## PROGRESS REPORT ON THE $\pi^0$ LIFETIME EXPERIMENT (PRIMEX) AT JLAB

D. E. McNulty

(for the PrimEx Collaboration\*)

Laboratory for Nuclear Science, Massachusetts Institute of Technology, Cambridge, Mass 02139, USA \* E-mail: mcnulty@jlab.org www.jlab.org/primex

A precision measurement of the  $\pi^0$  photo-production cross section from  $^{12}C$  and  $^{208}Pb$  nuclear targets has been made by the PrimEx Collaboration at Jefferson Lab using 4.9 to 5.5GeV photons tagged by the Hall B tagger facility. The experimental goal is to measure the  $\pi^0 \to \gamma\gamma$  decay rate to an accuracy of 1.5% using the Primakoff component of the measured cross section. This represents an order of magnitude improvement over current world-data precision and will allow for powerful tests of the Axial Anamoly plus Chiral corrections—primarily from isospin-breaking and  $\pi^0$ ,  $\eta$ ,  $\eta \prime$  mixing. In this presentation, the status of the  $\pi^0$  lifetime analysis is given, including detector performance,  $\gamma$ -flux control, systematic checks, and experimental  $\pi^0$  yields.

## 1. Motivation

The  $\pi^0 \to \gamma \gamma$  decay rate is a fundamental prediction of QCD which gives insight into one of its most profound symmetry issues—namely, the Axial or Chiral Anomaly. It is this anomalous symmetry-breaking mechanism by which the  $\pi^0 \to \gamma \gamma$  decay channel proceeds, and thus a measure of its rate or partial width,  $\Gamma_{\gamma\gamma}$ , represents a direct probe of the anomaly.

In the chiral limit, an exact expression for the  $\pi^0$  decay amplitude can be formed resulting in the Leading Order (LO) prediction,  $\Gamma_{\pi^0 \to \gamma\gamma} = 7.725 \pm 0.044 \mathrm{eV}$ , using the current value for the pion decay constant. However, for non-zero quark masses, corrections to the decay amplitude give rise to the Next to Leading Order (NLO)  $\Gamma_{\gamma\gamma}$  prediction. The current state of world-data on this subject is presented in Figure 1.

<sup>\*</sup>Supported in part by NSF MRI grant PHY-0079840

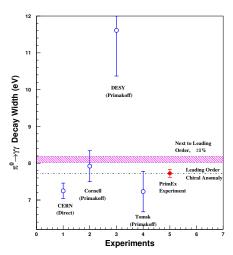



Fig. 1. Previous data on  $\Gamma_{\pi^0 \to \gamma\gamma}$ . PrimEx data-point is arbitrarily plotted at the LO value with the projected  $\pm 1.5\%$  errorbar. The current PDG book value is  $\Gamma_{\gamma\gamma}=7.84\pm0.56\mathrm{eV}$ . The NLO prediction is 8.1eV  $\pm$  1%. The precision of the PrimEx measurement will distinguish between LO and NLO predictions.

## 2. Experiment Design and Analysis Status

Use of the Hall B  $\gamma$ -tagging facility provides unprecedented  $\gamma$ -flux control (1-2%) which substantially reduces systematic errors associated with the flux normalization. This is combined with a new, high resolution calorimeter<sup>2</sup> designed to detect the two  $\pi^0$  decay  $\gamma$ 's. The precise energy and time resolution of the combination allow for a clean separation of signal and background events. Both  $e^+e^-$  pair-production and Compton scattering cross sections were measured for cross-checking the setup's ability to measure well known processes; both results are in excellent agreement with theory.

The Primakoff process is defined as  $\pi^0$  photo-production from the Coulomb field of a nucleus. This implies an equivalent  $\pi^0$  production and decay mechanism—which means the cross section  $\propto$  lifetime.  $\Gamma_{\gamma\gamma}$  is extracted from the data using a multi-parameter fit to the overall cross section measurement; preliminary  $\pi^0$  cross section and lifetime results available soon.

## References

- 1. J. L. Goity et al., Phys. Rev. D66, p. 076014 (2002).
- 2. M. Kubantsev et al., in CALOR 2006 Proceedings, (Chicago, June 2006).