Precision Photon Flux Determination for the Jefferson Lab PrimEx Experiment

Aram Teymurazyan
University of Kentucky
For The PrimEx Collaboration

Photon Flux for PrimEx

■ To achieve desired precision of ~1.4% in measurement of π^0 lifetime PrimEx needs to measure the flux of tagged photons on the target with precision of 1%.

$$\frac{d\sigma}{d\Omega} = \frac{\pi_{tagged_yield}^{0}}{N_{\gamma}^{tagged}} \times \frac{1}{t} \times \frac{1}{\Omega}$$

$$N_{\gamma}^{tagged} = N_e \times R_{abs}$$

 N_e – number of electrons, R_{abs} – absolute tagging ratio.

М

Jefferson Lab Hall-B Tagger

- 384 E-counters provide energy resolution ~10⁻³xE₀ (E₀ electron beam energy)
- 61 T-counters provide timing resolution of 0.18ns.
- Can tag photons in the energy range of 0.2 0.95 E₀.

Absolute Tagging Ratio - R_{abs}

$$R_{abs} = rac{N_{\gamma}^{tagged}}{N_{e}}$$

Mitigating effects:

- Photon is lost before reaching the target.
- Moller scattering in the bremsstrahlung radiator.
- Extra electrons in the tagger due to the room background.

Absolute Tagging Ratio - R_{abs}

- Can be measured only at low beam intensities.
- Normalization is a destructive measurement.
- Has to be known and be stable within 1% when in production mode.

$$R_{abs} = rac{N_{\gamma}^{tagged}}{N_{e}}$$

HAW05

PrimEx Pair Spectrometer / Relative Tagging Ratio - R_{rel}

- A 16 kGausd×m Magnet
- 8 front and 8 back scintillating paddles in each arm

$$R_{rel} = rac{N_{e^+e^-}^{tagged}}{N_e}$$

- Can be measured at low as well as at high beam intensities.
- Monitoring is a non-destructive measurement.
- Has to be stable within 1%.

$$R_{rel} = rac{N_{e^+e^-}^{tagged}}{N_e}$$

09/20/2005

HAW05

Electron Counting

- It is impractical to trigger on post-bremsstrahlung electrons due to high rates.
- Traditionally hardware scalers are used.
- For PrimEx we have chosen to use multi-hit TDCs to determine the rates in Tagger.

Electron Counting - Integral Method

$$N_e = \frac{n_{integral}}{w \times n_{samples}} \times T_{live}$$

- It is preferable to use a Random Clock Trigger.
- Automatically includes the same TDC deadtime effects, which necessarily exist in π⁰ yield measurement.

Summary

To ensure achievement of 1% level precision in absolute photon flux determination we:

- \square Measure the absolute tagging ratio R_{abs} with a total absorption counter.
- \square Monitor the relative tagging ratio R_{rel} , measured by Pair Spectrometer, during the run.
- Utilize the ability of multi-hit TDCs to take snapshots of data to determine the number of electrons N_e in the run.
- □ And last but not least the PrimEx experimental setup has the ability to verify the photon flux normalization by measuring cross-sections for well known electromagnetic processes such as pair production and the Compton effect.

