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In this note we consider the updates done lately for π0 production on
Carbon and Silicon and discuss differences for π, η, η′ mesons photoproduc-
tion.

1 Introduction

The process of pseudoscalar meson M = π, η, η′ photoproduction on the
nucleon

γ(k) +N(p1)→M(p) +N(p2) (1)

is determined by four amplitudes [1] depending on invariant variables s =

(k + p1)2 and t = (k − p)2 = −~q2 −∆2 = −4|~k||~p|sin2( θ
2
)− m4

i

4k2 ; where mi is
the mass of the produced meson. The photoproduction on protons and light
nuclei has advantage vs heavy nuclei: The Coulomb (Primakoff) and strong
coherent peaks are well separated. In section 2 we cite expressions allow-
ing to estimate the yield of pseudoscalar mesons in photoproduction off the
proton Coulomb field. In section 3 we discuss the mesons production in the
Coulomb field of any nuclei using the formula for electromagnetic form factor
obtained without model approximations. We show how one can account for
meson sizes and its impact on the value of lifetime. In Section 4 we consider
any pseudoscalar meson photoproduction on a proton making use the result
of JPAC collaboration [2, 3, 4] and estimated the relative contributions of
different mesons. The correct strong form factor of nuclei (without optical
models approximation) and shadowing of photon is considered in sections 5

1



and 6. Finally the cross section for pseudoscalar mesons incoherent photopro-
duction shortly discussed in section 7. In Appendix 1 we cite the expressions
for Fourier-Bessel distribution. In Appendix 2 we point out changes needs to
be applied to rewrite π0 photoproduction formulas to η, η′ photoproduction
case.

2 Photoproduction of the proton electromag-

netic field.

The amplitude for reaction (1) when meson production takes place in the
Coulomb field of the proton or nuclei is:

TC = Z
√

8αΓi(
β

mi

)3/2 k
2sinθ

q2 + ∆2
i

Fem(q,∆i), (2)

where Fem(q,∆i) is the electromagnetic form factor of proton or nuclei.
When the exchanged photon transverse momenta is equal to longitudinal one

q ≡ |~q| = ∆ =
m2
i

2E
the electromagnetic cross section takes its maximum value

(we adopt the normalization dσ
dt

= π
k2

dσ
dΩ

= π
k2 |TC |2):

dσ

dt
(q = ∆) ∼ Γi

E2

m7
i

(3)

i.e. has a strong dependence on meson mass. In reality to estimate the yield
of different mesons, it is more convenient to use the integrated cross section:

σ =

∫
dσ

dt
dt ∼ Γi

log( E
rpm2

i
)

m3
i

(4)

In deriving this expression, we took the matter distribution in a proton in
Gaussian form:

ρp(r) =
1

π3/2r3
p

e
− r

2

r20 , (5)

where the parameter r2
0 = 2

3
< r2 >. Such a parametrization allows to obtain

a simple analytical expression for form factor:

F (q) =

∫
ei~q~rρ(r)d3r = e−

q2<r2>
6 (6)

where < r2 > is the mean square radius of nucleon or nuclei.
Another frequently used formula for proton electromagnetic form factor is
given by dipole formula: Fem(q) = 1

(1+ q2

Λ2 )2
with Λ2 = 0.71GeV 2.
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3 Photoproduction in the Coulomb field of

nuclei.

Using Glauber theory of multiple scattering [6] the electromagnetic form
factor for light nuclei in (2) can be written as [7]:

Fem(q) = 2π
q2 + ∆2

q

∫
J1(qb)

b2dbdz

(b2 + z2)3/2
ei∆z(1−G(b, z))A−1

∫ √b2+z2

0

x2ρch(x)dx

G(b, z) =
fs(0)

ikas

∫
z

e−
(~b−~s′)2

2as ρ(s′, z′)d2s′dz′ =
σ′

2as

∫
z

e−
b2+s′2

2as I0(
bs′

as
)ρ(s′, z′)s′ds′dz′

(7)

Here J1(x), I0(x) are Bessel functions of real and imaginary arguments;

ρ(r) the nuclear density, σ′ = σ ·
(

1− iRefs(0)
Imfs(0)

