Kaluza-Klein Modes:
∂z

�
1
z ∂zψ(z)

�
= −m2

n
z ψ(z)

EOM:

Kaluza-Klein Modes in AdS

nn

Boundary Conditions: ψn(�) = ψ�
n(zIR) = 0



Vector field in AdS

Exampleψ1(z)

Kaluza-Klein Modes in AdS

Boundary Conditions:

Exercise 1: Write              , choose p so that 
the equation for      becomes Bessel’s eqn.

ψ(z) = zpψ̃(z)
ψ̃(z)

Vν(x, z) = Vν(x)ψn(z)Kaluza-Klein Modes:
∂z

�
1
z ∂zψ(z)

�
= −m2

n
z ψ(z)nn

ψn(�) = ψ�
n(zIR) = 0



Vector field in AdS

Exampleψ1(z)

Kaluza-Klein Modes in AdS

Exercise 2: Show that as       the eigenvalues 
satisfy              .

�→ 0
J0(mnzIR) = 0

Boundary Conditions:

Vν(x, z) = Vν(x)ψn(z)Kaluza-Klein Modes:
∂z

�
1
z ∂zψ(z)

�
= −m2

n
z ψ(z)nn

ψn(�) = ψ�
n(zIR) = 0



AdS/CFT: 
Kaluza-Klein Modes     Bound States

AdS/CFT: 
Current        Vector field

Kaluza-Klein modes of vector field are rho 
mesons, and eigenvalues of q  determine 
rho meson masses!

2



Statement of the AdS/CFT 
Correspondence

S5D [φ(x, z)]φ(x,�)∼ρ(x) = W [ρ(x)]

source for 
operator O

generating functional for 
connected correlators

AdS/CFT:

�ei
R

d4x ρ(x)O(x)� ≡ eiW [ρ(x)]



Statement of the AdS/CFT 
Correspondence

source for 
current J

generating functional for 
connected correlators

AdS/CFT: S5D [Aµ(x, z)]Aµ(x,�)∼Aµ(x) = W [Aµ(x)]

�ei
R

d4x Aµ(x)Jµ(x)� ≡ eiW [Aµ(x)]



Vector Current Correlators

∂z

�
1
z ∂zVν(x, z)

�
= 1

z ∂µ∂µVν(x, z)

We need the 5D action on a solution to the 
EOM that approaches the (transverse) source 
V(x) at the AdS boundary.

5D action vanishes on solution to EOM except 
for a boundary term:

S = − 1
2g2

5

�
d4x

�
1
z
V a

µ (x, z)∂zV
µa(x, z)

�

z=�



Vector Current Correlators

Fourier transform in 3+1 dim’s:

S = − 1
2g2

5

�
d4x

�
1
z
V a

µ (x, z)∂zV
µa(x, z)

�

z=�

V (q, �) = 1

V a
µ (q, z) = V (q, z)V a

µ (q)Write
“Bulk-to-boundary
         propagator”

= − 1
2g2

5

�
d4q

(2π)4

�
1
z
V a

µ (−q, z)∂zV
µa(q, z)

�

z=�



Vector Current Correlators

�
d4x eiq·x�Ja

µ(x)Jb
ν(0)� ≡ δab

�
qµqν − q2gµν

�
ΠV (−q2)

Vector current-current correlator:

ΠV (−q2) =
1

g2
5q2

�
1
z
∂zV (q, z)

�

z=�

AdS/CFT

S = − 1
2g2

5

�
d4q

(2π)4
V µa(−q)V a

µ (q)
�

1
z
∂zV (q, z)

�

z=�

=
δ

δAa
µ(−q)

δ

δAb
ν(q)

S



Vector Current Correlators

ΠV (−q2) =
1

g2
5q2

�
1
z
∂zV (q, z)

�

z=�

V (q, �) = 1

∂zV (q, z)|z=zIR = 0

∂z

�
1
z
∂zV (q, z)

�
+

q2

z
V (q, z) = 0

where



Vector Current Correlators

Can expand solutions at large -q :2

ΠV (−q2) = − 1
2g2

5

ln(−q2) + . . .

ΠV (−q2) ≈ − Nc

24π2
ln(−q2)

One-loop perturbative QCD calculation:

Relates g  and N
5 c



Quark-Hadron Duality

Can expand in resonances (Kaluza-Klein modes)

V (q, �) = 1 ∂zV (q, z)|z=zIR = 0

∂z

�
1
z
∂zV (q, z)

�
+

q2

z
V (q, z) = 0

Bulk-to-Boundary Propagator

Dirichlet Green function:

∂z

�
1
z
∂zG(q, z, z�)

�
+

q2

z
G(q, z, z�) = δ(z − z�)

∂zG(q, z, z�)|z=zIR = 0G(q, �, z) = 0



Quark-Hadron Duality

Consider the integral

I ≡
� zIR

�
dz V (q, z)

�
∂z

1
z
∂z +

q2

z

�
G(q, z, z�)

= V (q, z�)

Integrate by parts twice:

I =
� zIR

�
dz G(q, z, z�)

�
∂z

1
z
∂z +

q2

z

�
V (q, z)

+V (q, z)
1
z
∂zG(q, z, z�)

����
zIR

�

−G(q, z, z�)
1
z
∂zV (q, z)

����
zIR

�1



Quark-Hadron Duality

We have derived a relation between the bulk-to-
boundary propagator and the Dirichlet Green 
function:

