Background Estimates for the CP Violating Decay $\eta \to \pi^0 \pi^0$

RM: JLab PRIMEX meeting 10/3/08

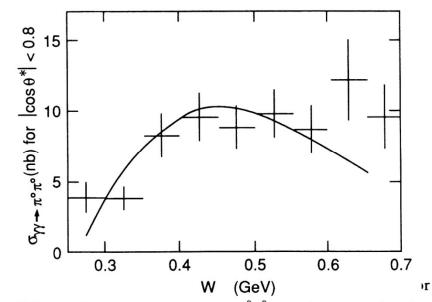
Study of $\eta \rightarrow \pi^0 \pi^0$ Reaction

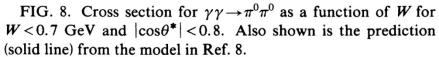
- The Origin of CP violation is still a mystery
- CP violation is described in SM by the phase in the Cabibbo-Kobayashi-Maskawa quark mixing matrix. A recent SM calculation predicts BR($\eta \rightarrow \pi^0 \pi^0$)<3x10⁻¹⁷
- The $\eta \rightarrow \pi^0 \pi^0$ is one of a few available flavor-conserving reactions listed in PDG to test CP violation. (Maybe the only CP test that can be done at Jlab? RM)
- Current experimental limit in PDG is BR($\eta \rightarrow \pi^0 \pi^0$)<4.3x10⁻⁴
- Unique test of P and PC symmetries, and search for new physics beyond SM

η Decay Modes

Decay Mode	Branching Ratio	Physics Highlight
All Neutrals	$(71.6 \pm 0.4)\%$	
2γ	$(39.3 \pm 0.3)\%$	SU(3) octet-singlet mixing
$3\pi^0$	$(32.2 \pm 0.3)\%$	$\chi PTh; m_u - m_d$
$\pi^0 \gamma \gamma$	$(3.2 \pm 0.9) \times 10^{-4}$	$\chi PTh, O(p^6)$
$2\pi^0$	$<4.3 imes10^{-4}$	P and CP
$4\pi^{0}$	$< 6.9 \times 10^{-7}$	P and CP
$\pi^0 \pi^0 \gamma$	$< 5 \times 10^{-4}$	C (isoscalar)
$\pi^0 \pi^0 \pi^{\dot{0}} \gamma$	$< 4.7 \times 10^{-5}$	C (isovector)
3γ	$< 4.5 imes 10^{-5}$	C (isovector, isoscalar)
4γ	< 2.8%	
$\pi^0 \pi^0 \gamma \gamma$	$< 3.1 \times 10^{-3}$	χPTh , New Physics
$\nu_e \overline{\nu_e}$	< 2.8%	New Physics, leptoquarks
$ u_e \bar{ u_\mu}$	< 2.8%	New Physics, leptoquarks
$\nu_e \nu_e$	< 2.8%	New Physics, leptoquarks
$\gamma \nu \overline{\nu}$	< 2.8%	New Physics, leptoquarks
$\pi^0 \nu \overline{\nu}$	< 2.8%	New Physics, leptoquarks

Experimental approaches:

