The role of Chiral Effective Field Theory in the precision era

Jose Manuel Alarcón

• There is an increasing interest in precision measurements to test our knowledge of the fundamental interactions.

- There is an increasing interest in precision measurements to test our knowledge of the fundamental interactions.
- Some quantities that can be measured very accurately in experiments can be use to test the Standard Model predictions.

- There is an increasing interest in precision measurements to test our knowledge of the fundamental interactions.
- Some quantities that can be measured very accurately in experiments can be use to test the Standard Model predictions.
- These predictions require often input related to properties of hadrons (hadronic matrix elements).

- There is an increasing interest in precision measurements to test our knowledge of the fundamental interactions.
- Some quantities that can be measured very accurately in experiments can be use to test the Standard Model predictions.
- These predictions require often input related to properties of hadrons (hadronic matrix elements).
- Example of this is $\langle N|\hat{m}(\bar{u}u+\bar{d}d)|N\rangle$

- There is an increasing interest in precision measurements to test our knowledge of the fundamental interactions.
- Some quantities that can be measured very accurately in experiments can be use to test the Standard Model predictions.
- These predictions require often input related to properties of hadrons (hadronic matrix elements).
- Example of this is $\langle N|\hat{m}(\bar{u}u+\bar{d}d)|N\rangle$
 - DM detection

- There is an increasing interest in precision measurements to test our knowledge of the fundamental interactions.
- Some quantities that can be measured very accurately in experiments can be use to test the Standard Model predictions.
- These predictions require often input related to properties of hadrons (hadronic matrix elements).
- Example of this is $\langle N|\hat{m}(\bar{u}u+\bar{d}d)|N\rangle$
 - DM detection
 - CP violation

- There is an increasing interest in precision measurements to test our knowledge of the fundamental interactions.
- Some quantities that can be measured very accurately in experiments can be use to test the Standard Model predictions.
- These predictions require often input related to properties of hadrons (hadronic matrix elements).
- Example of this is $\langle N|\hat{m}(\bar{u}u+\bar{d}d)|N\rangle$
 - DM detection
 - CP violation
- High demand of calculations from first principles with reliable error estimation.

- There is an increasing interest in precision measurements to test our knowledge of the fundamental interactions.
- Some quantities that can be measured very accurately in experiments can be use to test the Standard Model predictions.
- These predictions require often input related to properties of hadrons (hadronic matrix elements).
- Example of this is $\langle N|\hat{m}(\bar{u}u+\bar{d}d)|N\rangle$
 - DM detection
 - CP violation
- High demand of calculations from first principles with reliable error estimation.
 - Important to disentangle new physics from theoretical or systematic errors.

- Chiral symmetry is:
 - Global symmetry derivative coupling of the Goldstone bosons.
 - Spontaneously broken → Constrains the interactions.
 - Explicitly broken Corrections are treated perturbatively

• In the energy regimes of interest, chiral symmetry provides genuine predictions for hadronic interactions on QCD grounds.

- Chiral symmetry is:
 - Global symmetry derivative coupling of the Goldstone bosons.
 - Spontaneously broken → Constrains the interactions.
 - Explicitly broken
 Corrections
 are treated perturbatively

• Chiral EFT provides a way to incorporate systematically corrections to the low energy theorems.

- Chiral symmetry is:
 - Global symmetry derivative coupling of the Goldstone bosons.
 - Spontaneously broken → Constrains the interactions.
 - Explicitly broken Corrections are treated perturbatively
- Chiral EFT provides a way to incorporate systematically corrections to the low energy theorems.
- Theoretical progress in the recent years opened new possibilities in the field -> Provide hadronic ME and nuclear corrections!

• The fundamental purely hadronic interaction involving one nucleon.

- The fundamental purely hadronic interaction involving one nucleon.
- $\bullet \pi N$ gives the long-range part of the 2NF (3fm).

- The fundamental purely hadronic interaction involving one nucleon.
- $\bullet \pi N$ gives the long-range part of the 2NF (3fm).
- $\pi N \to \pi N$ makes the subleading long-range part (2fm).

- The fundamental purely hadronic interaction involving one nucleon.
- $\bullet \pi N$ gives the long-range part of the 2NF (3fm).
- $\pi N \to \pi N$ makes the subleading long-range part (2fm).
- Good knowledge of the interaction $(g_{\pi N})$ is essential to describe

NN data [Navarro Pérez, Amaro and Ruiz Arriola, PRC 95 (2017)].

- The fundamental purely hadronic interaction involving one nucleon.
- $\bullet \pi N$ gives the long-range part of the 2NF (3fm).
- $\pi N \to \pi N$ makes the subleading long-range part (2fm).
- Good knowledge of the interaction $(g_{\pi N})$ is essential to describe NN data [Navarro Pérez, Amaro and Ruiz Arriola, PRC 95 (2017)].
- πN -scattering is a way to access the scalar coupling of the nucleon (DM detection).

- The fundamental purely hadronic interaction involving one nucleon.
- $\bullet \pi N$ gives the long-range part of the 2NF (3fm).
- $\pi N \to \pi N$ makes the subleading long-range part (2fm).
- Good knowledge of the interaction $(g_{\pi N})$ is essential to describe NN data [Navarro Pérez, Amaro and Ruiz Arriola, PRC 95 (2017)].
- πN -scattering is a way to access the scalar coupling of the nucleon (DM detection).
- ullet First calculation of πN was done in [Gasser, Sainio and Svarc, NPB 307 (1988)].

- The fundamental purely hadronic interaction involving one nucleon.
- $\bullet \pi N$ gives the long-range part of the 2NF (3fm).
- $\pi N \to \pi N$ makes the subleading long-range part (2fm).
- Good knowledge of the interaction $(g_{\pi N})$ is essential to describe NN data [Navarro Pérez, Amaro and Ruiz Arriola, PRC 95 (2017)].
- πN -scattering is a way to access the scalar coupling of the nucleon (DM detection).
- First calculation of πN was done in [Gasser, Sainio and Svarc, NPB 307 (1988)].
 - ullet Problem with the power counting due to the heavy scale m_N .

