
the excited spectrum of QCD
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the spectrum of excited hadrons

49

let’s begin with a convenient fiction :

imagine that QCD were such that there was a spectrum of stable excited hadrons

e.g. suppose we set up QCD with just two degenerate 
flavours of quark with mass roughly that of the charm 
quark

then we’d expect a spectrum of        hadron states 
starting at about 3 GeV that are stable up to about 6 GeV

except perhaps if glueballs are important ?
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the spectrum of excited hadrons

50

might expect something like the non-relativistic quark model

0−+ 1−− 2−− 3−− 2−+ 0++ 1++ 2++1+− 3++ 4++

... but QCD might be more interesting than this, 
e.g. what about ‘gluonic excitations’ ?
   ➟ glueballs
   ➟ hybrids                

... and we need to verify if our simple 
expectations of a         spectrum are really present
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the spectrum of excited hadrons
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we’d like to map out the spectrum of states in each JPC

... very limited in JPC coverage

need interpolating fields that transform like the desired JPC

e.g. local fermion bilinears

one possible extension: 
include gauge-covariant 
derivatives e.g.

9 elements

operator is 
reducible
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the spectrum of excited hadrons

52

9 elements operator is 
reducible

very easy to build a scheme where the operators are irreducible:

spin-1 
circular basis

with J=0,1,2

Hadron Spectrum Collaboration 
has used up to three derivatives:

can build a big basis this way covering all J ≤ 4
PRL103 262001 (2009)
PRD82 034508 (2010)
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the spectrum of excited hadrons

53

so we could compute correlators for each JPC and look at effective masses at large t

would give us the lightest state in each JPC

0−+ 1−− 2−− 3−− 2−+ 0++ 1++ 2++1+− 3++ 4++

we want more than this ...
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the spectrum of excited hadrons

54

we need to be able to extract excited states

a weighted sum of exponentials 
- just do a fit to the time-dependence ?

(fit variables : A0, A1 ... , E0, E1 ...)

this is a very bad way to 

approach this problem

➟ suppose two states are (nearly) degenerate
        - fit won’t be able to tell if there are two states or one !

➟ how do we determine how many states to include in the fit
       - if we decrease tmin to use more of the data, need more states ?

fortunately there is a very 

powerful method available ...
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variational approach

55

compute a matrix of correlation functions

suppose we have multiple operators for a given JPC

e.g. JPC = 1−−

solve the ‘generalised eigenvalue problem’ :

eigenvalues, ‘principal correlators’

eigenvectors are ‘orthogonal’
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variational approach

56

the interpretation is relatively simple

the eigenvectors indicate the optimal linear combination of          to interpolate 

degenerate states are easy to deal with - they might have 

- but they have orthogonal 
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variational approach

57

principal correlators

fit each with

with m,m’,A as parameters

(throw away: m’, A)
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a real example - T1
−−  in charmonium

58

26 operators

0.4

0.5

0.6

0.7

0.8

superimposed J=1,3,4 spectra

‘statistical’ uncertainty
(finite Monte Carlo sample)

variational analysis of 
26×26 matrix of correlators

multiple approximate degeneracies
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the charmonium spectrum from a lattice QCD calc
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perform variational analysis in each quantum number

0

500

1000

1500

0−+ 1−− 2−− 3−−2−+ 4−−4−+ 0++ 1+− 1++ 2++ 3+− 3++ 4++ 1−+ 0+− 2+−

‘exotic’ JPC

Hadron Spectrum Collaboration
arXiv:1204.5425
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the charmonium spectrum from a lattice QCD calc
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perform variational analysis in each quantum number

0

500

1000

1500

0++ 1+− 1++ 2++ 3+− 3++ 4++ 1−+ 0+− 2+−

‘exotic’ JPC

Hadron Spectrum Collaboration
arXiv:1204.5425

0−+ 1−− 2−− 3−−2−+ 4−−4−+

“excess” 
0−+,1−−,2−+
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the charmonium spectrum from a lattice QCD calc
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perform variational analysis in each quantum number

0

500

1000

1500

0++ 1+− 1++ 2++ 3+− 3++ 4++ 1−+ 0+− 2+−

‘exotic’ JPC

Hadron Spectrum Collaboration
arXiv:1204.5425

if we’re interested in phenomenology, there is 
more information than what’s presented here
  
the relative sizes of 

might tell us about the state composition ?

