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Outline

The meaning of “duality” in physics 
(Example: The Ising model)

Quark-Hadron duality (experimental and 
theoretical evidence)

Electric-Magnetic Duality (monopole 
condensation and confinement)

The AdS/CFT correspondence (gauge/gravity 
duality, holographic QCD)



Building a Bottom-Up ModelBuilding a Bottom-Up AdS/QCD Model

Step 1: Choose 5D gauge group and geometry.

Tower of vector mesons are identified with tower of Kaluza-Klein
gauge bosons.

SU(2) isospin → 5D SU(2) gauge theory
Conformal in the UV → Anti-de Sitter space near its boundary

Can choose geometry by matching spectrum to Pade approx of SU(2)
current-current correlator in deep Euclidean regime −q2 � m2

ρ.

Result: geometry = slice of AdS space
(Shifman; JE,Kribs,Low; Falkowski,Perez-Victoria).
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Building a Bottom-Up Model
Building a Bottom-Up AdS/QCD Model

To include the full chiral symmetry, not just the vector subgroup,

SU(2)×SU(2) chiral symmetry → SU(2)×SU(2) 5D gauge group

Additional tower of gauge bosons → tower of axial-vector mesons.
(5D parity → 4D parity)
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(Also describes pions after symmetry breaking)



Building a Bottom-Up ModelBuilding a Bottom-Up AdS/QCD Model

Step 2: Include pattern of chiral symmetry breaking

Hint from AdS/CFT: 4D operator → 5D field

qiqj → Scalar fields Xij , bifundamental under SU(2)×SU(2)

Background profile for Xij :

Non-normalizable mode → source L4D ⊃ mij qiqj

Normalizable mode → VEV �qiqj�

The scalar field background explicitly and spontaneously breaks the chiral

symmetry.
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(Klebanov,Witten; Balasubramanian et al.)



Building a Bottom-Up ModelBuilding a Bottom-Up AdS/QCD Model

For definiteness, we need to choose 5D mass of scalar field.

AdS/CFT:
✞
✝

☎
✆m2

X = ∆qq(∆qq − 4) in units of AdS curvature.

In the UV, ∆qq = 3, so we choose
✞
✝

☎
✆m2

X = −3 .

Note: This choice is made for definiteness, but is not necessary.
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Building a Bottom-Up ModelBuilding a Bottom-Up AdS/QCD Model

In summary, the model is:

SU(2)×SU(2) gauge theory in slice of AdS5 with background
bifundamental scalar field.

S =

�
d5x

√
−g

�
− 1

2g2
5

Tr (LMNLMN + RMNRMN) + Tr(|DMX |2 − 3|X |2)
�

ds2 =
1

z2

�
dxµdxµ − dz2

�
, � < z < zIR

X0(x , z) =
mq

2
z +

�qq�
2

z3

Model parameters:
✞✝ ☎✆g5, mq, �qq�, zIR
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Pions: Mixture of longitudinal part 
of    and scalar field

Building a Bottom-Up Model

Vector: V a
µ =

La
µ + Ra

µ

2

Axial-Vector: Aa
µ =

La
µ −Ra

µ

2

Aa
µ X



Soft-Wall AdS/QCDSoft Wall AdS/QCD

In the Hard Wall model m2
n ∼ n2

To obtain a linear Regge trajectory, the geometry can be modified while

coupling to a dilaton background.

(Karch,Katz,Son,Stephanov ’06)

S =

�
d5x
√

ge−Φ(x ,z) L

Φ0(z) ∼ z2, gMN = AdS5 Metric

Low-energy predictions are similar to hard-wall model
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Hard-Wall (5D tree level)
With strange quark mass parameter

Abdidin and Carlson ’09



Hard/Soft-Wall (5D tree level)Predictions of Various AdS/QCD Models

Pion Form Factor
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Fig. 1. The pion form factor Fπ(Q2) prediction in hard- and soft-wall models compared
to data.32–37 The solid (black online) and dash-dot (blue online) lines are hard-wall
model predictions whose input parameters differ only by use of a smaller value of fπ

than experiment in the latter, and analogously for the dashed (red online) and dash-dot-
dot (green online) lines in the soft-wall model. The input values appear in the text.