- The fundamental purely hadronic interaction involving one nucleon.
- $\bullet \pi N$ gives the long-range part of the 2NF (3fm).
- $\pi N \to \pi N$ makes the subleading long-range part (2fm).
- Good knowledge of the interaction $(g_{\pi N})$ is essential to describe NN data [Navarro Pérez, Amaro and Ruiz Arriola, PRC 95 (2017)].
- πN -scattering is a way to access the scalar coupling of the nucleon (DM detection).
- First calculation of πN was done in [Gasser, Sainio and Svarc, NPB 307 (1988)].
 - ullet Problem with the power counting due to the heavy scale m_N .
- Heavy Baryon ChPT [Jenkins and Manohar, PLB 255 (1991)]
- Infrared Regularization [Becher and Leutwyler, EPJ C9 (1999)]
- Extended-On-Mass-Shell [Fuchs, Gegelia, Japaridze and Scherer, PRD68 (2003)]

ullet We used EOMS to study $oldsymbol{\pi N}$ at low energies up to $\mathcal{O}(p^3)$ [Alarcón, Martin

Camalich and Oller, Ann. of Phys. 336 (2013)].

- We used EOMS to study πN at low energies up to $\mathcal{O}(p^3)$ [Alarcón, Martin Camalich and Oller, Ann. of Phys. 336 (2013)].
- The first relativistic analysis of πN with the right analytic structure and a consistent power counting.

- We used EOMS to study πN at low energies up to $\mathcal{O}(p^3)$ [Alarcón, Martin Camalich and Oller, Ann. of Phys. 336 (2013)].
- The first relativistic analysis of πN with the right analytic structure and a consistent power counting.
 - Small N- Δ mass gap and strong coupling of Δ to πN

- We used EOMS to study πN at low energies up to $\mathcal{O}(p^3)$ [Alarcón, Martin Camalich and Oller, Ann. of Phys. 336 (2013)].
- The first relativistic analysis of πN with the right analytic structure and a consistent power counting.
 - Small N- Δ mass gap and strong coupling of Δ to πN
 - \bullet Δ (1232) degrees of freedom

- We used EOMS to study πN at low energies up to $\mathcal{O}(p^3)$ [Alarcón, Martin Camalich and Oller, Ann. of Phys. 336 (2013)].
- The first relativistic analysis of πN with the right analytic structure and a consistent power counting.
 - Small N- Δ mass gap and strong coupling of Δ to πN
 - \bullet Δ (1232) degrees of freedom
 - LECs are fixed with PWAs information (phase shifts).

- We used EOMS to study πN at low energies up to $\mathcal{O}(p^3)$ [Alarcón, Martin Camalich and Oller, Ann. of Phys. 336 (2013)].
- The first relativistic analysis of πN with the right analytic structure and a consistent power counting.
 - Small N- Δ mass gap and strong coupling of Δ to πN
 - \bullet Δ (1232) degrees of freedom
 - LECs are fixed with PWAs information (phase shifts).
 - Karlsruhe-Helsinki (KA85) [Koch, NPA 448, (1986); Koch and Pietarinen, NPA 336, (1980)]
 - George Washington University (WI08) [Workman, et al. . PRC 86 ,(2012)]
 - Zürich group (EM06) [Matsinos, Woolcock, Oades, Rasche and Gashi, NPA 95 (2006)]

- We used EOMS to study πN at low energies up to $\mathcal{O}(p^3)$ [Alarcón, Martin Camalich and Oller, Ann. of Phys. 336 (2013)].
- The first relativistic analysis of πN with the right analytic structure and a consistent power counting.
 - Small N- Δ mass gap and strong coupling of Δ to πN
 - \bullet Δ (1232) degrees of freedom
 - LECs are fixed with PWAs information (phase shifts).
 - Karlsruhe-Helsinki (KA85) [Koch, NPA 448, (1986); Koch and Pietarinen, NPA 336, (1980)]
 - George Washington University (WI08) [Workman, et al. . PRC 86 ,(2012)]
 - Zürich group (EM06) [Matsinos, Woolcock, Oades, Rasche and Gashi, NPA 95 (2006)]
 - The low-energy phase shifts are used to determine the LECs.

- We used EOMS to study πN at low energies up to $\mathcal{O}(p^3)$ [Alarcón, Martin Camalich and Oller, Ann. of Phys. 336 (2013)].
- The first relativistic analysis of πN with the right analytic structure and a consistent power counting.
 - Small N- Δ mass gap and strong coupling of Δ to πN
 - \bullet Δ (1232) degrees of freedom
 - LECs are fixed with PWAs information (phase shifts).
 - Karlsruhe-Helsinki (KA85) [Koch, NPA 448, (1986); Koch and Pietarinen, NPA 336, (1980)]
 - George Washington University (WI08) [Workman, et al. . PRC 86 ,(2012)]
 - Zürich group (EM06) [Matsinos, Woolcock, Oades, Rasche and Gashi, NPA 95 (2006)]
 - The low-energy phase shifts are used to determine the LECs.
 - Used to extract valuable phenomenological information

Fits to WI08

[Alarcón, Martin Camalich and Oller, Ann. of Phys. 336 (2013)]

Threshold parameters									
Partial	KA85	WI08	EM06	KA85	WI08	EM06			
Wave	Δ -ChPT	Δ -ChPT	Δ -ChPT						
a_{0+}^{+}	-1.1(1.0)	-0.12(33)	0.23(20)	-0.8	-0.10(12)	0.22(12)			
a_{0+}^{-}	8.8(5)	8.33(44)	7.70(8)	9.2	8.83(5)	7.742(61)			
$a_{S_{31}}$	-10.0(1.1)	-8.5(6)	-7.47(22)	-10.0(4)	-8.4	-7.52(16)			
$a_{S_{11}}$	16.6(1.5)	16.6(9)	15.63(26)	17.5(3)	17.1	15.71(13)			
$a_{P_{31}}$	-4.15(35)	-3.89(35)	-4.10(9)	-4.4(2)	-3.8	-4.176(80)			
$a_{P_{11}}$	-8.4(5)	-7.5(1.0)	-8.43(18)	-7.8(2)	-5.8	-7.99(16)			
$a_{P_{33}}$	22.69(30)	21.4(5)	20.89(9)	21.4(2)	19.4	21.00(20)			
$a_{P_{13}}$	-3.00(32)	-2.84(31)	-3.09(8)	-3.0(2)	-2.3	-3.159(67)			

