Preliminary $\Gamma_{\gamma\gamma}$

Dustin McNulty MIT/JLab/UKy PrimEx Collaboration mcnulty@jlab.org

March 23, 2007

What's New in my Analysis

- Incorporated Veto–dramatic enhancement in π^0 signal to noise for small θ_{π^0} .
- Improved inelastic bkgd evaluation/correction-fixed problem with m_{γγ} fits at high elasticity (x > 1.04), constrained inelastic bkgd parameterization to give consistent shape as a function of θ_{π⁰} (work not finished).

Stat. Error Assessment Table for $\Gamma_{\gamma\gamma}$ (¹²C, rad B only)

	Statistical (+ fit)	
$\Gamma_{\gamma\gamma} (eV)$	Error (%)	Inc. Model
8.03	±1.46	Cascade (5.2 GeV)
8.07	±1.47	Fermi Gas
8.27	±1.75	Glauber
8.12	±1.6	Average (before flux Correction)
7.93	±1.6	Average (after 2.4% flux Correction)

Systematic Error Table for $\Gamma_{\gamma\gamma}$

Item	Error (%)	Comment
Yield $m_{\gamma\gamma}$ fits + inelastic bkgd corr.	±0.98	
inelastic bkgd shape uncertainty	±0.75	
Photon flux	±1.0	
Incoherent XS shape uncertainty	± 1.48	Which shape to use?
Nuclear coh. XS energy dep.	± 0.04	
Detection/Recon efficiency	$\pm 1.5^{*}$	Includes veto + trigger eff.
Fiducial Acceptance	$\pm 1.5^{*}$	Geom. eff. + beam align.
Event Selection	±1	Best in time candidate
Target thickness + branch ratio	0.06	0.05 + 0.03 in quadrature
Tagged Photon Energy	0.10	
Total	±3.2	Combined in Quadrature

Preliminary Result

7.929 eV $\pm 0.127(1.6\%)$ Stat $\pm 0.254(3.2\%)$ Syst

Summary

- Need more work on systematic error: Primarily reconstruction efficiency and acceptance.
- Need to evaluate ²⁰⁸Pb target $\Gamma_{\gamma\gamma}$ result and include in systematic.

Incoherent Shape and Elasticity Cut Dependence

Nuclear Coherent Energy Dependence Uncertainty

Effect of Veto: Before(left plot), after(right plot)

PrimEx Collaboration

Inelastic Bkgd (under elastic peak) Yield

PrimEx Collaboration

11

Example Elasticty Yield Bkgd Fit: Primakoff Region

Example Elasticty Yield Bkgd Fit: NC Peak Region

Jefferson Lab Hall B

PrimEx Collaboration

Jefferson Lab Hall B

PrimEx Collaboration