Figure 2 is also interesting because it seems to suggest near-asymptotic
values for Q2Fπ(Q2). For example, if one adopts the standard abbreviation
s0 ≡ 8π2f2

π = 0.67 GeV2, then the original hard-wall model appears to
approach at least Q2Fπ(Q2)≈1.2s0 as Q2→∞. In fact, the analytic mq =0
hard-wall results of Ref. 20 for Q2Fπ(Q2), which appear to conform closely
with our numerical mq %= 0 results, predict that Q2Fπ(Q2) → s0 as Q2 →
∞, but also that Q2Fπ(Q2) overshoots its asymptote and does not return
to it until values of Q2 & 5 GeV2, at which partonic effects (absent in
this holographic approach) are expected to become relevant. Note that the
perturbative QCD result38 for Q2Fπ(Q2) scales not as a constant, but rather
falls off as αs(Q2)f2

π .
We have argued that the semi-hard background in Eq. (11), for suitable

values of λ (or dimensionless variable λz0), can be made to simulate either
hard-wall or soft-wall backgrounds. This effect is illustrated in Fig. 3, which
again presents the data and original hard- (solid) and soft-wall (dashed) re-

from Kwee and Lebed, arXiv:0807.4565

Solid black and blue curves: Hard wall model

Dotted red and green curves: Soft wall model

Josh Erlich (College of William & Mary) Recent Developments in AdS/QCD September 3, 2008 18 / 24See also Grigoryan,Radyushkin ’08



Hard/Soft-Wall (5D tree level)Predictions of Various AdS/QCD Models 4
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FIG. 2: Upper panel: The red solid line is 2πb times ρ+
0 (b), the

p+ density of helicity-0 ρ-mesons in the hard-wall AdS/QCD
model, while the purple dash-dotted line is the corresponding
result in the soft-wall model. The blue dashed line is 2πb
times ρc

0(b), the charge density of helicity-0 ρ-mesons in the
hard-wall model, while the green dash-dot-dotted line is the
corresponding result in the soft-wall model. Lower panel: the
same but for ρ+

1 (b) and ρc
1(b).

The two independent helicity flip form factors are

T +
10 =

√

2η (−B + ηE) , T +
−1,1 = −ηE. (21)

However, both B and E vanish in the AdS/QCD model.
In conclusion, we have studied the distribution within

extended objects of the matter that carries the compo-
nent p+ of the momentum, in a light front viewpoint.

The examples we used were real nucleons, where we
used semi-empirical models of the nucleon GPDs as un-
derlying input, and spin-1 particles, where the underly-
ing input came from AdS/QCD studies of these states.
The crucial gravitational form factors can be obtained
as second moments of the GPDs. There are conceptual
similarities to the light-front relations of charge distribu-
tion in the transverse plane to Fourier transforms of the
electromagnetic form factors. Differences include using
the gravitational instead of electromagnetic form factors

and weighting the GPDs with x instead of charge.

We presented plots that showed the p+ density in the
entire transverse plane. A qualitative result is that the
hadrons we study are all more compact when looking
at the p+ momentum density than when looking at the
charge (or magnetic) density. We had earlier calculated
“gravitational radii” from the slope of the gravitational
form factors obtained for several species of mesons in an
AdS/QCD model [5, 19]. In addition, we have learned
that the phenomenon of compactness of the momentum
distribution and the corresponding smaller root-mean-
square radius is not limited to mesons which are studied
using a purely theoretical AdS/QCD correspondence, but
is also seen in nucleon distributions based on real data.

We thank the NSF for support under grant PHY-
0555600.
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Hard-Wall (5D tree level)Predictions of Various AdS/QCD Models

Can determine meson radii from behavior of form factors near q2
= 0.