)
= 4π

ik
fs(0), σ ≡ σ(MN) is the

total meson nucleon cross section. In deriving this expression, the commonly
used parametrization for elastic MN →MN amplitude is adopted: fs(q) =
fs(0) · exp(−asq2/2). Here we want to make two comments:

1) In some sense the size of produced meson is taken into account as the
expression (7) is beyond the optical model approximations. The size of meson
has an impact through the value of σ(MN) and the slope of elastic amplitude
as. The expression (7) has been modified multiplying the electromagnetic
form factor (7) by the monopole pion form factor

Fπ = (1− aπ
t

m2
π

)−1

with the slope value [8] aπ = 31.5× 10−3 The calculated impact of pion form
factor on pion decay width has the order of ∼ 10−4.

2) Strictly speaking the two nuclear distributions in (7) should be differ-
ent. The charge density distribution ρch(r) can be obtained from nucleons
distribution in nucleus ρ(r) responsible for mesons absorption by its convo-
lution with proton charge distribution:

ρch(r) =

∫
d3r′ρ(r′)ρp(|~r − ~r′|) (8)

For the light nuclei, like carbon, the nuclear density distribution ρ(r)
corresponding to the harmonic oscillator potential well is widely used in the
literature [6]:

ρ(r) =
4

π3/2a3
0A

(1 +
A− 4

6a2
0

r2)e
− r

2

a2
0 (9)
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Substituting expressions (5) and (9) in (8) for nuclear charge distribution we
obtain:

ρch(r) =

∫
d3r′ρ(r′)ρp(|~r − ~r′|)

=
4

π3/2A(a2
0 + r2

p)
3/2

(
1 +

(A− 4)

6
[

3r2
p

2(a2
0 + r2

p)
+

a2
0r

2

(a2
0 + r2

p)
2
]

)
e
− r2

r2p+a2
0

(10)

Thus in case of the Gaussian parametrization, the effective radius of nuclear
density (a0 in expression (9)) requires a larger radius for the charge density

(
√
a2

0 + r2
p in equation (10)).

For nuclear charge distribution, the Fourier-Bessel parametrization were used
in PrimEx-II analysis. It has been extracted from the fit of the experimental
data on electron scattering on nuclei (see appendix for details). For electro-
magnetic part we used the tabulated radius [9] as the global dN/dθ fit χ2

sensitivity is an order of magnitude smaller for charged radius variation. The
latest dN/dθ fit with the new slope value ap = 10GeV −2 requires the radius
in strong part a bit smaller than tabulated (0.5%), which is in agreement
with example above, where we show that the electromagnetic radius can be
larger, then the strong one. From the other hand this difference is small
(within the experimental error) and we can consider the same radii in strong
and electromagnetic parts.

4 Mesons photoproduction on nucleons

After seminal work [1] a numerous manuscripts were published devoted to
the considered processes. We shortly discuss the recent works of JPAC col-
laboration on π meson [2], η meson [3] and η, η′ mesons [4] photoproduction
off protons in Regge model. Our choice is due to the fact that these are most
recent works on this subject and what is more important are clear enough
and can be easily applied to the estimation of yield of pseudoscalar mesons.
The cross section of reaction (1) is determined by four invariant amplitudes
Ai, which can be parameterized as Regge exchanges [3, 4]. Later on we
will consider only two amplitudes A1, A4 which are determined by ρ, ω, φ ex-
changes with natural parity P (−1)J = 1 in t-channel as the contribution of
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unnatural parity exchanges P (−1)J = −1 (b, h, h′ mesons) is small [4].

dσ

dt
=

1

32π

(
|A1|2 − t|A4|2

)
A1,4(s, t) = β1,4(t)

1− e−iπα(t)

sin(πα(t))
(s/s0)α(t)−1

β1(t) = gVMγg1V te
bt; β4(t) = gVMγg4V e

bt

s = 2mNk +m2
N ; s0 = 1GeV 2 (11)

The Regge trajectories for ρ, ω, φ exchanges are taken as [4]: αω(t) = αρ(t) =
0.5 + 0.9 t; αφ = 0.9 t. The coupling constants of natural parity exchanges
with nucleons [4]:

g1ω = 0; g1ρ = 13.49GeV −3; g1φ = 0

g4ω = 7.28GeV −2; g4ρ = 2.3GeV −2; g4φ = 9.38GeV −2, (12)

where g1V corresponds to spin-flip at nucleon vertex, while g4V is relevant to
spin non-flip at nucleon vertex.