0−+ 1−− 2−− 3−−2−+ 4−−4−+



HUGS 2012

the charmonium spectrum from a lattice QCD calc
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perform variational analysis in each quantum number

0

500

1000

1500

0++ 1+− 1++ 2++ 3+− 3++ 4++ 1−+ 0+− 2+−

‘exotic’ JPC

Hadron Spectrum Collaboration
arXiv:1204.5425

if we’re interested in phenomenology, there is 
more information than what’s presented here
  
the relative sizes of 

might tell us about the state composition ?

0−+ 1−− 2−− 3−−2−+ 4−−4−+
M

O
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back to the operators ...

e.g. JPC=1−−

spin-structure:

upper component 
projector

consider a model-interpretation

63
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back to the operators ...

e.g. JPC=1−−

without gauge-fields:

relative momentum

consider a model-interpretation

64
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antisymmetric CGC

back to the operators ...

e.g. JPC=1−−

without gauge-fields:

with gauge-fields chromomagnetic part 
of field-strength tensor

65
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operator overlaps

e.g. JPC=1−−
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the charmonium spectrum from a lattice QCD calc

67

perform variational analysis in each quantum number

0

500

1000

1500

0++ 1+− 1++ 2++ 3+− 3++ 4++ 1−+ 0+− 2+−

‘exotic’ JPC

Hadron Spectrum Collaboration
arXiv:1204.5425

0−+ 1−− 2−− 3−−2−+ 4−−4−+

“excess” 
0−+,1−−,2−+
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the charmonium spectrum from a lattice QCD calc

68

can isolate dominant hybrid character across the spectrum

0

500

1000

1500

0++ 1+− 1++ 2++ 3+− 3++ 4++ 1−+ 0+− 2+−

‘exotic’ JPC

0−+ 1−− 2−− 3−−2−+ 4−−4−+
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hybrid mesons

a phenomenology of hybrid mesons based upon QCD calculations

a chromomagnetic field configuration is lowest excitation

1500

0++ 1+− 1++ 2++ 3+− 3++ 4++ 1−+ 0+− 2+−0−+ 1−− 2−− 3−−2−+ 4−−4−+

69
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lighter quarks - isovector mesons

70

1000

1500
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3000

three flavours of quark - all at the strange quark mass m(“π”) ~ 700 MeV
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lighter quarks - isovector mesons

71

three flavours of quark - all at the strange quark mass m(“π”) ~ 700 MeV

1000

1500

2000

2500

3000

interpretations based on operator overlaps
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lighter quarks - isovector mesons

72

three flavours of quark
 - degenerate up/down quarks
 - correct strange quark mass

m(π) ~ 400 MeV

0.5

1.0

1.5

2.0

2.5

exoticsytirap evitisopytirap evitagen
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challenging using 
‘traditional’ methods

isoscalar mesons

｜⎡ ⎣

｜
⎡ ⎣
｜ ｜ ｜

｜⎡ ⎣ ⎡ ⎣

−

−

difference w.r.t. isovector mesons is addition of ‘disconnected’ diagrams

73
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isoscalar mesons

−2

hidden ‘light’ and hidden ‘strange’ can mix

74

−√2

−√2

−
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isoscalar mesons

75
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Hadron Spectrum Collaboration
PRD83 111502 (2011)
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baryons

76

1.0

1.5

2.0

2.5

3.0

analogous large basis of operators for baryons - three 
quark fields respecting permutation (anti-)symmetry

Hadron Spectrum Collaboration
PRD84 074508 (2011)
PRD85 054016 (2012)
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hybrids (mesons and baryons)