Hard wall model:

�r2
π�charge = 0.33 fm2

�r2
π�grav = 0.13 fm2

�r2
ρ �charge = 0.53 fm2

�r2
ρ �grav = 0.21 fm2

�r2
a1
�charge = 0.39 fm2

�r2
a1
�grav = 0.15 fm2

H. Grigoryan and A. Radyushkin; Z. Abidin and C. Carlson ’07,’08
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Universality in AdS/QCD?Universality - Why does it work?

Some observables are truly universal, i.e. independent of details of model.

Famous Example: Viscosity to Entropy Density η/s

Finite temperature → spacetime horizon

Prediction, independent of details of spacetime geometry:

η

s
=

1

4π

Kovtun, Son and Starinets ’04

Another example: Electrical Conductivity to Charge Susceptibility σ/χ

σ

χ
=

1

4πT

d

d − 2

Kovtun and Ritz ’08
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Universality?
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∆ = 3 is the value set by matching to the UV.
m2

X = ∆(∆− 4).

From JE,Westenberger ’09

Observables are roughly independent of X mass



Light-Front AdS/QCD
Brodsky and De Teramond have discovered some 
remarkable similarities between wave equations in 
AdS and the light-front wave equation for multi-
parton states.

Example: Two-parton state

x = k+/P+
Longitudinal momentum 
fraction

Define light-front kinematical variable
ζ ≡ x(1− x)b2

⊥

Wavefunction: ψ(x, ζ, ϕ) = eiMϕ X(x) φ(ζ)/
√

2πζ

b⊥



Identifying these equations gives the AdS coordinate z
a kinematical interpretation

Light-Front AdS/QCD

�
− d2

dζ2 − 1−4L2

4ζ2 + U(ζ)
�

φ(ζ) =M2 φ(ζ)

Light-front wave equation 

Confining interaction potential

Scalar wave equation in soft-wall model:
�
− z3

eϕ(z) ∂z

�
eϕ(z)

z3 ∂z

�
+

�
µR
z

�2
�

ψ(z) =M2ψ(z)

PµPµ|ψ� = M2|ψ�



According to Wikipedia

Baryon chemical potential

Phases of QCD



More of the QCD Phase Diagram

<u    d>=0!5

<u    d>=0!5"<     >=0

m"

T

|µ  |I

A

FIG. 1. Phase diagram of QCD at finite isospin density.

At sufficiently high temperature the condensate (9)
melts (solid line in Fig. 1). For large µI , this critical
temperature is proportional to the BCS gap (10). There
are two phases which differ by symmetry: the high tem-
perature phase, where the explicit flavor U(1)L+R sym-
metry is restored, and the low-temperature phase, where
this symmetry is spontaneously broken. The phase tran-
sition is in the O(2) universality class [16]. The critical
temperature Tc vanishes at µI = mπ and is an increasing
function of µI in both regimes we studied: |µI | ! mρ

and |µI | " ΛQCD. Thus, it is likely that Tc(µI) is a
monotonous function of µI . In addition, at large µI ,
there is a first order deconfinement phase transition at
T ′

c much lower than Tc(µI). Since there is no phase tran-
sition at µI = 0 (for small mu,d) or at T = 0 (assuming
quark-hadron continuity), this first-order line must end
at some point A on the (T, µI) plane (Fig. 1). The exact
location of A should be determined by lattice calcula-
tions; one of the possibilities is drawn in Fig. 1.

The (µI , µB) phase diagram.—This phase diagram de-
serves a separate study. Here we shall only consider the
regime |µI | " µB (the opposite limit µB " |µI | was con-
sidered in Ref. [17]). Finite µB provides a mismatch be-
tween ū and d Fermi spheres, which makes the supercon-
ducting state unfavorable at some value of µB of order ∆.
It is known [18] that the destruction of this state occurs
through two phase transitions: one at µB slightly below
∆/

√
2 and another at µB = 0.754∆. The ground state

between the two phase transitions is the Fulde-Ferrell-
Larkin-Ovchinnikov (FFLO) state [18], characterized by
a spatially modulated superfluid order parameter 〈ūγ5d〉
with a wavenumber of order 2µB. The FFLO state has
the same symmetries as the inhomogeneous pion con-
densation state which might form in electrically neutral
nuclear matter at high densities [19]. It is conceivable
that the two phases are actually one, i.e., continuously
connected on the (µI , µB) phase diagram.