Couplings of vector exchanges at top vertex can be determined from vec-
tor mesons radiative decays [4]:

gρπγ = 0.252GeV −1; gωπγ = 0.696GeV −1; gφπγ = 0.04GeV −1

gρηγ = 0.48GeV −1; gωηγ = 0.135GeV −1; gφηγ = 0.21GeV −1

gρη′γ = 0.398GeV −1; gωη′γ = 0.127GeV −1; gφη′γ = 0.216GeV −1(13)

With these values we can calculate the differential cross section for any pseu-
doscalar meson photoproduction off nucleon by using equations (11).
It is well known, that the amplitude of meson photoproduction due to isovec-
tor exchange with I=1 (in our case ρ exchange) has the opposite signs on
proton and neutron. This leads to the absence of ρ exchange contribution
in the coherent amplitude of mesons photoproduction on the nuclei with the
equal number of protons and neutrons like 12C and 28Si. The relative con-
tributions from ρ and ω exchanges in A4 amplitude are dominating at small
t (11) and π0, η, η′ photoproduction on nucleon can be estimated with the
following terms:

gρπγg4ρ = 0.58GeV −3; gωπγg4ω = 5.07GeV −3

gρηγg4ρ = 1.1GeV −3; gρπγg4ω = 0.983GeV −3

gρη′γg4ρ = 0.92GeV −3; gρπγg4ω = 0.925GeV −3 (14)

From this table one can see that the ratio of ρ to ω exchanges in the amplitude
of π0 photoproduction on nucleon is ∼ 10%, and in the case of η and η′

5



photoproduction is∼ 1. Because of the opposite signs of the photoproduction
amplitude on proton and neutron for isovector exchange, in the coherent
photoproduction case for all nuclei with the same number of protons and
neutrons, the contribution from ρ exchange is cancelled. So the nucleon
amplitude containing ρ and ω contribution, which are about the same for
η, η′ will loose ρ part (about one half) for such nuclei. For the π0 case the ρ
part is small for nucleon and the reduction for nuclei (due to cancellation of
this part) will not be significant. For the Coulomb photoproduction this is
not the case. Therefore the relative ratio of strong and electromagnetic parts
of the cross section on nuclei in the case of η, η′ photoproduction should be
much smaller, than for the π0 production case (approximately four times) and
consequently the relative contribution of the strong part in photoproduction
of η, η′ is much smaller, than for the case of π0 photoproduction on nuclei.

4.1 Parameterization of meson photoproduction am-
plitude on nucleon. Slopes and forward ampli-
tudes.

The amplitude of mesons coherent photoproduction on nucleus reads:

TS(q, qL) = A(~h · ~q)φ(0)FS(q, qL) (15)

The nuclear form factor FS(q, qL) has a strong dependence on the slope ap
of the production amplitude on the nucleon (see eq. (25) later on). We
parameterized the elementary amplitude of meson production on nucleon
fp(t) and scattering fs(t) in the usual way:

fp = fp(0) (~h · ~q)e−
apq

2

2

fs = fs(0) e−
asq

2

2 (16)

Here fp(0), fs(0) and ap, as are the forward elementary amplitudes and their

slopes, ~h = [~k×~ε]. We adopt the following normalization of differential cross
sections

dσ

dΩ
=
k2

π

dσ

dt
= |fp,s(t)|2; |~h · ~q|2 = q2 = |t| (17)

For the scattering slope of elastic process M +N →M +N we put the well
known value (see for example [5] table XII on page 317, the slope parameter
B value for 4 GeV for ρ0, ω + p → ρ0, ω + p) as = 7GeV −2 = 0.28fm2,
whereas for the slope in photoproduction γ +N →M +N we use the value
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ap = 10GeV −2 = 0.4fm2. This value has been obtained by few independent
ways:
1) From (16) and (17) the photoproduction on nucleon reads:

dσ

dΩ
= q2|fp(0)|2e−apq2

(18)