Threshold parameters

Pa	artial	KA85	WI08	EM06	KA85	WI08	EM06
٦	Wave	Δ -ChPT	Δ -ChPT	Δ -ChPT			
	a_{0+}^{+}	-1.1(1.0)	-0.12(33)	0.23(20)	-0.8	-0.10(12)	0.22(12)
	a_{0+}^{-}	8.8(5)	8.33(44)	7.70(8)	9.2	8.83(5)	7.742(61)
	$a_{S_{31}}$	-10.0(1.1)	-8.5(6)	-7.47(22)	-10.0(4)	-8.4	-7.52(16)
	$a_{S_{11}}$	16.6(1.5)	16.6(9)	15.63(26)	17.5(3)	17.1	15.71(13)
	$a_{P_{31}}$	-4.15(35)	-3.89(35)	-4.10(9)	-4.4(2)	-3.8	-4.176(80)
	$a_{P_{11}}$	-8.4(5)	-7.5(1.0)	-8.43(18)	-7.8(2)	-5.8	-7.99(16)
	$a_{P_{33}}$	22.69(30)	21.4(5)	20.89(9)	21.4(2)	19.4	21.00(20)
	$a_{P_{13}}$	-3.00(32)	-2.84(31)	-3.09(8)	-3.0(2)	-2.3	-3.159(67)

Pion-nucleon coupling (d_{18})

	KA85	WI08	EM06	KA85	WI08	EM06
	Δ -ChPT	Δ -ChPT	Δ -ChPT			
Δ_{GT}	5.1(8)%	1.0(2.5)%	2.0(4)%	4.5(7)%	2.1(1)%	0.2(1.0)%
$g_{\pi N}$	13.53(10)	13.00(31)	13.13(5)	13.46(9)	13.15(1)	12.90(12)

Threshold parameters

Partial	KA85	WI08	EM06	KA85	WI08	EM06
Wave	Δ -ChPT	Δ -ChPT	Δ -ChPT			
a_{0+}^{+}	-1.1(1.0)	-0.12(33)	0.23(20)	-0.8	-0.10(12)	0.22(12)
a_{0+}^{-}	8.8(5)	8.33(44)	7.70(8)	9.2	8.83(5)	7.742(61)
$a_{S_{31}}$	-10.0(1.1)	-8.5(6)	-7.47(22)	-10.0(4)	-8.4	-7.52(16)
$a_{S_{11}}$	16.6(1.5)	16.6(9)	15.63(26)	17.5(3)	17.1	15.71(13)
$a_{P_{31}}$	-4.15(35)	-3.89(35)	-4.10(9)	-4.4(2)	-3.8	-4.176(80)
$a_{P_{11}}$	-8.4(5)	-7.5(1.0)	-8.43(18)	-7.8(2)	-5.8	-7.99(16)
$a_{P_{33}}$	22.69(30)	21.4(5)	20.89(9)	21.4(2)	19.4	21.00(20)
$a_{P_{13}}$	-3.00(32)	-2.84(31)	-3.09(8)	-3.0(2)	-2.3	-3.159(67)

Pion-nucleon coupling (d_{18})

	KA85	WI08	EM06	KA85	WI08	EM06
	Δ -ChPT	Δ -ChPT	Δ -ChPT			
Δ_{GT}	5.1(8)%	1.0(2.5)%	2.0(4)%	4.5(7)%	2.1(1)%	0.2(1.0)%
$g_{\pi N}$	13.53(10)	13.00(31)	13.13(5)	13.46(9)	13.15(1)	12.90(12)
$g_{\pi N}$	13.53(10)	13.00(31)	13.13(5)	13.46(9)	13.15(1)	12.90(12)

Sigma-term (c_1)

	KA85	WI08	EM06	KA85	WI08	EM06
	Δ -ChPT	Δ -ChPT	Δ -ChPT			
$\sigma_{\pi N} \text{ (MeV)}$	43(5)	59(4)	59(2)	45(8)	64(7)	56(9)

πN - scattering

πN - scattering

Subthreshold region

	KA85	WI08 Д∕ -ChPT	EM06 Д∕ -ChPT	KA85 Δ-ChPT	WI08 Δ-ChPT	EM06 Δ-ChPT	KA85 [50]	WI08 [4]
$d_{00}^+ (M_{\pi}^{-1})$	-2.02(41)	-1.65(28)	-1.56(5)	-1.48(15)	-1.20(13)	-0.98(4)	-1.46	-1.30
$d_{01}^{+}(M_{\pi}^{-3})$	1.73(19)	1.70(18)	1.64(4)	1.21(10)	1.20(9)	1.09(4)	1.14	1.19
$d_{10}^{+}(M_{\pi}^{-3})$	1.81(16)	1.60(18)	1.532(45)	0.99(14)	0.82(9)	0.631(42)	1.12(2)	-
$d_{02}^{+}(M_{\pi}^{-5})$	0.021(6)	0.021(6)	0.021(6)	0.004(6)	0.005(6)	0.004(6)	0.036	0.037
$b_{00}^{+}(M_{\pi}^{-3})$	-6.5(2.4)	-7.4(2.3)	-7.01(1.1)	-5.1(1.7)	-5.1(1.7)	-4.5(9)	-3.54(6)	-
$d_{00}^{-0} (M_{\pi}^{-2})$	1.81(24)	1.68(16)	1.495(28)	1.63(9)	1.53(8)	1.379(8)	1.53(2)	-
$d_{01}^{-1}(M_{\pi}^{-4})$	-0.17(6)	-0.20(5)	-0.199(7)	-0.112(25)	-0.115(24)	-0.0923(11)	-0.134(5)	-
$d_{10}^{-1}(M_{\pi}^{-4})$	-0.35(10)	-0.33(10)	-0.267(14)	-0.18(5)	-0.16(5)	-0.0892(41)	-0.167(5)	-
$b_{00}^{-1}(M_{\pi}^{-2})$	17(7)	17(7)	16.8(7)	9.63(30)	9.755(42)	8.67(8)	10.36(10)	-

[Alarcón, Martin Camalich and Oller, Ann. of Phys. 336 (2013)]

πN - scattering

$$\sigma_{\pi N} = \frac{\hat{m}}{2m_N} \langle N | (\bar{u}u + \bar{d}d) | N \rangle$$

• The sigma-term is defined as

$$\sigma_{\pi N} = \frac{\hat{m}}{2m_N} \langle N | (\bar{u}u + \bar{d}d) | N \rangle$$