The authors thank L. McLerran, J. Kogut, R. Pisarski,
and E. Shuryak for discussions, the DOE Institute for
Nuclear Theory at the University of Washington for its
hospitality, and K. Rajagopal for drawing their attention
to Ref. [18].
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R. Rapp, T. Schäfer, E.V. Shuryak and M. Velkovsky,
Phys. Rev. Lett. 81, 53 (1998); Ann. Phys. (N.Y.) 280,
35 (2000).

[4] M. Alford, A. Kapustin and F. Wilczek, Phys. Rev. D
59, 054502 (1999).

[5] E. Dagotto, F. Karsch, and A. Moreo, Phys. Lett. 169B,
421 (1986); E. Dagotto, A. Moreo, and U. Wolff, Phys.
Rev. Lett. 57, 1292 (1986); Phys. Lett. B 186, 395
(1987); S. Hands, J.B. Kogut, M.-P. Lombardo, S.E.
Morrison, Nucl. Phys. B558, 327 (1999); S. Hands and
S.E. Morrison, hep-lat/9902012; hep-lat/9905021.

[6] J.B. Kogut, M.A. Stephanov, and D. Toublan, Phys.
Lett. B 464, 183 (1999); J.B. Kogut, M.A. Stephanov,
D. Toublan, J.J. Verbaarschot and A. Zhitnitsky, Nucl.
Phys. B582, 477 (2000).

[7] D. Weingarten, Phys. Rev. Lett. 51, 1830 (1983); E. Wit-
ten, Phys. Rev. Lett. 51, 2351 (1983); S. Nussinov, Phys.
Rev. Lett. 52, 966 (1984); D. Espriu, M. Gross and J.F.
Wheater, Phys. Lett. 146B, 67 (1984).

[8] It is important, as is the case for I = 1, that there is no
disconnected piece after ψ integration in (2). The proof
does not apply, for example, to σ or η meson correlators,
Γ = 1, γ5.

[9] See, e.g., H. Georgi, Weak Interaction and Modern Par-

ticle Theory (Benjamin-Cummings, Menlo Park, 1984).
[10] D.T. Son, Phys. Rev. D 59, 094019 (1999).
[11] W.E. Brown, J.T. Liu, and H.-C. Ren, Phys. Rev. D 61,

114012 (2000); 62, 054016 (2000); 62, 054013 (2000).
[12] A.J. Leggett, J. de Phys. 41, C7-19 (1980); P. Nozières

and S. Schmitt-Rink, J. Low Temp. Phys. 59, 195 (1985).
[13] See, e.g., M. Randeria, cond-mat/9710223 and references

therein.
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III. PROPERTIES OF THE PION CONDENSATE PHASE

Since the pattern of chiral symmetry breaking is built into our holographic model, we

expect to reproduce predictions of the chiral Lagrangian, at least qualitatively. The pion

effective theory is determined by the action on the solution for the pion mode discussed in

the previous section, integrated over the extra dimension.

A. Decoupling the 5D gauge fields

The limit g5 → 0 provides the most direct comparison to previous results. In that limit

the fluctuations of the 5D gauge fields decouple from the pion physics. The corresponding 4D

effective theory is similar to the chiral Lagrangian with isospin chemical potential included

as a background for a 4D isospin gauge field, as in Ref. [8]. In terms of the unitary fields

Σ = exp

[
iπaσa

fπ

]
, (3.1)

the leading order chiral Lagrangian is

L4D =
f 2
π

4
Tr

(
∇νΣ∇νΣ†)+

m2
πf

2
π

4
Tr

(
Σ+ Σ†) , (3.2)

where ∇0Σ = ∂0Σ − iµI

2
[σ3,Σ] and ∇i = ∂i. Expanding to second order in the pion fields,

the Lagrangian takes the form,

L4D = 1

2
∂µπa∂µπa − 1

2
(m2

π − µ2
I) (π

1π1 + π2π2)

−1

2
m2

ππ
3π3 + µI (∂tπ1π2 − ∂tπ2π1) .