From the fit with the formula (with two free parameters ap and fp(0)) to
describe the experimental data on π0 photoproduction on nucleon measured
at DESY [10] with the result:

ap = 10GeV −2 = 0.4fm2; fp(0) = 15.8
√
µb/GeV

On the fig.1 we show the differential cross section calculated using this pa-
rameters by the formula (18) (solid line) and calculations (dashed line) by
Regge theory accounting for the poles and Regge cuts [11]. The similarity is
impressing.
2) The same slope and forward amplitude can be extracted from the expres-
sions (11). Noting that in the coherent amplitude only A4 is contributing
(A1 is the amplitude with spin flip of nucleon) and rewriting the energy de-
pendence as (s/s0)α(t)−1 = e(α(0)−1+0.9t)log(s/s0), the slope in photoproduction
is:

b+ 0.9log(s/s0) = 3 + 0.9× 2.3 ≈ 5GeV −2

The slope we use is doubled (see (18)) compared to this expression, thus our
slope ap = 10GeV −2 = 0.4fm2.
3) The slope b in (11) is a result of finite sizes of nucleon and meson. To
see this, we adopt the gaussian parametrization for nucleon and meson form

factors (see [13] eq. 37) F (q) = e−
<r2>q2

6 , where < r2 > is a mean square
radius of meson or nucleon. Choosing < r2

p >= 0.64fm2;< r2
M >= 0.36fm2

one has b =
<r2

p>+<r2
M>

6
= 1

6
fm2 ≈ 4GeV −2 . This value is not far from

b = 3GeV −2 in (11) due to the fit.
The optical model approximations (ap = as = 0 in (16)) leads to b=0, i.e. me-
son and nucleon are considered as point like particles. The term 0.9, log(s/s0)
considered above is relevant to the interaction radius expansion with energy
and has nothing with proton and nucleon dimensions.
It is not a big deal to estimate the forward amplitude fp(0) for any meson
production using (11) and values of relevant vertex. As an example let’s
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Figure 1: Differential cross section for π0 photoproduction on nucleon cal-
culated by formula (18) (dashed curve) and by Regge model with cuts [11]
(solid curve)

estimate it for π0 photoproduction at k=5.2 GeV:

fp(0) =
k

4
√

2π
A4(s, 0)

=
k

4
√

2π
(gρπγg4ρ + gωπγg4ω)

1− e−iπα(0)

sin(πα(0))
(s/s0)α(0)−1

=
k

4
√

2π
5.65(1 + i)(s/s0)−0.5 ≈ 0.51(1 + i)GeV −2 (19)

Thus Regge theory predicts the same real and imaginary parts of the pro-
duction amplitudes, i.e. the phase ϕ = 0.785. Considering that GeV −2 =

8



0.04fm2 = 400µb one gets |fp(0)|2 ≈ 208µbGeV −2 not far from the result
shown above (right after (18)).

5 Coherent photoproduction in the strong nu-

clear field

The main impact on the lifetime extraction from the measured differential
cross sections comes from our knowledge of the strong amplitude TS in the
coherent process of the reaction:

γ + A→M + A. (20)

In the Glauber theory of multiple scattering [6] this coherent photoproduc-
tion amplitude is given by:

TS(q,∆) = A
ik

2π

∫
ei~q·

~b+i∆zΓp(~b− ~s)ρ(~s, z)

× [1−
∫

Γs(~b− ~s′)ρ(~s′, z′)d2s′dz′]A−1d2bd2sdz (21)

Two dimensional vectors ~b and ~s are impact parameter and nucleon coordi-
nate in the plane transverse to the incident photon momentum; z – longi-
tudinal nucleon coordinate inside nucleus. The profile functions Γp,s(~b − ~s)
are the two dimensional Fourier transformation of elementary amplitudes for
the η photoproduction off the nucleon fp = f(γ + N → η + N) and elastic
pion-nucleon scattering fs = f(η +N → η +N):

Γp,s(~b− ~s) =
1

2πik

∫
ei~q·(

~b−~s)fp,s(q)d
2q. (22)

