PRad Implementation Plan (suggested installation and run) A. Gasparian NC A&T State University for the PRad collaboration #### Outline - PRad experimental setup - Installation plan in Hall B - Suggested engineering and physics runs - Time schedule and manpower #### PRad Experimental Setup #### Main detectors and elements: - Windowless H₂ gas flow target - High resolution, large acceptance PrimEx HyCal calorimeter - ➤ Vacuum box with one thin window at HyCal end only (~ 5 m long, from H₂ target to HyCal) - X,Y scintillating veto counters #### Beam line equipment: - Photon Tagger facility for calibrations - Standard beam line elements for low intensity e- beam current (0.1 10 nA) - Collimator box (with 2 mm collimator for photon beam and 6 mm for e- beam halo "clean-up") #### PRad Setup (side view) Hydrogen Veto gas counters HyCal Cryo-cooler 2H00 Harp bellows bellows bellows Tagger Collimator New cylindrical Target vacuum box 1.7 m 5.0 m ## Windowless H₂ Gas Flow Target #### Target cell: cell length 4.0 cmcell diameter 8.0 mm • cell material 30 µm Kapton input gas temp. 25 K target thickness 1x10¹⁸ H/cm² average density 2.5x10¹⁷ H/cm³ gas mass-flow rate 6.3 Torr-l/s ≈ 430 sccm #### Target parts: pumping system (all parts at Jlab) cryocooler (at Jlab)motorized Manipulator (at Jlab) chillers for pumps and (at Jlab) cryocooler Target and secondary (early May, 2014) chambers #### Kapton cell: work in progress ## PrimEx Hybrid Electromagnetic Calorimeter (HyCal) - Combination of PbWO₄ and Pb-glass detectors (118x118 cm²) - 34 x 34 matrix of 2.05 x 2.05 x 18 cm³ PbWO₄ shower detectors - 2 x 2 PbWO₄ modules removed in middle for beam passage - 5.5 m from H₂ target (~0.5 sr acceptance) - Resolutions: - for PbWO₄ shower detectors - \checkmark energy $\sigma/E = 2.6 \% / \sqrt{E}$ - ✓ position: $\sigma_x = 2.7 \text{ mm} / \sqrt{E}$ - for Pb-glass shower detectors factor of ~ 2.5 worse - Work in progress to add X,Y-coordinate detectors on front of HyCal - > factor of >10 improvements in coordinate resolutions - Similar improvements in Q² resolution (very important) - unbiased coordinate reconstruction (including transition region) - increase Q² range by including Pb-glass part of HyCal (important) ## **Beam Quality Requirements** | Quality | Value | |--|--| | Energy | 1.1 and 2.2 GeV | | Beam current | 0.1 – 10 nA | | Luminosity | $\sim 10^{28} \text{ cm}^{-2} \text{s}^{-1}$ | | σ_x , σ_y | ~ 100 µm | | Position stability | ~ 100 µm | | Beam halo | $<(1x10^{-7})^*$ | | Divergence | < mrad | | Emittance $(\varepsilon_x, \varepsilon_y)$ | 8x10 ⁻¹⁰ m-rad | ^{*} for R > 3 mm from the beam center #### PRad Run Proposal - Engineering/commissioning run (first part of 2015) - > PRad is a "stand-alone" experiment with new detectors and engineering systems: - ✓ new windowless H₂ gas flow target - ✓ refurbished 1750 channel hybrid calorimeter - ✓ new DAQ and slow control system - ✓ new fADC-based electronics - > To check: - ✓ all systems check-out with an electron beam - ✓ background rates in HyCal trigger - ✓ effectiveness of 6 mm "clean-up" collimator in real beam conditions - ✓ new target system in real beam conditions - Estimated 14 calendar days with beam (not included in PAC39 approved days) - Beam energy: 2.2 GeV and/or 1.1 GeV - Beam quality: same as for the physics run or best