Fundamental quantity in QCD

• The sigma-term is defined as

$$\sigma_{\pi N} = \frac{\hat{m}}{2m_N} \langle N | (\bar{u}u + \bar{d}d) | N \rangle$$

 Fundamental quantity in QCD → Measures of the strength of explicit chiral symmetry breaking.

$$\sigma_{\pi N} = \frac{\hat{m}}{2m_N} \langle N | (\bar{u}u + \bar{d}d) | N \rangle$$

- Fundamental quantity in QCD → Measures of the strength of explicit chiral symmetry breaking.
- It is important on searches of physics beyond the standard model.

$$\sigma_{\pi N} = \frac{\hat{m}}{2m_N} \langle N | (\bar{u}u + \bar{d}d) | N \rangle$$

- Fundamental quantity in QCD → Measures of the strength of explicit chiral symmetry breaking.
- It is important on searches of physics beyond the standard model.
 - Dark Matter detection [Bottino, Donato, Fornengo and Scopel, Astropart. Phys. 13, (2000); Astropart. Phys. 18, (2002)] [J. R. Ellis, K.A. Olive and C. Savage, Phys. Rev. D 77, (2008)]

$$\sigma_{\pi N} = \frac{\hat{m}}{2m_N} \langle N | (\bar{u}u + \bar{d}d) | N \rangle$$

- Fundamental quantity in QCD → Measures of the strength of explicit chiral symmetry breaking.
- It is important on searches of physics beyond the standard model.
 - Dark Matter detection [Bottino, Donato, Fornengo and Scopel, Astropart. Phys. 13, (2000); Astropart. Phys. 18, (2002)] [J. R. Ellis, K. A. Olive and C. Savage, Phys. Rev. D 77, (2008)]
 - CP violation [de Vries, Mereghetti, Walker-Loud, PRC 92 (2015)]

$$\sigma_{\pi N} = \frac{\hat{m}}{2m_N} \langle N | (\bar{u}u + \bar{d}d) | N \rangle$$

- Fundamental quantity in QCD → Measures of the strength of explicit chiral symmetry breaking.
- It is important on searches of physics beyond the standard model.
 - Dark Matter detection [Bottino, Donato, Fornengo and Scopel, Astropart. Phys. 13, (2000); Astropart. Phys. 18, (2002)] [J. R. Ellis, K. A. Olive and C. Savage, Phys. Rev. D 77, (2008)]
 - CP violation [de Vries, Mereghetti, Walker-Loud, PRC 92 (2015)]
- Key to understand the origin of the mass of the ordinary matter:

• The sigma-term is defined as

$$\sigma_{\pi N} = \frac{\hat{m}}{2m_N} \langle N | (\bar{u}u + \bar{d}d) | N \rangle$$

- Fundamental quantity in QCD Measures of the strength of explicit chiral symmetry breaking.
- It is important on searches of physics beyond the standard model.
 - Dark Matter detection [Bottino, Donato, Fornengo and Scopel, Astropart. Phys. 13, (2000); Astropart. Phys. 18, (2002)] [J. R. Ellis, K. A. Olive and C. Savage, Phys. Rev. D 77, (2008)]
 - CP violation [de Vries, Mereghetti, Walker-Loud, PRC 92 (2015)]
- Key to understand the origin of the mass of the ordinary matter:

$$m_N = \frac{1}{2m_N} \langle N | \theta^{\mu}_{\mu} | N \rangle = \frac{1}{2m_N} \langle N | \frac{\beta}{2g} G_a^{\mu\nu} G_{\mu\nu}^a + \sum_{q=u,d,s} m_q \bar{q} q + \dots | N \rangle$$

"2nd Workshop on The Proton Mass; At the Heart of Most Visible Matter", ECT*, April 2017, Trento.

• The sigma-term is defined as

$$\sigma_{\pi N} = \frac{\hat{m}}{2m_N} \langle N | (\bar{u}u + \bar{d}d) | N \rangle$$

- Fundamental quantity in QCD → Measures of the strength of explicit chiral symmetry breaking.
- It is important on searches of physics beyond the standard model.
 - Dark Matter detection [Bottino, Donato, Fornengo and Scopel, Astropart. Phys. 13, (2000); Astropart. Phys. 18, (2002)] [J. R. Ellis, K. A. Olive and C. Savage, Phys. Rev. D 77, (2008)]
 - CP violation [de Vries, Mereghetti, Walker-Loud, PRC 92 (2015)]
- Key to understand the origin of the mass of the ordinary matter:

$$m_N = \frac{1}{2m_N} \langle N | \theta^\mu_\mu | N \rangle = \frac{1}{2m_N} \langle N | \frac{\beta}{2g} G_a^{\mu\nu} G_{\mu\nu}^a + \sum_{q=u,d,s} m_q \bar{q} q + \dots | N \rangle$$

"2nd Workshop on The Proton Mass; At the Heart of Most Visible Matter", ECT*, April 2017, Trento.

• Tension between the "canonical" value and the updated evaluation:

• Tension between the "canonical" value and the updated evaluation:

 $\sigma \simeq 45 \text{ MeV}$, $\Sigma \simeq 60 \text{ MeV}$

• Tension between the "canonical" value and the updated evaluation:

 $\sigma \simeq 45 \text{ MeV}$, $\Sigma \simeq 60 \text{ MeV}$

The pion-nucleon Σ term is definitely large: results from a G.W.U. analysis of πN scattering data

M.M. Pavan^a, R.A. Arndt^b, I.I. Strakovsky^b and R.L. Workman^b

^aUniversity of Regina TRIUMF, Vancouver, B.C. V6T-2A3, Canada ^bCenter for Nuclear Studies, Department of Physics, The George Washington University, Washington, DC 20052, U.S.A.

$$\sigma_{\pi N} = 64 \text{ MeV}$$
 $\Sigma = 79 \text{ MeV}$

• Tension between the "canonical" value and the updated evaluation:

The pion-nucleon Σ term is definitely large: results from a G.W.U. analysis of πN scattering data

M.M. Pavan^a, R.A. Arndt^b, I.I. Strakovsky^b and R.L. Workman^b

^aUniversity of Regina TRIUMF, Vancouver, B.C. V6T-2A3, Canada ^bCenter for Nuclear Studies, Department of Physics, The George Washington University, Washington, DC 20052, U.S.A.

