Radius extraction 2

Chao Peng

Duke University

02/14/2014

Simulation

- Monte-Carlo simulation, ep and Möller events at Born level are generated (3 days for 1.1 GeV, 12 days for 2.2 GeV)
- Target position uncertainty is included (Gaussian distribution, 1 cm sigma)
- Position and energy recorded on the detectors are smeared with the detectors' resolutions
 - HyCal, 2.5 mm for central part, 5.5 mm for lead glass part
 - GEM, 0.1 mm
 - Fiber, 0.3 mm and 0.6 mm
- Cross-sections are calculated according to the single-arm selection method

$$\left(\frac{d\sigma}{d\Omega}\right)_{ep} \left(Q_i^2\right) = \left[\frac{N_{\exp}^{\text{yield}}\left(ep \to ep \text{ in } \theta_i \pm \Delta\theta\right)}{N_{\exp}^{\text{yield}}\left(e^-e^- \to e^-e^-\right)}\right] \left(\frac{d\sigma}{d\Omega}\right)_{e^-e^-}$$

• The factor of $\frac{N_{exp}^{yield}(ep \rightarrow ep \text{ in } \theta_i \pm \Delta \theta)}{N_{exp}^{yield}(e^-e^- \rightarrow e^-e^-)}$ changes due to the angular resolution of detectors and the different distributions of ep and Möller events, this results in the uncertainties of cross-sections

Uncertainty of the measured cross sections in the simulation

Uncertainty of the measured cross sections in the simulation

Simulation

• G_E uncertainties are determined by

$$G_E(Q_i^2) = \sqrt{-\frac{\tau}{\epsilon}G_M^2(Q_i^2) + \frac{1+\tau}{\sigma_M}\frac{d\sigma}{d\Omega}(Q_i^2)}$$
$$\delta G_E = \frac{1}{2}\frac{\sqrt{\left(-2\frac{\tau}{\epsilon}G_M\delta G_M\right)^2 + \left(\frac{1+\tau}{\sigma_M}\delta\sigma\right)^2}}{G_E}$$

 δGM is assumed to be 1%, and $\delta\sigma$ is obtained by the simulation

Q² is determined by angle and incident beam energy, resolution of Q² is directly assumed to be the error bar of Q² (From A. Gramolin's presentation)

$$\sigma_{Q^2} = \sqrt{\left(\frac{\partial Q^2}{\partial E}\right)^2 \sigma_E^2 + \left(\frac{\partial Q^2}{\partial \theta}\right)^2 \sigma_\theta^2}$$

Radius fittings for HyCal only

- $r_p = 0.8768$ fm in the code, dipole form for G_E (up to the term of $< r^4 >$) and G_M
- Uncertainties are from the simulation (presentation on 02/07/2014), statistical uncertainty $1/\sqrt{N}$ for the cross-sections is included
- Central part (up to 4 degree) fittings are updated and shown in the left plots
- Linear fit for the central part (left), dipole fit for the whole angle range (right)

Biased position reconstruction of HyCal

- Biased position reconstruction of HyCal are considered as a systematical error in the new simulation
- A piecewise function with the form $A_i + Bisin\left(\frac{x-x_{0i}}{C_i}\right) + Di(x-x_{0i})$ is used to approximately describe the biased position reconstruction in the code
- The recorded position is biased by this function, and thus the uncertainties of the cross-sections for the single-arm selection method are obtained by the simulation

Biased position reconstruction of HyCal

Piecewise function used in the simulation

Reconstruction data from the presentation^{*}

Uncertainties of the cross-sections

- The biased position will change the ratio of $\frac{N_{ev}}{N_{ev}}$ in each bin, because of the different distributions of ep and Möller events.
- The change of acceptance ratio results in a systematical error of the cross-sections
- The uncertainties of the crosssections at 1.1 GeV are shown in the tables

Angle bin	Syst. uncertainty	Angle bin	Syst. uncertainty
).80 – 1.05	-0.70 %	3.80 - 4.30	-0.16 %
1.05 – 1.30	-1.16 %	4.30 - 4.80	-0.63 %
1.30 – 1.55	-1.38 %	4.80 - 5.30	0.35 %
1.55 – 1.80	-0.88 %	5.30 - 5.80	1.29 %
1.80 – 2.05	-1.03 %	5.80 - 6.30	1.31 %
2.05 – 2.30	0.15 %	6.30 - 6.80	0.73 %
2.30 – 2.55	-0.04 %	6.80 - 7.30	1.10 %
2.55 – 2.80	-0.49 %	7.30 - 7.80	1.22 %
2.80 - 3.05	-0.19 %	7.80 - 8.30	1.36 %
3.05 - 3.30	0.47 %	8.30 - 8.80	0.74 %
3.30 - 3.55	0.31 %	8.80 - 9.30	1.50 %
3.55 – 3.80	0.65 %	9.30 - 9.80	0.95 %

Updated fittings

- Including these systematical errors, the new fitting results for HyCal are shown in the plots
- The extracted radius is far away from the input of the code ($r_p = 0.8768$ fm)

Additional position detectors

- Additional position detectors are used instead of HyCal, so the biased position reconstruction is avoided, the fitting result is close to the input
- GEM, resolution 0.1 mm
- $r_p = 0.8768$ fm in the code. Uncertainties are from the simulation (presentation on 02/07/2014), statistical uncertainty $1/\sqrt{N}$ for the cross-sections is included

Additional position detectors

- Fiber, resolution 0.3 mm
- $r_p = 0.8768$ fm in the code

Additional position detectors

- Fiber, resolution 0.6 mm
- $r_p = 0.8768$ fm in the code

Summary

- Linear fittings for the central part always obtain a smaller radius
- The biased position reconstruction of HyCal results in a huge systematical error of the extracted radius
- Additional position detectors will remove the systematical error from biased position reconstruction
- The improvement between the additional position detectors (from 0.1 mm resolution to 0.6 mm resolution) is not significant

To do

- Need to implement other systematical errors into the study
- Central Q² determination (Q_i² for each bin)will probably be improved by binning, the study is ongoing