(3.3)

The instability when |µI | > mπ signals the phase transition to a pion condensate phase.

Estimation of the value of the condensate and related observables requires an extension

of the analysis to higher order in the pion fields, which we perform in the holographic

description.

By design, the analysis of the 5D model is similar to the chiral Lagrangian analysis above.

In the limit g5 → 0, we neglect couplings to the longitudinal gauge field ∂µφa. The action

(2.7) takes the form

Sg5=0 =

∫
d5x

√
−g

{
2X2

0

(
∂M (cos b)∂M (cos b) + ∂M (na sin b) ∂M (na sin b)

)

− 2µIa
−2∂0 (n

c sin b) εa3cna sin b+ µ2
Ia

−2 sin2 b ncndεc3eεd3e
}
, (3.4)
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: T = 0

this sign change (the u and d quarks play the role of
mutually conjugate quarks [2]), i.e,

τ1γ5Dγ5τ1 = D†. (3)

Instead of isospin τ1 in (3) one can also use τ2 (but not
τ3). Equation (3), in place of the now invalid Eq. (1),
ensures that detD ≥ 0. Repeating the derivation of the
QCD inequalities, by using (3) we find that the lightest
meson, or the condensate, must be in channels ψ̄iγ5τ1,2ψ,
i.e., a linear combination of π− ∼ ūγ5d and π+ ∼ d̄γ5u
states. Indeed, as shown below, in the two analytically
tractable regimes of small and large µI the lightest mode
is a massless Goldstone which is a linear combination of
ūγ5d and d̄γ5u.

Small isospin densities.—When µI is small compared
to the chiral scale (taken here to be mρ), we can use
chiral perturbation theory. For zero quark mass and
zero µI the pions are massless Goldstones of the spon-
taneously broken SU(2)L×SU(2)R chiral symmetry. If
the quarks have small equal masses, the symmetry is
only SU(2)L+R. The low-energy dynamics is governed
by the familiar chiral Lagrangian for the pion field Σ ∈
SU(2): L = 1

4
f2

πTr[∂µΣ∂µΣ† − 2m2
πReΣ], which contains

the pion decay constant fπ and vacuum pion mass mπ as
phenomenological parameters. The isospin chemical po-
tential further breaks SU(2)L+R down to U(1)L+R. Its
effect can be included to leading order in µI without
additional phenomenological parameters by promoting
SU(2)L×SU(2)R to a local gauge symmetry and view-
ing µI as the zeroth component of a gauge potential [6].
Gauge invariance thus fixes the way µI enters the chiral
Lagrangian:

Leff =
f2

π

4
Tr∇νΣ∇νΣ† −

m2
πf2

π

2
ReTrΣ, (4)

where the covariant derivative is defined as

∇0Σ = ∂0Σ −
µI

2
(τ3Σ − Στ3). (5)

By using (4), it is straightforward to determine vacuum
alignment of Σ as a function of µI and the spectrum
of excitations around the vacuum. We are interested in
negative µI , which favors neutrons over protons, as in
neutron stars. The results are very similar to two-color
QCD at finite baryon density [6]:

(i) For |µI | < mπ, the system is in the same ground
state as at µI = 0: Σ = 1. This is because the lowest
lying pion state costs a positive energy mπ−|µI | to excite,
which is impossible at zero temperature.