77

0

500

1000
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2000

0

500

1000
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2000

approximately remove the ‘quark mass’ contribution to the hybrid mass

light hybrid mesons - mρ
light hybrid baryon - mN

charmonium hybrids - mηc

chromomagnetic gluonic excitation scale ~ 1.3-1.4 GeV ?

a model dependent interpretation of lattice QCD calculations



the resonance spectrum of QCD

or, 

“where are you hiding the scattering amplitudes?”
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real QCD

real QCD has very few stable particles : 

‘states’ like ρ , ' ... are resonances

asymptotic states of the theory include multi-pion states

e.g. in the CM frame

with         varying continuously up from zero

e.g. ππ scattering in isospin-1

p p

π+

π0... π0

π+

79
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real QCD

real QCD has very few stable particles : 

‘states’ like ρ , ' ... are resonances

asymptotic states of the theory include multi-pion states

e.g. in the CM frame

with         varying continuously up from zero

e.g. ππ scattering in isospin-1

p p

π+

π0

π+

80

for small t

π0
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real QCD

real QCD has very few stable particles : 

‘states’ like ρ , ' ... are resonances

asymptotic states of the theory include multi-pion states

e.g. in the CM frame

with         varying continuously up from zero

within the field-theory we have correlators

         e.g. the (Euclidean) vector correlator

spectral 
function

the spectrum is continuous !

81
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real QCD

real QCD has very few stable particles : 

‘states’ like ρ , ' ... are resonances

asymptotic states of the theory include multi-pion states

e.g. in the CM frame

with         varying continuously up from zero

within the field-theory we have correlators

         e.g. the (Euclidean) vector correlator

spectral 
function

the spectrum is continuous !
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a lattice calc.
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field theory in a finite volume

consider the case of one space dimension with a periodic boundary condition

this will make the allowed momenta of a free particle discrete :

free particle

periodic boundary condition

for integer 

83
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non-interacting two-particle states in a finite volume

in a three-dimensional cubic box

non-interacting 
spectral function

the spectrum is discrete 

and volume-dependent

84



HUGS 2012

two-particle states in a finite volume

but hadrons do interact, and sometimes strongly
e.g.

what is the impact of these interactions on the finite-volume spectrum ?

85
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scattering 
‘phase-shift’

wave incoming
from x→+∞

two-particle states in a finite volume

e.g. non-rel quantum mechanics in one-dimension

86

scattering solutions of two spinless bosons separated by       

interacting through a potential

in center-of-momentum frame

reflected wave
normalisation

scattering phase-shift contains 
all the information about elastic scattering
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two-particle states in a finite volume

e.g. non-rel quantum mechanics in one-dimension

87

scattering solutions of two spinless bosons separated by       

interacting through a potential

in center-of-momentum frame

finite length world with periodic b.c.

wavefunction and derivative continuous at boundary
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shift due to
interaction

non-interacting
momentum

two-particle states in a finite volume

e.g. quantum mechanics in one-dimension

88

discrete & volume-dependent spectrum of scattering states

e.g. a weak attraction 
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known function of 
energy and box length

phase-shift in partial wave
at scattering energy 

two-particle states in a finite volume

the analogous expression for two-particle elastic scattering 
in a finite cubic volume has been derived by Lüscher

89

somewhat complicated by the lack of full rotational symmetry (a cube)

for our purposes, we’ll pretend that it’s as simple as

so we ‘measure‘            on one or more volumes 

and plug into the formula to determine       at discrete energies 
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ππ isospin-2 scattering

90
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ππ isospin-2 scattering - field theory calculation

no quark-annihilation 
in these correlators

variational in a basis 
of operators :

“ππ” of various 
relative momenta

e.g.