[PiN Newslett. 16 (2002) 110-115]

$$\sigma \simeq 45 \text{ MeV}$$
, $\Sigma \simeq 60 \text{ MeV}$

$$\sigma_{\pi N} = 64 \text{ MeV} \quad \Sigma = 79 \text{ MeV}$$

• Despite GWU utilizes updated experimental information, the lower value was more common in the literature.

• Tension between the "canonical" value and the updated evaluation:

 $\sigma \simeq 45 \text{ MeV}$, $\Sigma \simeq 60 \text{ MeV}$

The pion-nucleon Σ term is definitely large: results from a G.W.U. analysis of πN scattering data

M.M. Pavan^a, R.A. Arndt^b, I.I. Strakovsky^b and R.L. Workman^b

^aUniversity of Regina TRIUMF, Vancouver, B.C. V6T-2A3, Canada ^bCenter for Nuclear Studies, Department of Physics, The George Washington University, Washington, DC 20052, U.S.A.

$$\sigma_{\pi N} = 64 \text{ MeV} \quad \Sigma = 79 \text{ MeV}$$

- Despite GWU utilizes updated experimental information, the lower value was more common in the literature.
- $\sigma_{\pi N}$ ~ 60 MeV was puzzling:

• Tension between the "canonical" value and the updated evaluation:

 $\sigma \simeq 45 \text{ MeV}$. $\Sigma \simeq 60 \text{ MeV}$

The pion-nucleon Σ term is definitely large: results from a G.W.U. analysis of πN scattering data

M.M. Pavan^a, R.A. Arndt^b, I.I. Strakovsky^b and R.L. Workman^b

^aUniversity of Regina TRIUMF, Vancouver, B.C. V6T-2A3, Canada ^bCenter for Nuclear Studies, Department of Physics, The George Washington University, Washington, DC 20052, U.S.A.

$$\sigma_{\pi N} = 64 \text{ MeV} \quad \Sigma = 79 \text{ MeV}$$

- Despite GWU utilizes updated experimental information, the lower value was more common in the literature.
- $\sigma_{\pi N}$ ~ 60 MeV was puzzling:
 - Large violation of the OZI rule.

• Tension between the "canonical" value and the updated evaluation:

The pion-nucleon Σ term is definitely large: results from a G.W.U. analysis of πN scattering data

M.M. Pavan^a, R.A. Arndt^b, I.I. Strakovsky^b and R.L. Workman^b

^aUniversity of Regina TRIUMF, Vancouver, B.C. V6T-2A3, Canada ^bCenter for Nuclear Studies, Department of Physics, The George Washington University, Washington, DC 20052, U.S.A.

$$\sigma \simeq 45 \text{ MeV}$$
, $\Sigma \simeq 60 \text{ MeV}$

$$\sigma_{\pi N} = 64 \text{ MeV} \quad \Sigma = 79 \text{ MeV}$$

- Despite GWU utilizes updated experimental information, the lower value was more common in the literature.
- $\sigma_{\pi N}$ ~ 60 MeV was puzzling:
 - Large violation of the OZI rule.
 - Restoration of chiral symmetry in nuclear matter at lower densities.

• Tension between the "canonical" value and the updated evaluation:

The pion-nucleon Σ term is definitely large: results from a G.W.U. analysis of πN scattering data

M.M. Pavan^a, R.A. Arndt^b, I.I. Strakovsky^b and R.L. Workman^b

^a University of Regina
 TRIUMF, Vancouver, B.C. V6T-2A3, Canada
 ^b Center for Nuclear Studies, Department of Physics,
 The George Washington University, Washington, DC 20052, U.S.A.

$$\sigma \simeq 45 \text{ MeV}$$
, $\Sigma \simeq 60 \text{ MeV}$

$$\sigma_{\pi N} = 64 \text{ MeV} \quad \Sigma = 79 \text{ MeV}$$

- Despite GWU utilizes updated experimental information, the lower value was more common in the literature.
- $\sigma_{\pi N}$ ~ 60 MeV was puzzling:
 - Large violation of the OZI rule.
 - Restoration of chiral symmetry in nuclear matter at lower densities.
- Necessary to give a picture fully consistent with phenomenology!

• However, the scatt. lengths from π -atoms point to a large $\sigma_{\pi N}$!

• However, the scatt. lengths from π -atoms point to a large $\sigma_{\pi N}$!

[Gasser, Leutwyler and Sainio, PLB 253 (1991)]

• However, the scatt. lengths from π -atoms point to a large $\sigma_{\pi N}$!

[Gasser, Leutwyler and Sainio, PLB 253 (1991)]

Solution A: Fit to data of [P.Y. Bertin et al., NPB 106 (1976)]

$$a_{0+}^{+} \approx -8 \times 10^{-3} M_{\pi}^{-1} \longrightarrow \Sigma_{d} = 48 \pm 4 \pm 4 \pm 4 \text{ MeV}$$

Solution B: Fit to data of [J. S. Frank et al., PRD 28 (1983)]

$$a_{0+}^{+} \approx -10 \times 10^{-3} M_{\pi}^{-1} \longrightarrow \Sigma_{d} = 50 \pm 3 \pm 7 \pm 4 \text{ MeV}$$

• However, the scatt. lengths from π -atoms point to a large $\sigma_{\pi N}$!

[Gasser, Leutwyler and Sainio, PLB 253 (1991)]

Solution A: Fit to data of [P.Y. Bertin et al., NPB 106 (1976)]

$$a_{0+}^{+} \approx -8 \times 10^{-3} M_{\pi}^{-1} \longrightarrow \Sigma_{d} = 48 \pm 4 \pm 4 \pm 4 \text{ MeV}$$

Solution B: Fit to data of [J. S. Frank et al., PRD 28 (1983)]

$$a_{0+}^{+} \approx -10 \times 10^{-3} M_{\pi}^{-1} \longrightarrow \Sigma_{d} = 50 \pm 3 \pm 7 \pm 4 \text{ MeV}$$

• However, the scatt. lengths from π -atoms point to a large $\sigma_{\pi N}$!