available by that time - Physics/production data taking run (2-3 months after engineering run) - Beam energy: 1.1 GeV and 2.2 GeV - Beam quality: as requested in proposal - Beam time: 15 PAC days - Expected result: - ✓ high accuracy, most model independent extraction of Rp (total error 0.6%) #### JLab Three-Year Run Plan #### Hall B Installation Schedule ## Proposed PRad Running Configuration in Hall B - Footprint of PRad setup: ~ 8.2 x 1.7 m² - Distance between HPS "quads girder" and Hall B center (Solenoid magnet area): ~ 10.5 m - Installation in parallel with CLAS12 work/assembly in Hall B - Engineering and Physics runs during evenings/nights and over weekends Distance between the HPS Quads' girder and the center of the Hall is ~10.5 m # Proposed PRad Running Configuration in Hall B (top view) Maximum horizontal size of PRad setup: 1.7 m (diameter of Vacuum Box) ## PRad Non-Running Configuration in Hall B - Target chamber will be the only element left in Hall B beam line: - ✓ Vacuum box removed from the beam line - ✓ HyCal with coordinate detectors and veto counters lifted up on the transporter. - No residual material in the beam line #### PRad Options in Other Halls - PRad requires low current electron beam ($I_e \le 10 \text{ nA}$): - beam stability is highly important - ✓ controlled beam halo (< 10⁻⁷ level) is critical - NOT available for Halls A and C (Hall D has photon beam) - HyCal calorimeter requires: - very low intensity tagged photon beam for direct check-out and calibration - high precision Transporter frame for movement - Ready to use in Hall B, NOT available in other Halls Hall B is practically the only Hall for PRad ## Setup Implementation and Installation Schedule | Task | Manpower | Time &
Effort | Compl. Time | |--|---|--|---| | 1) Windowless H ₂ Target: | | | | | a) All parts to JLab b) Development, assembly, tests c) Design, constr. of support stands d) Target system ready e) Installation in Hall B | PRad Tgt Grp.+PRad Hall B Engg. Grp. Tgt Grp.+PRad Tgt Grg.+Hall B Tech. Grp. | 15 days 7 days (b) | May, 2014
Sep, 2014
Dec, 2014
Dec, 2014
Jan, 2015 | | 2) HyCal Calorimeter: | | | | | a) Clear bldg. 98 to get to HyCal b) Mods second work deck for level 2 c) Move Transporter parts to Hall B d) Reassemble Transporter, test movement e) Move/install cart to/in Hall B f) Move HyCal to Hall B and install on Trans. g) Inspect all mech. electrical, optical parts h) Plug signal, HV cables, fix broken chnls i) Inspect the LMS, fix it j) Plug Chiller, test it k) Devel., assembly readout elec. and DAQ l) Test HyCal with LMS and cosmic rays | Hall B Tech. Grp. Hall B Tech. Grp. Hall B Tech. Grp. Hall B Tech. Grp.+Prad Hall B Tech. Grp. Hall B Tech. Grp. PRad PRad PRad PRad+Hall B Tech. Grp. PPad+Hall B staff PRad | 3 days (b) 5 days (b) 2 days (b) 10 days (b) 2 days (b) 5 days (b) | Jun, 2014
Jun, 2014
Jun, 2014
Jun, 2014
Jun, 2014
Jul, 2014
Jul, 2015
Jul, 2014
Aug, 2014
Aug, 2014
Sep, 2014 | ⁽b) "days" are for "duration of work" = x4 manpower resources for crane/forklift/rigging operations ## Setup Implementation and Installation Schedule (cont'd) | Task | Manpower | Time & Effort | Compl. Time | |---|---|--|--| | 3) Vacuum Box: | | | | | a) Conceptual designb) Engineering designc) Constructiond) Installation in Hall B | Hall B Engg. Grp.+PRad
Hall B Engg. Grp.