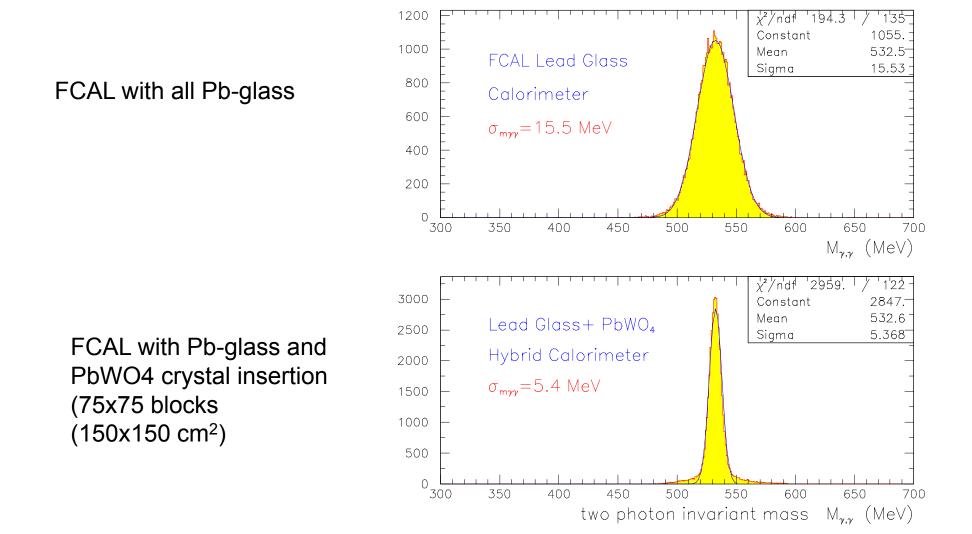

- 1. Inclusive production in $\gamma p \rightarrow \eta X$ interactions
- Look for 4 gamma events that reconstruct to $\pi^0\pi^0$
- These events should reconstruct to the η
- What are the backgrounds? How do you know you've accounted for all of them
- 2. Tagged η production in Primakoff production


$$\gamma\gamma \to \eta \to \pi^0\pi^0$$

• In addition to above requirements, the events will be elastic, and peaked at very forward angles. Use this constraint to reject backgrounds.

Background in Tagged η Production

The physics background we know very well: $\gamma\gamma \rightarrow \pi^0 \pi^0$

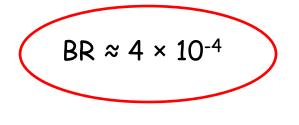

Compare cross sections for η and $\pi^0\pi^0$ production through the Primakoff process

$$\Delta \sigma_{\eta \to \pi\pi} \equiv \frac{d^2 \sigma_P}{d\Omega \Delta W_{\eta}} = \Gamma_{\gamma\gamma} \frac{8\alpha Z^2 \beta^3 E^4}{m_{\eta}^3 Q^4} F^2 \sin^2 \theta_{\eta} \frac{BR}{\Delta W_{\eta}}$$

$$\Delta \sigma_{\pi\pi} \equiv \frac{d^2 \sigma_{\pi\pi}}{d\Omega dW_{\pi\pi}} = \frac{\alpha Z^2 \beta^3 E^4}{\pi^2 W_{\pi\pi}^2 Q^4} |F(Q)|^2 \sin^2 \theta_{\pi\pi} K_{\pi}^{cm} \sigma_{\gamma\gamma \to \pi\pi}$$

$$\frac{S}{N} = \frac{\Delta \sigma_{\eta \to \pi\pi}}{\Delta \sigma_{\pi\pi}} = \frac{8\pi^2 \Gamma_{\gamma\gamma}}{m_\eta K_\pi^{cm} \sigma_{\gamma\gamma \to \pi\pi}} \frac{BR}{\Delta W_\eta}$$
$$\frac{S}{N} \approx 1.3 \times 10^4 MeV \frac{BR}{\Delta W_\eta}$$

Experimental Resolutions (inv. mass)


A. Gasparian

Hall D, March 7, 2008

$$\frac{S}{N} \approx 1.3 \times 10^4 MeV \frac{BR}{\Delta W_{\eta}}$$

Take S/N $\approx \frac{1}{2}$ as an acceptable signal to background ratio.

Assume that we can achieve $\Delta W_\eta \approx 10$ MeV for the experimental resolution

This is only as good as the present experimental limit on $\eta \rightarrow \pi^0 \pi^0$

Conclusions:

- 1. It will not be possible to obtain a significant reduction (1/10th) in the $\eta \rightarrow \pi^0 \pi^0$ BR through η Primakoff production
- 2. Will need to look at inclusive production in $\gamma p {\rightarrow} \eta X$ interactions
- Defending this measurement will not be easy. What are the backgrounds? How do you know you've accounted for all of them?