A simple study of the angular and Q^{2} resolutions

Alexander Gramolin

Budker Institute of Nuclear Physics, Novosibirsk, Russia

PRad Weekly Meeting, 01/31/2014

Why do we need a tracking system?

To determine Q^{2} values for ep scattering events
To recognize Møller scattering events

- However, it will not help us to recognize ep scattering events
- Probably, to reconstruct event vertices, which can help to reject background events. However, in this case we need to have at least two coordinate layers.

Can we use a GEM-based detector?

\checkmark Very good coordinate resolution ($0.07-0.1 \mathrm{~mm}$)
\checkmark Relatively small radiation thickness (about $0.3 \% X_{0}$)
\checkmark It is easy to make a small central hole for the passage of the beam
\checkmark Hall A is developing large-area ($40 \times 50 \mathrm{~cm}^{2}$) GEMs for Super Bigbite

- However, they can not work in vacuum without additional protection

With a single coordinate layer, we can not determine the vertex position. So, we need to estimate it using the beam position (x and y coordinates of the vertex) and the length of the target cell (z coordinate of the vertex).

Coordinate layer

Target

$$
\begin{aligned}
& y=0 \pm \sigma_{y_{0}} \\
& z=0 \pm \sigma_{z_{0}}
\end{aligned}
$$

$$
\begin{aligned}
& y=y_{1} \pm \sigma_{y_{1}} \\
& z=z_{1}
\end{aligned}
$$

We can estimate $\sigma_{y_{0}}=0.2 \mathrm{~mm}$ (CEBAF beam) and $\sigma_{z_{0}}=10 \mathrm{~mm}$ (target cell).
Two-dimensional analisys should be accurate enough, since $\sigma_{x_{0}}, \sigma_{y_{0}} \ll \sigma_{z_{0}}$.

$$
\theta=\arctan \frac{y_{1}}{z_{1}}, \quad \sigma_{\theta}=\frac{1}{y_{1}^{2}+z_{1}^{2}} \sqrt{z_{1}^{2} \sigma_{y_{1}}^{2}+z_{1}^{2} \sigma_{y_{0}}^{2}+y_{1}^{2} \sigma_{z_{0}}^{2}}
$$

How to determine Q^{2} for the process $e p \rightarrow e p$

NB: $\quad \sigma_{E} / E=10^{-4}$ (beam energy), $\quad \sigma_{E^{\prime}} / E^{\prime}=0.026 / \sqrt{E^{\prime}} \approx 2 \cdot 10^{-2}$ (HyCal)
(1) Using the beam energy and the energy of scattered electron:

$$
\begin{gathered}
Q^{2}=2 M\left(E-E^{\prime}\right) \\
\sigma_{Q^{2}}=2 M \sqrt{\sigma_{E}^{2}+\sigma_{E^{\prime}}^{2}} \approx 2 M \sigma_{E^{\prime}} \approx 5 \cdot 10^{-2} \sqrt{E^{\prime}} \mathrm{GeV}^{2} \Rightarrow \mathrm{It} \text { is useless for us }
\end{gathered}
$$

© Using the beam energy and the electron scattering angle:

$$
\begin{gathered}
Q^{2}=\frac{2 M E^{2}(1-\cos \theta)}{M+E(1-\cos \theta)}, \quad \sigma_{Q^{2}}=\sqrt{\left(\frac{\partial Q^{2}}{\partial E}\right)^{2} \sigma_{E}^{2}+\left(\frac{\partial Q^{2}}{\partial \theta}\right)^{2} \sigma_{\theta}^{2}} \\
\frac{\partial Q^{2}}{\partial E}=Q^{2}\left[\frac{2}{E}-\frac{Q^{2}}{2 M E^{2}}\right] \approx \frac{2 Q^{2}}{E}, \frac{\partial Q^{2}}{\partial \theta}=Q^{2} \frac{\sin \theta}{1-\cos \theta}\left[1-\frac{Q^{2}}{2 M E}\right] \approx Q^{2} \frac{\sin \theta}{1-\cos \theta}
\end{gathered}
$$

(- Or using a combined formula: $Q^{2}=4 E E^{\prime} \sin ^{2} \frac{\theta}{2}$
Clearly, the second formula (with E and θ) is the best for us.
The Q^{2} resolution is limited by the angular resolution in our case.

The angular and Q^{2} resolutions

$$
z_{1}=580 \mathrm{~cm}, \quad \sigma_{y_{1}}=0, \sigma_{y_{1}}=0.1 \mathrm{~mm}, \sigma_{y_{1}}=0.3 \mathrm{~mm}, \sigma_{y_{1}}=0.6 \mathrm{~mm}
$$

Angular resolution vs θ