Hall B+PRad
Hall B Tech. Grp. | 30 days ^(c)
18 days ^(c)
50 days
2 days ^(b) | Jun, 2014
Jul, 2014
Dec, 2014
Jan, 2015 | | 4) Veto Counters: | | | | | a) Move veto counters to Hall B b) Inspect and fix mechanical parts c) Inspect and fix optical parts d) Assemble new horizontal veto counters e) Test with cosmic rays f) Install veto counters on HyCal | Hall B Tech. Grp. PRad PRad PRad PRad PRad PRad PRad PRad | 2 days ^(b) 2 days ^(b) | Aug, 2014
Aug, 2014
Aug, 2014
Sep, 2014
Sep, 2014
Sep, 2014 | | 5) Setup ready for first test beam | | | Jan, 2015 | ⁽b) "days" are for "duration of work" = x4 manpower resources for crane/forklift/rigging operations ⁽c) Hall B Engineering Group + designers from Accelerator Division ## Technical/Manpower Support from JLab | Task | | Manpower | Time & Effort | Compl. Time | |---|--|---|---|--| | 1) Window | less H ₂ Target: | | | | | , | constr. of support stands
on in Hall B | Hall B Engg. Grp. Tgt Grp.+Hall B Tech. Grp. | 15 days
7 days ^(b) | Dec, 2014
Jan, 2015 | | 2) HyCal C | alorimeter: | | | | | b) Mods se c) Move Tra d) Reasser e) Move/ins f) Move Hy g) Plug Chi 3) Vacuum a) Concept b) Enginee c) Construct d) Installation | dg. 98 to get to HyCal cond work deck for level 2 ansporter parts to Hall B able Transporter, test movement stall cart to/in Hall B aCal to Hall B and install on Trans. ller, test it a Box: ual design aring design ation (~ \$35K +\$20K) an in Hall B annters: | Hall B Tech. Grp. Hall B Tech. Grp. Hall B Tech. Grp. Hall B Tech. Grp.+Prad Hall B Tech. Grp. Hall B Tech. Grp. PRad+Hall B Tech. Grp. Hall B Tech. Grp. | 3 days (b) 5 days (b) 2 days (b) 10 days (b) 2 days (b) 5 days (b) 1 day (b) 30 days (c) 18 days (c) 50 days 2 days (b) | Jun, 2014
Jun, 2014
Jun, 2014
Jun, 2014
Jun, 2014
Jun, 2014
Aug, 2014
Jun, 2014
Dec, 2014
Jan, 2015 | | a) Move veb) Install ve | to counters to Hall B eto counters on HyCal me & Effort from JLab | Hall B Tech. Grp.
PRad+Hall B Tech. Grp. | 2 days ^(b)
2 days ^(b)
154 days | Aug, 2014
Sep, 2014 | ⁽b) "days" are for "duration of work" = x4 manpower resources for crane/forklift/rigging operations #### PRad Collaboration Institutional List Currently 15 collaborating universities and institutions Jefferson Laboratory NC A&T State University **Duke University** Idaho State University Mississippi State University Norfolk State University Argonne National Laboratory University of North Carolina at Wilmington University of Kentucky Hampton University College of William & Mary Tsinghua University, China Old Dominion University ITEP, Moscow, Russia Budker Institute of Nuclear Physics, Novosibirsk, Russia Open for new collaborators and institutional groups ## **Collaboration Manpower** (from leading Universities) | Institution | Senior
Researcher | Postdoc | Graduate
student | Others | |----------------------------|--|---|-------------------------------------|--| | Duke Univ. | H. Gao (40%) | 1 FTE*
(2 x 50% each) | 1.5 FTEs
(1 x100% + 1x50%) | 1Technician (2 weeks),
1 Visiting Scientist (4 weeks) | | Mississippi State
Univ. | D. Dutta (50%)
6 months at JLab
(first part of 2015) | 0.5 FTE, starting from fall, 2014 located at JLab | 1 FTE located at JLab | | | Idaho State Univ. | M. Khandaker (75%) | | 1 FTE fall, 2014 | | | NC A&T SU | A. Gasparian (75%) | | 0.5 FTE (1 M.S.)
located at JLab | 1 Visiting Scientist (4 months) | | TOTAL | 2.4 FTE | 1.5 FTE | 4 FTE | ~1 Visiting Scientist (~6 months) | ^{*} for senior personnel the percentage is estimated from the research time A. Gasparian is currently looking into options to be located at JLab for 2015 ## **Summary** - Suggested PRad installation scheme is compatible with CLAS12 assembly and HPS installation and run. - We request an Engineering Run in beginning of 2015 and Physics Run few months later. Expected high impact physics result for "proton radius puzzle" # Thank You! # Electromagnetic Calorimeter (HyCal) A. Gasparian JLab Review March 21, 2014 20 # Windowless H₂ Gas Flow Target Target development well underway ## Windowless H₂ Gas Flow Target A. Gasparian JLab Review March 21, 2014