We parameterized the elementary production amplitudes in the classical way:

fp = φ(0) (~h · ~q)e−
apq

2

2

fs = fs(0) e−
asq

2

2 (23)

Here φ(0), fs(0) and ap, as are the forward elementary amplitudes and their

slopes, ~h = [~k × ~ε], ~k and ~ε are beam photon momentum and polzarization.
The relevant profile functions are:

Γp(~b− ~s) =
~h · (~b− ~s)

ka2
p

φ(0)e
− (~b−~s)2

2ap

Γs(~b− ~s) =
fs(0)

ikas
e−

(~b−~s)2
2as (24)
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Substituting expressions in (21) we obtain [12]:

TS(q, qL) = A(~h · ~q)φ(0)FS(q, qL)

FS(q, qL) =
2π

qa2
p

∫
J1(qb)(bI0(

bs

ap
)

− sI1(
bs

ap
))ei∆ze

− b
2+s2

2ap ρ(s, z)(1−G(b, z))A−1bdbsdsdz

G(b, z) =
fs(0)

ikas

∫
z

e−
(~b−~s′)2

2as ρ(s′, z′)d2s′dz′

=
σ′

2as

∫
z

e−
b2+s′2

2as I0(
bs′

as
)ρ(s′, z′)s′ds′dz′ (25)

Here I0, I1 are the zero and first order Bessel functions of imaginary argument.
In these equations the finite size of meson is taken into account through
the slope in photoproduction off nucleon ap and elastic scattering as. This
causing strong form factor accounting for slope in the elementary amplitudes
fall off steeper than in the case of optical model approximation.

6 Photon shadowing in nuclei

The real photons at high energy are shadowed in nuclei [14]. The photon
shadowing in mesons photoproduction is a result of the two step process [15]:
initial photon produces a vector meson in the nucleus, which consequently
produces the final meson after scattering. The main contribution to such a
two step photoproduction comes from the ρ-mesons, as the cross section for
ρ photoproduction on the nucleon is almost an order of magnitude higher
than for the ω production. The amplitude relevant to the two step process
γ → ρ→M in multiple scattering theory is given by:

TI(q) =
ik

2π
A(A− 1)

∫
ei~q·

~bd2bΓp(~b− ~s1)Γs(~b− ~s2)ρ(s1, z1)ρ(s2, z2)

× θ(z2 − z1)ei∆ρ(z1−z2)+i∆z2(1−G(b, z1))A−2d2s1d
2s2dz1dz2

Gs(b, z1) =

∫ ∞
z1

Γs(~b− ~s′)ρ(s′, z′)d2s′dz, (26)

where ∆ρ =
m2
ρ

2E
is the longitudinal momentum transfer in the elementary

reaction ρ + N → M + N . Using equations (16) this expression can be
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expressed in the form convenient for the numerical integration [12]

TI(q) = A(~h · ~q)fp(0)FSI

FSI = (A− 1)
πσ′

qasa2
p

∫
J1(qb)I0(

bs2

as
)[bI0(

bs1

ap
)− s1I1(

bs1

ap
)]

× θ(z2 − z1)ρ(s1, z1)ρ(s2, z2)e
− (ap+as)b2

2apas e
− s21

2ap
− s22

2as ei∆ρ(z1−z2)+i∆z2

× (1−G(b, z1))A−2bdbs1ds1s2ds2dz1dz2 (27)

The complete strong amplitude accounting for the photon shadowing reads:

TS(q) = A(~h · ~q)φ(0)[FS − wFI ]; w =
f(γN → ρN)f(ρN → πN)

f(ρN → ρN)f(γN → πN)
, (28)

where the range of the shadowing parameter w changes between zero (no
shadowing) and one (Vector dominance model).