(ii) When |µI | exceeds mπ it is favorable to excite π−

quanta, which form a Bose condensate. In the language of
the effective theory, such a pion condensate is described
by a tilt of the chiral condensate Σ,

Σ = cosα + i(τ1 cosφ + τ2 sinφ) sin α ,

cosα = m2
π/µ2

I . (6)

The tilt angle α is determined by minimizing the vac-
uum energy. The energy is degenerate with respect to
the angle φ, corresponding to the spontaneous breaking
of the U(1)L+R symmetry generated by I3 in the La-
grangian (4). The ground state is a pion superfluid, with
one massless Goldstone mode. Since we start from a the-
ory with three pions, there are two massive modes which
can be identified with π0 and a linear combination of π+

and π−. At the condensation threshold, mπ0
= mπ and

the mass of the other mode is 2mπ, while for |µI | ' mπ

both masses approach |µI |.
The isospin density is found by differentiating the

ground state energy with respect to µI and is equal to:

nI = f2
πµI sin2 α = f2

πµI

(

1 −
m4

π

µ4
I

)

, |µI | > mπ . (7)

For |µI | just above the condensation threshold, |µI | −
mπ ( mπ, Eq. (7) reproduces the equation of state of
the dilute nonrelativistic pion gas [6].

It is also possible to find baryon masses, i.e., the en-
ergy cost of introducing a single baryon into the system.
The most interesting baryons are those with lowest en-
ergy and highest isospin, i.e. neutron n and ∆− isobar.
There are two effects of µI on the baryon masses. The
first comes from the isospin of the baryons, which effec-
tively reduces the neutron mass by 1

2
|µI | and the ∆−

mass by 3
2
|µI |. Alone, this effect would lead to the for-

mation of baryon/antibaryon Fermi surfaces, manifested
in nonvanishing zero-temperature baryon susceptibility
χB ≡ ∂nB/∂µB when µI > 2

3
m∆. However, long before

that, another effect turns on: the π−’s in the condensate
tend to repel the baryons, lifting up their masses. These
effects can be treated in the framework of the baryon
chiral perturbation theory [9], giving

mn = mN −
|µI |
2

cosα, m∆− = m∆ −
3|µI |

2
cosα (8)

in the approximation of nonrelativistic baryons. Equa-
tion (8) can be interpreted as follows: as a result of the
rotation (6) of the chiral condensate, the nucleon mass
eigenstate becomes a superposition of vacuum n and p
states. The expectation value of the isospin in this state
is proportional to cosα appearing in (8). With cosα
given in Eq.(6), we see that the two mentioned effects
cancel each other when mπ ( |µI | ( mρ. Thus the
baryon mass never drops to zero, and χB = 0 at zero
temperature in the region of applicability of the chiral
Lagrangian.

As one forces more pions into the condensate, the pions
are packed closer and their interaction becomes stronger.
When µI ∼ mρ, the chiral perturbation theory breaks
down. To find the equation of state in this regime, full
QCD has to be employed. As we have seen, this can be
done using present lattice techniques since the fermion
sign problem is not present at finite µI , similar to the
two-color QCD [5].
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(i) For |µI | < mπ, the system is in the same ground
state as at µI = 0: Σ = 1. This is because the lowest
lying pion state costs a positive energy mπ−|µI | to excite,
which is impossible at zero temperature.

(ii) When |µI | exceeds mπ it is favorable to excite π−

quanta, which form a Bose condensate. In the language of
the effective theory, such a pion condensate is described
by a tilt of the chiral condensate Σ,

Σ = cosα + i(τ1 cosφ + τ2 sinφ) sin α ,
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The tilt angle α is determined by minimizing the vac-
uum energy. The energy is degenerate with respect to
the angle φ, corresponding to the spontaneous breaking
of the U(1)L+R symmetry generated by I3 in the La-
grangian (4). The ground state is a pion superfluid, with
one massless Goldstone mode. Since we start from a the-
ory with three pions, there are two massive modes which
can be identified with π0 and a linear combination of π+

and π−. At the condensation threshold, mπ0
= mπ and

the mass of the other mode is 2mπ, while for |µI | ' mπ

both masses approach |µI |.
The isospin density is found by differentiating the

ground state energy with respect to µI and is equal to:

nI = f2
πµI sin2 α = f2

πµI

(

1 −
m4

π

µ4
I

)

, |µI | > mπ . (7)

For |µI | just above the condensation threshold, |µI | −
mπ ( mπ, Eq. (7) reproduces the equation of state of
the dilute nonrelativistic pion gas [6].

