Dead Areas on GEM

Chao Peng
04/02/2014

Schematic of GEM

- Thin solid line
- Spacers, 2 ~ 3 mm
- Dashed line
- Sector boundaries, 0.5 mm

Study on the dead areas

- The spacers are studied (thin solid line at page 2)
- Assuming a width of 2 mm
- Located at $y=0, \pm 20 \mathrm{~cm}, \pm 40 \mathrm{~cm}$, and $\mathrm{x}= \pm 30 \mathrm{~cm}$
- Loss of acceptance
- The dead strip will cause a loss of acceptance, need corrections on the acceptance to obtain the cross section
- Introduced uncertainties
- Slightly worse statistics
- Uncertainties on the corrections: from uncertainties of the location and width of spacers and position resolutions

Loss of acceptance

- Mathematically determine the acceptance loss
- If the dead strip is full crossed by the θ ring
- $R=Z \cdot \tan (\theta), Z=5000 \mathrm{~mm}$
- The center of the spacer is at y, its width is d
- The loss is the red arc shown in the picture, its corresponding angle is α
- $\alpha=\arccos \left(\frac{y-d / 2}{R}\right)-\arccos \left(\frac{y+d / 2}{R}\right)$
- The loss is $2 \alpha / 2 \pi$

Loss of acceptance

- If the dead strip is partly crossed by the θ ring
- The loss is the red arc shown in the picture, its corresponding angle is α
- $\alpha=\arccos \left(\frac{y-d / 2}{R}\right)$
- The loss is $2 \alpha / 2 \pi$

Loss of acceptance

- For GEM located at $z=5000 \mathrm{~mm}$, with the 2 mm dead strips at $\mathrm{y}=0, \pm 200 \mathrm{~mm}, \pm 400 \mathrm{~mm}$, and $\mathrm{x}=$ $\pm 300 \mathrm{~mm}$, the loss vs. theta is (R is the radius of the theta ring on GEM)
$\{\{\operatorname{Abs}[\operatorname{ArcCos}[1 / \mathrm{R}]-\operatorname{ArcCos}[-1 / \mathrm{R}]] / \mathrm{Pi}$,
$R \leq 199\}$,
$\{(\operatorname{Abs}[\operatorname{ArcCos}[1 / R]-\operatorname{ArcCos}[-1 / R]]+2 * \operatorname{Abs}[\operatorname{ArcCos}[199 / R]]) / \operatorname{Pi}$,
$199<R \leq 201\}$,
$\{(\operatorname{Abs}[\operatorname{ArcCos}[1 / R]-\operatorname{ArcCos}[-1 / R]]+2 \star \operatorname{Abs}[\operatorname{ArcCos}[(200+1) / R]-\operatorname{ArcCos}[(200-1) / R]]) / \operatorname{Pi}$,
$201<R \leq 299\}$,
$\{(\operatorname{Abs}[\operatorname{ArcCos}[1 / \mathrm{R}]-\operatorname{ArcCos}[-1 / \mathrm{R}]]+2 \star \operatorname{Abs}[\operatorname{ArcCos}[(200+1) / \mathrm{R}]-\operatorname{ArcCos}[(200-1) / \mathrm{R}]]+2 \star \operatorname{Abs}[\operatorname{ArcCos}[299 / R]]) / \operatorname{Pi}$,
$299<R \leq 301\}$,
$\{(\operatorname{Abs}[\operatorname{ArcCos}[1 / R]-\operatorname{ArcCos}[-1 / R]]+2 \star \operatorname{Abs}[\operatorname{ArcCos}[(200+1) / R]-\operatorname{ArcCos}[(200-1) / R]]+2 \star \operatorname{Abs}[\operatorname{ArcCos}[(300+1) / R]-\operatorname{ArcCos}[(300-1) / R]]) / \operatorname{Pi}$,
$301<R \leq 399\}$,
$\{(\operatorname{Abs}[\operatorname{ArcCos}[1 / R]-\operatorname{ArcCos}[-1 / R]]+2 \star \operatorname{Abs}[\operatorname{ArcCos}[(200+1) / R]-\operatorname{ArcCos}[(200-1) / R]]+2 \star \operatorname{Abs}[\operatorname{ArcCos}[(300+1) / R]-\operatorname{ArcCos}[(300-1) / R]]+2 * \operatorname{Abs}[\operatorname{ArcCos}[399 / R]]) / \operatorname{Pi}$,
$399<R \leq 401\}$,
$\{(\operatorname{Abs}[\operatorname{ArcCos}[1 / R]-\operatorname{ArcCos}[-1 / \mathrm{R}]]+2 \star \operatorname{Abs}[\operatorname{ArcCos}[(200+1) / \mathrm{R}]-\operatorname{ArcCos}[(200-1) / \mathrm{R}]]+2 \star \operatorname{Abs}[\operatorname{ArcCos}[(300+1) / \mathrm{R}]-\operatorname{ArcCos}[(300-1) / \mathrm{R}]]+2 * \operatorname{Abs}[\operatorname{ArcCos}[(400+1) / R]-\operatorname{ArcCos}[(400-1) / \mathrm{R}]]) / \operatorname{Pi}$, $401<R\}\}]$