7 Incoherent photoproduction

Incoherent pion photoproduction is a production with the excitation or breakup
of the target nucleus:

γ + A→M + A′ (29)

The general expression for the incoherent cross section established in the
literature [18, 19] is given by:

dσinc
dΩ

=
dσ0

dΩ
(q)N(0, σ)(1−G(t)) (30)

where dσp
dΩ

is the elementary cross section on nucleon γ +N →M +N , and

N(0, σ) =

∫
1− e−σT (b)

σ
d2b. (31)

Here T (b) = A
∫
ρ(b, z)dz. The factor (1 − G(t)) takes into account the

suppression of pseudoscalar meson production at small angles due to the
Pauli blocking principle [18]. For the light nuclei (like carbon) this factor
can be expressed as

G(t) = [1 + (
q2R2

15
)2]e−

2q2R2

15 . (32)
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The factorization in (30) is valid only for the Born approximation (with-
out meson absorption). As it was shown in the case of the proton elastic
scattering on nuclei, the consideration of the absorption process in the final
state changes substantially this expression. Assuming that the photoproduc-
tion cross section on the nucleon is completely determined by the single-flip
process in the elementary amplitude:

dσp
dΩ

= cpq
2e−apq

2

, (33)

the incoherent cross section can be expressed in the following form [20]:

dσinc
dΩ

=
dσp
dΩ

(q)(N(0, σ)− |FS(q)|2

A
) + cpQ

2

Q2 = πσ2

∫
∂ρ(b, z2)

∂b

∂ρ(b, z1)

∂b
ρ(b, z3)θ(z2 − z1)θ(z3 − z2)

× exp(−σ
2

∫ ∞
z1

ρ(b, z′)dz′ − σ

2

∫ ∞
z2

ρ(b, z′)dz′)bdbdz1dz2dz3 (34)

Here FS(q) is the nucleus strong form factor evaluated by the expression (25).
Only in the case if absorption is absent (σ = 0), the factorization similar to
the expression (30) takes place.

8 Summary

In this note we have shown that:
1) The process of meson photoproduction off light nuclei (C, Si) is well de-
scribed by Fourier-Bessel charge and nuclear density distributions.
2) The strong form factor is sensitive to the slope ap of elementary amplitude.
The slope change from 0.4 fm2 to 0.24 fm2 leads to increase in the nuclear
density distribution radius ar the level of percent.
The separate publication of strong part of our data can be motivated as
follows: despite the bulk of data on vector mesons photoproduction off nu-
clei [14] our data are unique as it is the only experiment on coherent pho-
toproduction of meson, which production amplitude on nucleon is zero at
zero production angle. Such a behavior leads to the essential difference from
diffraction processes. The diffraction (coherent production off nuclei) is de-
termined by the nucleus form factors: F (q) =

∫
ei~q~rρ(r)d3r, which is the

Fourier transform of nuclear density ρ(r). In our case the coherent ampli-
tude is described by the specific form factor, which is a Fourier transform
of nuclear density derivative dρ(r)

dr
. Such a peculiarity leads to additional an

absorption (Faldt correction) and is more sensitive to the nuclear density
parametrization, than the ”usual” form factor.
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9 Appendix 1

The nucleus charge density distribution can be expressed through the nucleus
form factor F (q):

ρch(r) =
1

(2π)3

∫
F (q)ei~q~rd3q =

1

2π2

∫
F (q)

sin(qr)

qr
q2dq (35)

It can be expanded as:

ρ(r) =
∑
ν

aνj0(
νπr

R
); r ≤ R, (36)

where j0(x) = sin(x)
x

- zero order spherical Bessel function. Here there are
two constrains:

Z = 4π
∑
ν

aν(
R

νπ
)3νπ(−1)ν+1 (37)

< r2 >=
4π

Q

∑
ν

aν(
R

νπ
)5νπ(−1)ν [6− (νπ)2] (38)

From [9] for silicon we have the mean square radius
√
< r2 > = 3.085(17)fm.

10 Appendix 2

1) In the electromagnetic amplitude (2) one has to take a correct longitudinal

transfered momentum ∆i =
m2
i

2E
. The same has to be done in the electromag-

netic form factor (7) with the obvious substitution: σ(πN) → σ(ηN) =
σ(π′N). The value of ηN total cross section can be calculated from relation
given by quark model [21]

σ(ηN) =
1

3

(
σ(K+p) + σ(K−p) + σ(K+n) + σ(K−n)

)
−1

6

(
σ(π+p) + σ(π−p)

)
This cross section has been measured many years ago [22] with a result of
σ(ηN) ≈ 20mb.
2) The same changes must be done in the strong form factor (25).
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