It is also possible to find baryon masses, i.e., the en-
ergy cost of introducing a single baryon into the system.
The most interesting baryons are those with lowest en-
ergy and highest isospin, i.e. neutron n and ∆− isobar.
There are two effects of µI on the baryon masses. The
first comes from the isospin of the baryons, which effec-
tively reduces the neutron mass by 1

2
|µI | and the ∆−

mass by 3
2
|µI |. Alone, this effect would lead to the for-

mation of baryon/antibaryon Fermi surfaces, manifested
in nonvanishing zero-temperature baryon susceptibility
χB ≡ ∂nB/∂µB when µI > 2

3
m∆. However, long before

that, another effect turns on: the π−’s in the condensate
tend to repel the baryons, lifting up their masses. These
effects can be treated in the framework of the baryon
chiral perturbation theory [9], giving

mn = mN −
|µI |
2

cosα, m∆− = m∆ −
3|µI |

2
cosα (8)

in the approximation of nonrelativistic baryons. Equa-
tion (8) can be interpreted as follows: as a result of the
rotation (6) of the chiral condensate, the nucleon mass
eigenstate becomes a superposition of vacuum n and p
states. The expectation value of the isospin in this state
is proportional to cosα appearing in (8). With cosα
given in Eq.(6), we see that the two mentioned effects
cancel each other when mπ ( |µI | ( mρ. Thus the
baryon mass never drops to zero, and χB = 0 at zero
temperature in the region of applicability of the chiral
Lagrangian.

As one forces more pions into the condensate, the pions
are packed closer and their interaction becomes stronger.
When µI ∼ mρ, the chiral perturbation theory breaks
down. To find the equation of state in this regime, full
QCD has to be employed. As we have seen, this can be
done using present lattice techniques since the fermion
sign problem is not present at finite µI , similar to the
two-color QCD [5].
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transition is first order in the hard-wall model unless the 5D gauge coupling vanishes. The

speed of sound cs at high temperatures was conjectured to satisfy a “sound bound” c2s < 1/3

[38, 39], where c2s = 1/3 is the conformal limit. Fluctuations in the condensate at zero

temperature violate the “sound bound,” except near the phase boundary and then only if

the 5D gauge coupling is small enough. Violation of the sound bound at low temperature

is not unusual [39] and has also been observed in certain D-brane systems [34] and in a

holographic model describing matter at a Lifshitz point [40].

To describe systems at nonvanishing temperature, extra-dimensional models are modified

to include a black-hole horizon. However, we will focus on the zero-temperature phase of

isospin matter, which corresponds to the original hard-wall background without a black-

hole horizon. For simplicity we do not include chemical potentials except for isospin, so our

analysis provides only a narrow cross section of the phase structure of the model. Extensions

of these results to nonvanishing temperature and baryon chemical potential, and to include

strange quarks and Kaon condensation [41], may shed light on the phases of matter in

neutron stars and other extreme environments.

II. HOLOGRAPHIC PION CONDENSATION

The action for the 5D hard-wall model with chiral symmetry is given by [23, 24],

S =

∫
d5x

√
−gTr

{
|DX|2 + 3 |X|2 −

1

4g25

(
F 2
L + F 2

R

)}
, (2.1)

where DMX = ∂MX−iLMX+iXRM , LM = La
MT a and FL

MN = ∂MLN−∂MLN−i [LM , LN ]

(similarly for R), and we normalize the gauge kinetic term as in [23]. The spacetime in the

hard-wall model is a slice of AdS5:

ds = a(z)2
(
ηµνdx

µdxν − dz2
)
, ε < z ≤ zm,

where a(z) = 1/z in units of the AdS curvature scale, and ηµν is the 4D Minkowski metric

with mostly negative signature. Greek indices range from 0 to 3, and capital Latin indices

from 0 to 4, with x4 also denoted by z. The scalar fields X transform in the bifundamental

representation of the SU(2)L×SU(2)R gauge invariance.