[Gasser, Leutwyler and Sainio, PLB 253 (1991)]

Solution A: Fit to data of [P.Y. Bertin et al., NPB 106 (1976)]

$$a_{0+}^{+} \approx -8 \times 10^{-3} M_{\pi}^{-1} \longrightarrow \Sigma_{d} = 48 \pm 4 \pm 4 \pm 4 \text{ MeV}$$

Solution B: Fit to data of [J. S. Frank et al., PRD 28 (1983)]

$$a_{0+}^{+} \approx -10 \times 10^{-3} M_{\pi}^{-1} \longrightarrow \Sigma_{d} = 50 \pm 3 \pm 7 \pm 4 \text{ MeV}$$

π-atoms [Baru, et al. NPA 872 (2011)]

$$a_{0+}^{+} \approx -1 \times 10^{-3} M_{\pi}^{-1}$$
 Larger $\Sigma_{d}!$

• However, the scatt. lengths from π -atoms point to a large $\sigma_{\pi N}$!

[Gasser, Leutwyler and Sainio, PLB 253 (1991)]

Solution A: Fit to data of [P.Y. Bertin et al., NPB 106 (1976)]
$$a_{0+}^{+} \approx -8 \times 10^{-3} M_{\pi}^{-1} \longrightarrow \Sigma_{d} = 48 \pm 4 \pm 4 \pm 4 \text{ MeV}$$
 Solution B: Fit to data of [J. S. Frank et al., PRD 28 (1983)] $a_{0+}^{+} \approx -10 \times 10^{-3} M_{\pi}^{-1} \longrightarrow \Sigma_{d} = 50 \pm 3 \pm 7 \pm 4 \text{ MeV}$ π -atoms [Baru, et al. NPA 872 (2011)] $a_{0+}^{+} \approx -1 \times 10^{-3} M_{\pi}^{-1} \longrightarrow \text{Larger } \Sigma_{d}!$

• Threshold parameters determine $\sigma_{\pi N}$ [Olsson, PLB 482 (2000)]

• However, the scatt. lengths from π -atoms point to a large $\sigma_{\pi N}$!

[Gasser, Leutwyler and Sainio, PLB 253 (1991)]

Solution A: Fit to data of [P.Y. Bertin et al., NPB 106 (1976)]
$$a_{0+}^+ \approx -8 \times 10^{-3} M_\pi^{-1} \longrightarrow \Sigma_d = 48 \pm 4 \pm 4 \pm 4 \text{ MeV}$$
 Solution B: Fit to data of [J. S. Frank et al., PRD 28 (1983)] $a_{0+}^+ \approx -10 \times 10^{-3} M_\pi^{-1} \longrightarrow \Sigma_d = 50 \pm 3 \pm 7 \pm 4 \text{ MeV}$ π -atoms [Baru, et al. NPA 872 (2011)]

 $a_{0+}^{+} \approx -1 \times 10^{-3} M_{\pi}^{-1}$ Larger $\Sigma_{d}!$

• Threshold parameters determine $\sigma_{\pi N}$ [Olsson, PLB 482 (2000)]

$$\bar{D}^{+}(0,2M_{\pi}^{2}) = 14.5a_{0+}^{+} - 5.06(a_{0+}^{(1/2)})^{2} - 10.13(a_{0+}^{(3/2)})^{2} - 5.55C^{(+)} - 0.06a_{1-}^{+} + 5.70a_{1+}^{+} - (0.08 \pm 0.03)$$

• However, the scatt. lengths from π -atoms point to a large $\sigma_{\pi N}$!

[Gasser, Leutwyler and Sainio, PLB 253 (1991)]

Solution A: Fit to data of [P.Y. Bertin et al., NPB 106 (1976)]
$$a_{0+}^{+} \approx -8 \times 10^{-3} M_{\pi}^{-1} \longrightarrow \Sigma_{d} = 48 \pm 4 \pm 4 \pm 4 \text{ MeV}$$
 Solution B: Fit to data of [J. S. Frank et al., PRD 28 (1983)] $a_{0+}^{+} \approx -10 \times 10^{-3} M_{\pi}^{-1} \longrightarrow \Sigma_{d} = 50 \pm 3 \pm 7 \pm 4 \text{ MeV}$ T-atoms [Baru, et al. NPA 872 (2011)]

 $a_{0+}^{+} \approx -1 \times 10^{-3} M_{\pi}^{-1}$ Larger $\Sigma_{d}!$

• Threshold parameters determine $\sigma_{\pi N}$ [Olsson, PLB 482 (2000)]

$$\bar{D}^+(0,2M_\pi^2) = 14.5a_{0+}^+ - 5.06(a_{0+}^{(1/2)})^2 - 10.13(a_{0+}^{(3/2)})^2 - 5.55C^{(+)} - 0.06a_{1-}^+ + 5.70a_{1+}^+ - (0.08 \pm 0.03)$$

$$a_{0+}^+ = 3.5(2.6) \times 10^{-3} M_\pi^{-1}$$

$$\sigma_{\pi N} = 56(9) \text{ MeV}$$
 [Gashi, et al., NPA 778 (2006)]

• However, the scatt. lengths from π -atoms point to a large $\sigma_{\pi N}$!

[Gasser, Leutwyler and Sainio, PLB 253 (1991)]

Solution A: Fit to data of [P.Y. Bertin et al., NPB 106 (1976)] $a_{0+}^+ \approx -8 \times 10^{-3} M_\pi^{-1} \longrightarrow \Sigma_d = 48 \pm 4 \pm 4 \pm 4 \text{ MeV}$ Solution B: Fit to data of [J. S. Frank et al., PRD 28 (1983)] $a_{0+}^+ \approx -10 \times 10^{-3} M_\pi^{-1} \longrightarrow \Sigma_d = 50 \pm 3 \pm 7 \pm 4 \text{ MeV}$ T-atoms [Baru, et al. NPA 872 (2011)]

 $a_{0+}^{+} \approx -1 \times 10^{-3} M_{\pi}^{-1}$ Larger $\Sigma_{d}!$

• Threshold parameters determine $\sigma_{\pi N}$ [Olsson, PLB 482 (2000)]

$$\bar{D}^+(0,2M_\pi^2) = 14.5a_{0+}^+ - 5.06(a_{0+}^{(1/2)})^2 - 10.13(a_{0+}^{(3/2)})^2 - 5.55C^{(+)} - 0.06a_{1-}^+ + 5.70a_{1+}^+ - (0.08 \pm 0.03)$$

$$a_{0+}^+ = 3.5(2.6) \times 10^{-3} M_\pi^{-1}$$

$$\sigma_{\pi N} = 56(9) \text{ MeV}$$
 [Gashi, et al., NPA 778 (2006)]

