Background study with collimators

Chao Peng
Duke University
03/07/2014

Beam profile and target cell

- Beam halo
- Beam : Halo $=10^{7}$
- Halo range: 20 mm
- Halo energy: the same as the beam energy (1.1 GeV)

- Target
- Made of Kapton
- 8 mm in diameter, the materials are in the range of halo

Background

- Halo has the same energy as the beam. Energy resolution $2.6 \% / \sqrt{E}$ included
- If applying the graphical cut as shown in the right plot, the background level is about 14% for ep and about 2 \% for Møller

A larger collimator

- Tungsten, tube-like collimator at upstream of the target
- Inner radius 2 mm , outer radius 50 mm
- Length 20 cm
- Background is significantly reduced
- < 0.1 \% for ep, about 0.8 \% for Møller

Front view

Background from collimator

- Most of the high energy events (> 200 Mev) are located in the left bottom corner
- It is caused by "leakage" at the edge of the center hole
- The leaked particles with small angles will pass through the collimator

Background from collimator

- High energy leakage is very likely to happen at the beginning (radiation length is 3 mm for tungsten)
- The opening angle is about 0.57 degree, thus the maximum "leaking" angle is about $2 * 0.57=1.14$ degree
- Considering the shift due to resolution and reconstruction, the maximum "leaking" angle is slightly different

The existing collimator

- 6 mm (diameter) center hole, length is assumed to be 12 cm (> 30 times of radiation length)
- The opening angle is increased from 0.57 degree to about 1.4 degree
- The high energy events distribution is extended to about 3 degree, thus destroys the Møller region

Other dimensions for collimators

- Keep the opening angle of 0.57 degree, reduce the outer radius
- Inner radius: 2 mm , outer radius: 30 mm , Length: 20 cm
- Result is good enough, close to the one with the outer radius of 50 mm

Other dimensions for collimators

- Further reduce the opening angle
- Inner radius: 1.25 mm , outer radius: 30 mm , Length: 20 cm
- Opening angle 0.36 degree, most of the background can be cut by theta >0.8

Summary

- Since our experiment focuses on the very forward angle (>0.8 degree), the opening angle of the collimator is restricted to be very small
- From simulation, 0.57 degree is good enough, although there will be some leaking events at up to 1.2 degree, they can be cut by a 2D cut of energy and angle.
- The best option would be some collimator with opening angle <0.4 degree, thus it would not have effect on our data-taking region.
- But it may introduce practical issues in aligning the beam