Chiral symmetry breaking is provided by the background solution to the X field equation

of motion,

X0(z) =
1

2

(
mqz + σz3

)
≡

1

2
v, (2.2)
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Scalar field background
where mq is the quark mass matrix responsible for sourcing σ, the chiral condensate. The

bulk vector gauge field V a
M = 1/2(La

M +Ra
M ) is dual to the isospin vector current operator.

We work in the gauge La
z = Ra

z = 0. The linearized equations of motion for the transverse

part of V a
µ are

∂z

(
1

z
∂zV

a
µ

)
−

1

z
∂α∂

αV a
µ = 0. (2.3)

The background solutions for V 3
0 are of the form

V 3
0 (z) = c1 +

c2
2
z2, (2.4)

where the coefficient of the non-normalizable mode, c1, is identified with the chemical po-

tential for the third component of isospin µI ; and c2 is proportional to the spontaneously

generated background isospin number density, which we assume to vanish. Hence, the back-

ground gauge field is uniform,

V 3
0 = µI . (2.5)

The pions are identified with solutions to the linearized coupled equations of motion for

the Goldstone modes in the scalar fields X , which mix with the longitudinal part of the

axial vector field Aa
µ = (La

µ −Ra
µ)/2 ≡ ∂µφa. We parametrize the Goldstone modes by fields

πa such that,

X = X0 exp [i2π
aT a]

= X0 (cos b+ i (naσa) sin b) ,
(2.6)

where b =
√
πcπc and nc = b−1πc. The action (2.1) takes the form:

S =

∫
d5x

√
−g

{
2X2

0

(
∂M(cos b)∂M (cos b) + ∂M (na sin b) ∂M (na sin b)

− 2µIa
−2∂0 (n

c sin b) εa3cna sin b− 2a−2∂µ (n
a sin b) cos b ∂µφa

+ 2a−2∂µ(cos b)n
a sin b ∂µφa + 2µIa

−2 cos b εa3cna sin b ∂0φ
c

+µ2
Ia

−2 sin2 b ncndεc3eεd3e + a−2 cos2 b ∂µφ
a∂µφa + a−2 sin2 b na∂µφ

anc∂µφc
)

−a−4 1

2g25

[
µ2
I

(
∂iφ

1∂iφ1 + ∂iφ
2∂iφ2

)
− ∂z∂µφ

a∂z∂
µφa +O

(
(Aa

µ)
4
)]}

, (2.7)

where contractions of Greek indices are done with ηµν and those of capital Latin indices are

done using the full metric gMN .
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Vector combination of gauge fields
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Vector field background

Source for J (3)
0

c1 = µ



Isospin Chemical Potential in the 
Hard Wall Model

Can calculate all the properties of the isospin 
condensate phase discussed earlier; results 
agree with other approaches.
(Albrecht,JE)



Other Observations
Baryons are solitons in extra dimensions - 
like Skyrmions
(Piljin Yi’s talk;Sakai,Sugimoto; Nawa et al.; Pomarol, Wulzer)

HoloQCD may address qualitative questions 
like chiral symmetry restoration 
(D.K.Hong et al.; Shifman,Vainshtein; Klempt)

Can add higher dimension 5D operators or 
modify geometry to match power corrections 
in Operator Product Expansions 
(Hirn,Sanz)



Towers of bound states identified 
by quantum numbers, mass

Towers of Kaluza-Klein modes 
identified by quantum numbers, mass

Hidden local symmetry: 
Vector mesons act like massive 

gauge bosons
(Sakurai; Bando et al.)

Vector mesons modeled by Kaluza-
Klein modes of gauge fields

(Polchinski,Strassler;Son,Stephanov; 
Brodsky,De Teramond; etc.)

Chiral symmetry breaking has 
implications at low energies

Chiral symmetry breaking has 
implications at low energies

Weinberg sum rules Weinberg sum rules

Dualities Lecture 5 Summary

   QCD       Holographic QCD

Turkey Tofu



Dualities Lectures Final Summary

Dualities are alternative descriptions of the 
same physical systems.

Sometimes one description is easier to 
analyze than another (e.g. strong-weak 
dualities)

Dualities also motivate new models of 
strongly interacting physics, as in holographic 
QCD.