Loss of acceptance

- The result is verified by MC simulation (events are generated uniformly in theta)

Plot of the acceptance loss in percentage

Loss of acceptance

- The table shows the integrated acceptance loss for each bin (bins with scattered angle >6.8 is not listed here, because the phi coverage is not complete due to the size of HyCal)
- The Differential Cross Section (DCS) of elastic ep and Møller scatterings are under one photon exchange approximation

Angular bin (Degree)	Acceptance loss (\%)	Weighted by ep DCS (\%)	Weighted by ee DCS (\%)	
$0.80-1.05$	0.793	0.813	0.809	
$1.05-1.30$	0.623	0.633	0.629	
$1.30-1.55$	0.513	0.518	0.516	
$1.55-1.80$	0.436	0.439	0.437	
$1.80-2.05$	0.379	0.382	0.380	
$2.05-2.30$	0.813	0.72	0.813	
$2.30-2.55$	2.572	2.694	2.564	
$2.55-2.80$	1.343	1.356	1.341	
$2.80-3.05$	1.055	1.06	1.053	
$3.05-3.30$	0.894	0.898	0.893	
$3.30-3.55$	2.297	2.213	2.322	
$3.55-3.80$	1.861	1.878	1.855	
$3.80-4.30$	1.311	1.328	1.304	
$4.30-4.80$	1.931	1.856	1.960	
$4.80-5.30$	1.568	1.587	1.560	
$5.30-5.80$	1.219	1.226	1.216	
$5.80-6.30$	1.040	1.044	1.038	
$6.30-6.80$	0.918	0.921	0.917	

Study on the uncertainties

- Worse statistics
- According to the acceptance loss
- Uncertainties due to the acceptance corrections
- Position resolutions
- Uncertainties of the location and width of spacers

Statistics and position resolution

- The correction is affected by the position resolution, but it is almost negligible (<0.1 \% for all bins) because of the binning effect and GEM's good resolution (0.1 mm)
- The right plot shows the radius extraction if we considered the corrections and worse statistics in simulation (scatters due to statistics are implemented)

Uncertainties of the location and width

- Assuming a 0.2 mm uncertainty on the location of the spacer at 200 mm and a 0.1 mm uncertainty on the width of it.
- Check the correction factor for the angular bin of 2.30-2.55 degree. The largest error on ep CS would be $\left(1-\frac{100-2.694}{100-2.892}\right)=-0.20 \%$
- Normalizing to Møller would reduce the error, but not much because of its relatively uniform distribution

Position (mm)	Width (mm)	Acceptance Loss (\%)	Weighted by ep DCS (\%)	Weighted by Moller DCS (\%)
200	2	2.572	2.694	2.564
$200+0.2$	$2+0.1$	2.754	2.892	2.744
$200+0.2$	$2-0.1$	2.517	2.642	2.508
$200-0.2$	$2+0.1$	2.622	2.739	2.613
$200-0.2$	$2-0.1$	2.391	2.495	2.383

Summary

- The loss of acceptance due to the spacers is acceptable
- However, we need precise information on the width and the position of the spacers to do corrections