91
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ππ isospin-2 scattering

variational in a basis 
of operators :

“ππ” of various 
relative momenta

e.g.
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shifted upward slightly 
from non-interacting 
pion pairs
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Hadron Spectrum Collaboration
arXiv:1203.6041
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ππ isospin-2 scattering
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S-wave scattering phase-shift

mπ~400 MeV
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ππ isospin-2 scattering
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ππ isospin-2 scattering
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ππ isospin-2 scattering
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ππ isospin-2 scattering
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ππ isospin-2 scattering

D-wave scattering phase-shift

mπ~400 MeV-15

-10

-5

 0
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ππ isospin-2 scattering

summary (with effective range fits)

99
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ππ isospin-2 scattering

experimental compendium
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ππ isospin-1 scattering

more interesting scattering channels are those featuring resonances

101

e.g. the ρ in ππ
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ππ isospin-1 scattering

more interesting scattering channels are those featuring resonances

102
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ππ isospin-1 scattering

more interesting scattering channels are those featuring resonances
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ππ isospin-1 scattering

expected finite-volume spectrum given a ρ resonance

104
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ππ isospin-1 scattering

a strongly volume-dependent spectrum

105
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ππ isospin-1 scattering

expected finite-volume spectrum given a ρ resonance
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ππ isospin-1 scattering

expected finite-volume spectrum given a ρ resonance
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ππ isospin-1 scattering

expected finite-volume spectrum given a ρ resonance
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ππ isospin-1 scattering

expected finite-volume spectrum given a ρ resonance

109
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the spectrum using ‘local’ operators - T1
−−

L=16

110
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no systematic volume dependence observed in the spectrum

mπ~400 MeV



HUGS 2012

the spectrum using ‘local’ operators - T1
−−

L=16

111

L=20 L=24

non-interacting ππ energies

mπ~400 MeV
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the spectrum using ‘local’ operators - T1
−−

L=16

112
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mπ~400 MeV

no sign of any 

multi-meson 

physics ?
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the spectrum using ‘local’ operators

113

we suspect that this effect can be understood

➟ hypothesise that local          operators have a suppressed overlap onto 

by at least a factor of 1/ L3

➟ hypothesise that energy eigenstates are superpositions of 

a         state, call it 

“non-interacting”               basis states

★

★
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ππ isospin-1 scattering

expected finite-volume spectrum given a ρ resonance
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the spectrum using ‘local’ operators

115

a simple two-state mixing model:

if we only use operators which overlap well with             and not with 

then a variational solution won’t be able to find the orthogonal combinations

the principal correlator will behave like
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ππ isospin-1 scattering - lattice calculation

116

need quark annihilation diagrams

e.g.

operator basis:

➟ usual big set of derivative-based fermion bilinears

➟ ππ-like operators of definite relative momentum

do it properly !



Lattice 2012 - spectroscopy overview

[100] A1 - with & without ππ operators
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[100] A1 - with & without ππ operators
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the spectrum using ‘local’ operators - T1
−−

L=16

121
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ππ isospin-1 scattering - pion mass dependence
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European Twisted Mass Collaboration
PRD83 (2011) 094505

➟ four different quark masses

➟ two-flavour calculation (no strange quarks)

➟ setting the lattice scale ?

➟ computed in relatively few frames



HUGS 2012

ππ isospin-1 scattering - pion mass dependence
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forthcoming resonance calculations
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computationally challenging:

➟ pion-nucleon elastic scattering (' resonance)

➟ lots of quark lines
➟ lots of matrix multiplication
    
                  ... computer time
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forthcoming resonance calculations
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computationally challenging:

➟ pion-nucleon elastic scattering (' resonance)

➟ meson-meson inelastic scattering (e.g a0 in πη-KK )
_

requires untested formalism:

e.g. 2-channel 
inelastic scattering 

finite-volume formalism

‘measured’

three real numbers at each scattering energy

three unknowns
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forthcoming resonance calculations
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computationally challenging:

➟ pion-nucleon elastic scattering (' resonance)

➟ meson-meson inelastic scattering (e.g a0 in πη-KK )
_

➟ three-meson decays, e.g. ω,a1,a2...→ πππ

requires untested formalism:

all the complications of building unitary, analytic 
scattering amplitudes present for experiment !
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and to finish ...
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thank you for your attention 