V (q, z�) = − 1
z
∂zG(q, z, z�)

����
z=�

The Green function can then be expanded in 
the Kaluza-Klein modes discussed earlier:

G(q, z, z�) =
�

n

ψn(z)ψn(z�)
q2 −m2

n



Quark-Hadron Duality

We can now evaluate the expression for the 
current-current correlator derived earlier as a 
sum over “rho mesons”:

ΠV (−q2) =
1

g2
5q2

�
1
z
∂zV (q, z)

�

z=�

+ contact term

= − 1
g2
5

�

n

(ψ�
n(�)/�)2

(q2 −m2
n)m2

n



Quark-Hadron Duality

nV Rho decay
constants

ΠV (−q2) = − 1
g2
5

�

n

(ψ�
n(�)/�)2

(q2 −m2
n)m2

n

F 2
n =

1
g2
5

�
ψ�

n(�)
�

�2AdS/QCD 

ΠV (−q2) = −
�

n

F 2
n

(q2 −m2
n)m2

n



Sum RulesMatching to UV

In the deep Euclidean regime −q2 � m2
ρ, perturbative QCD gives

i

�
d4x e iq·x�Ja

µ(x)Jb
ν (0)� =

�
qµqν − gµνq

2
�
δab N

24π2
log(q2)

We can express the correlator as a sum over resonances:

i

�
d4x e iq·x�Ja

µ(x)Jb
ν (0)� =

� F 2
n

q2 −m2
n

�
gµν −

qµqν

m2
n

�
δab

Agreement of these expressions in the deep Euclidean regime is a
Weinberg sum rule.

Josh Erlich (College of William & Mary) Recent Developments in AdS/QCD September 3, 2008 12 / 24Fn = Decay constant of nth resonance
mn = nth Kaluza-Klein mass



Vector Mesons in AdS/CFT
(Kruczenski,Mateos,Myers,Winters)

D3
D7 The large number of D3- 

branes warp the spacetime.

The D7-branes minimize 
their volume in that 
spacetime.

Gauge fields propagate in 
the induced geometry on 
the D7-branes, and KK 
modes are mesons.



What about chiral symmetry?

QCD with massless quarks has an enhanced 
symmetry

qL =
�

1− γ5

2

�
q qR =

�
1 + γ5

2

�
q

LQCD =
�

i=u,d,...

[qiLγµ (i∂µ − gAµ) qiL + qiRγµ (i∂µ − gAµ) qiR]

qL → eiθa
LT a

qL qR → eiθa
RT a

qR

Chiral symmetry: SU(N ) generatorsf



Quark masses explicitly break the chiral 
symmetry.  For now pretend quark masses 
were equal.

Under chiral symmetry:

Lm = m (qLqR + qRqL)

Isospin is still preserved: 

Lm → m
�
qLe−iθa

LT a

eiθa
RT a

qR + h.c.
�

θa
L = θa

R

What about chiral symmetry?



The up and down quark masses (few MeV) 
are small compared to the confining scale 
(few hundred MeV).

SU(2) chiral symmetry is a pretty good 
symmetry for the up and down quarks.

What about chiral symmetry?

However, the chiral symmetry is 
spontaneously broken by chiral condensates.

�qLqR� �= 0



Chiral Fermions in AdS/CFT
(Sakai,Sugimoto)

D4-branes wrapped on a 
circle with antiperiodic 
boundary conditions for 
fermions      breaks 
SUSY (Witten)

D4

f

D8

N  D8-branes and D8-branes 
intersect D4-branes
D4-D8 strings contain 
massless chiral fermions

D8



The SU(N )xSU(N ) chiral symmetry is 
broken to the diagonal SU(N )
The spectrum of vector fields on the 
D8-branes describes vector and 
axial-vector mesons, and pions.

Chiral Symmetry Breaking
(Sakai,Sugimoto)

D4-branes warp the geometry.
D8-branes minimize their 
volume, connect with D8-
branes.

f

D8

D8

f
f



Bottom-Up AdS/QCDTop-Down and Bottom-Up

Bottom-Up AdS/QCD:

Model tower of resonances as Kaluza-Klein modes in an extra
dimension (Son,Stephanov’04)
Model pattern of chiral symmetry breaking by analogy with AdS/CFT
correspondence

Optional: Specify details of model (geometry of extra dimension,
couplings) by matching to UV as best possible
(e.g. Brodsky,De Teramond; JE et al.; Da Rold,Pomarol)

AdS5

Josh Erlich (College of William & Mary) Recent Developments in AdS/QCD September 3, 2008 4 / 24



Top-Down vs. Bottom-Up

Top-Down AdS/QCD:

Advantage: Both
descriptions of theory are
relatively well
understood, duality is
exact.

Disadvantage: QCD with
fundamental flavors does
not have weakly-coupled
AdS/CFT dual, so far
even at large-N.

Bottom-Up AdS/QCD:

Advantage: Freedom to
match model to aspects
of QCD.

Disadvantage: Some
features of model
disagree with QCD
(analogous to large-N
limit).

Josh Erlich (College of William & Mary) Recent Developments in AdS/QCD September 3, 2008 5 / 24



Dualities Lectures 3-4 Summary
The AdS/CFT correspondence relates theories 
in different numbers of spatial dimensions.

Higher-dimensional models which confine 
with chiral symmetry breaking allow for 
calculation of hadronic observables.

Next lecture: 
Holographic QCD, comparison with data