In order to recover $\sigma_{\pi N}=45~{\rm MeV}$ one needs $a_{0+}^+\sim -9\times 10^{-3}M_\pi^{-1}$

• From our fits to KA85, WI08 and EM06, we obtain:

	$ ext{KA85} \ ext{Δ-ChPT}$	WI08 Δ -ChPT	${ m EM06} \ \Delta ext{-ChPT}$	KA85	WI08	EM06
$\sigma_{\pi N} ({ m MeV})$	43(5)	59(4)	59(2)	45(8)	64(7)	56(9)

• From our fits to KA85, WI08 and EM06, we obtain:

	$ ext{KA85} \ ext{Δ-ChPT}$	WI08 Δ -ChPT	$ m EM06 \ \Delta ext{-ChPT}$	KA85	WI08	EM06
$\sigma_{\pi N}$ (MeV)	43(5)	59(4)	59(2)	45(8)	64(7)	56(9)

• NN scattering and π -atoms can provide valuable external information to compare with.

• From our fits to KA85, WI08 and EM06, we obtain:

	$ ext{KA85} \ ext{Δ-ChPT}$	WI08 Δ -ChPT	${ m EM06} \ \Delta ext{-ChPT}$	KA85	WI08	EM06
$\sigma_{\pi N} ({ m MeV})$	43(5)	59(4)	59(2)	45(8)	64(7)	56(9)

- NN scattering and π -atoms can provide valuable external information to compare with.
 - Goldberger-Treiman violation:

	$ ext{KA85} \ ext{Δ-ChPT}$	$ooknote{WI08}{\Delta ext{-ChPT}}$	${ m EM06} \ \Delta ext{-ChPT}$	NN [1] scattering	$\pi ext{-atoms}$
Δ_{GT}	5.1(8)%	1.0(2.5)%	2.0(4)%	1.9(6)%	1.9(7)%
$g_{\pi N}$	13.53(10)	13.00(31)	13.13(5)	13.12(8)	13.12(9)

• From our fits to KA85, WI08 and EM06, we obtain:

	$ m KA85$ $ m \Delta ext{-}ChPT$	WI08 Δ -ChPT	${ m EM06} \ \Delta ext{-ChPT}$	KA85	WI08	EM06
$\sigma_{\pi N} ({ m MeV})$	43(5)	59(4)	59(2)	45(8)	64(7)	56(9)

- NN scattering and π -atoms can provide valuable external information to compare with.
 - Goldberger-Treiman violation:

	$ ext{KA85} \ ext{Δ-ChPT}$	$WI08$ Δ -ChPT	$EM06$ Δ -ChPT	NN [1] scattering	$\pi ext{-atoms}$
Δ_{GT}	5.1(8)%	1.0(2.5)%	2.0(4)%	1.9(6)%	1.9(7)%
$g_{\pi N}$	13.53(10)	13.00(31)	13.13(5)	13.12(8)	13.12(9)

• From our fits to KA85, WI08 and EM06, we obtain:

	$ ext{KA85} \ ext{Δ-ChPT}$	WI08 Δ -ChPT	${ m EM06} \ \Delta ext{-ChPT}$	KA85	WI08	EM06
$\sigma_{\pi N} ({ m MeV})$	43(5)	59(4)	59(2)	45(8)	64(7)	56(9)

- \bullet NN scattering and π -atoms can provide valuable external information to compare with.
 - Goldberger-Treiman violation:

	${ m KA85} \ { m \Delta ext{-}ChPT}$	$WI08$ Δ -ChPT	$EM06$ Δ -ChPT	NN [1] scattering	$\pi ext{-atoms}$
Δ_{GT}	5.1(8)%	1.0(2.5)%	2.0(4)%	1.9(6)%	1.9(7)%
$g_{\pi N}$	13.53(10)	13.00(31)	13.13(5)	13.12(8)	13.12(9)

 Γ_{Δ}

	${ m KA85} \ \Delta ext{-ChPT}$	$WI08 \ \Delta ext{-ChPT}$	${ m EM06} \ \Delta ext{-ChPT}$	PDG
$\Gamma_{\Delta} \; ({ m MeV})$	128(3)	115(3)	125(2)	117(3)

• From our fits to KA85, WI08 and EM06, we obtain:

	$ ext{KA85} \ ext{Δ-ChPT}$	WI08 Δ -ChPT	${ m EM06} \ \Delta ext{-ChPT}$	KA85	WI08	EM06
$\sigma_{\pi N} ({ m MeV})$	43(5)	59(4)	59(2)	45(8)	64(7)	56(9)

- NN scattering and π -atoms can provide valuable external information to compare with.
 - Goldberger-Treiman violation:

	${ m KA85} \ { m \Delta ext{-}ChPT}$	$WI08$ Δ -ChPT	$EM06$ Δ -ChPT	NN [1] scattering	$\pi ext{-atoms}$
Δ_{GT}	5.1(8)%	1.0(2.5)%	2.0(4)%	1.9(6)%	1.9(7)%
$g_{\pi N}$	13.53(10)	13.00(31)	13.13(5)	13.12(8)	13.12(9)

 Γ_{Δ}

	${ m KA85} \ _{ m \Delta-ChPT}$	$\begin{array}{c} WI08 \\ \Delta\text{-ChPT} \end{array}$	${ m EM06} \ \Delta ext{-ChPT}$	PDG
$\Gamma_{\Delta} \; ({ m MeV})$	128(3)	115(3)	125(2)	117(3)

• From our fits to KA85, WI08 and EM06, we obtain:

	$ ext{KA85} \ ext{Δ-ChPT}$	WI08 Δ -ChPT	${ m EM06} \ \Delta ext{-ChPT}$	KA85	WI08	EM06
$\sigma_{\pi N} ({ m MeV})$	43(5)	59(4)	59(2)	45(8)	64(7)	56(9)

- NN scattering and π -atoms can provide valuable external information to compare with.
 - Goldberger-Treiman violation:

	${ m KA85} \ { m \Delta-ChPT}$	$WI08$ Δ -ChPT	$EM06$ Δ -ChPT	NN [1] scattering	$\pi ext{-atoms}$
Δ_{GT}	5.1(8)%	1.0(2.5)%	2.0(4)%	1.9(6)%	1.9(7)%
$g_{\pi N}$	13.53(10)	13.00(31)	13.13(5)	13.12(8)	13.12(9)

 Γ_{Δ}

	${ m KA85} \ _{ m \Delta-ChPT}$	$\begin{array}{c} WI08 \\ \Delta\text{-ChPT} \end{array}$	${ m EM06} \ \Delta ext{-ChPT}$	PDG
$\Gamma_{\Delta} \; ({ m MeV})$	128(3)	115(3)	125(2)	117(3)

• a_{0+}^+ :

	${ m KA85} \ \Delta ext{-ChPT}$	$WI08 \ \Delta ext{-ChPT}$	${ m EM06} \ \Delta ext{-ChPT}$	π -atoms [2] $(\pi^+ p, \pi^- p)$
a_{0+}^{+} $(10^{-3}M_{\pi}^{-1})$	-11(10)	-1.2(3.3)	2.3(2.0)	-1.0(9)

[1] De Swart, Rentmeester & Timmermans,
πN Newsletter 13 (1997).
[2] Baru, Hanhart, Hoferichter, Kubis, Nogga & Phillips, NPA 872 (2011)

• From our fits to KA85, WI08 and EM06, we obtain:

	$ ext{KA85} \ ext{Δ-ChPT}$	$ m WI08 \ \Delta ext{-ChPT}$	${ m EM06} \ \Delta ext{-ChPT}$	KA85	WI08	EM06
$\sigma_{\pi N} ({ m MeV})$	43(5)	59(4)	59(2)	45(8)	64(7)	56(9)

- NN scattering and π -atoms can provide valuable external information to compare with.
 - Goldberger-Treiman violation:

	${ m KA85} \ { m \Delta-ChPT}$	$WI08$ Δ -ChPT	$EM06$ Δ -ChPT	NN [1] scattering	$\pi ext{-atoms}$
Δ_{GT}	5.1(8)%	1.0(2.5)%	2.0(4)%	1.9(6)%	1.9(7)%
$g_{\pi N}$	13.53(10)	13.00(31)	13.13(5)	13.12(8)	13.12(9)

 Γ_{Δ}

	${ m KA85} \ _{ m \Delta ext{-}ChPT}$	$\begin{array}{c} WI08 \\ \Delta\text{-ChPT} \end{array}$	${ m EM06} \ \Delta ext{-ChPT}$	PDG
$\Gamma_{\Delta} \; ({ m MeV})$	128(3)	115(3)	125(2)	117(3)

• a_{0+}^+ :

	${ m KA85} \ \Delta ext{-ChPT}$	$\begin{array}{c} WI08 \\ \Delta\text{-ChPT} \end{array}$	${ m EM06} \ \Delta ext{-ChPT}$	π -atoms [2] $(\pi^+ p, \pi^- p)$
$a^+_{0+} \atop {}_{(10^{-3}M_\pi^{-1})}$	-11(10)	-1.2(3.3)	2.3(2.0)	-1.0(9)

[1] De Swart, Rentmeester & Timmermans,
πN Newsletter 13 (1997).
[2] Baru, Hanhart, Hoferichter, Kubis, Nogga & Phillips, NPA 872 (2011)

• From our fits to KA85, WI08 and EM06, we obtain:

	$ m KA85$ $ m \Delta ext{-}ChPT$	WI08 Δ -ChPT	$ m EM06 \ \Delta ext{-ChPT}$	KA85	WI08	EM06
$\sigma_{\pi N} ({ m MeV})$	43(5)	59(4)	59(2)	45(8)	64(7)	56(9)

- NN scattering and π -atoms can provide valuable external information to compare with.
 - Goldberger-Treiman violation:

	${ m KA85} \ { m \Delta-ChPT}$	$WI08$ Δ -ChPT	$EM06$ Δ -ChPT	NN [1] scattering	$\pi ext{-atoms}$
Δ_{GT}	5.1(8)%	1.0(2.5)%	2.0(4)%	1.9(6)%	1.9(7)%
$g_{\pi N}$	13.53(10)	13.00(31)	13.13(5)	13.12(8)	13.12(9)

 Γ_{Δ}

	${ m KA85} \ _{ m \Delta ext{-}ChPT}$	$\begin{array}{c} WI08 \\ \Delta\text{-ChPT} \end{array}$	${ m EM06} \ \Delta ext{-ChPT}$	PDG
$\Gamma_{\Delta} \; ({ m MeV})$	128(3)	115(3)	125(2)	117(3)

• a_{0+}^+ :

	${ m KA85} \ \Delta ext{-ChPT}$	$\begin{array}{c} WI08 \\ \Delta\text{-ChPT} \end{array}$	${ m EM06} \ \Delta ext{-ChPT}$	π -atoms [2] $(\pi^+ p, \pi^- p)$
a_{0+}^{+} $(10^{-3}M_{\pi}^{-1})$	-11(10)	-1.2(3.3)	2.3(2.0)	-1.0(9)

[1] De Swart, Rentmeester & Timmermans,
πN Newsletter 13 (1997).
[2] Baru, Hanhart, Hoferichter, Kubis, Nogga & Phillips, NPA 872 (2011)

Convergence

$$O(p^2)$$
 $O(p^3)$
 O

Convergence

$$\sigma_{\pi N} = 78(4) \underbrace{-19}_{\text{LO}} \underbrace{(6)}_{\text{NLO}} \text{MeV} = 59 \pm 4 \text{(stat.)} \pm 6 \text{(sys.)} \text{MeV} = 59(7) \text{ MeV}$$

Convergence

$$\sigma_{\pi N} = 78(4) \underbrace{-19}_{\text{LO}} \underbrace{(6)}_{\text{NLO}} \text{MeV} = 59 \pm 4 \text{(stat.)} \pm 6 \text{(sys.)} \text{MeV} = 59(7) \text{ MeV}$$

Convergence

$$\sigma_{\pi N} = 78(4) \underbrace{-19}_{\text{LO}} \underbrace{(6)}_{\text{NLO}} \text{MeV} = 59 \pm 4 \text{(stat.)} \pm 6 \text{(sys.)} \text{MeV} = 59(7) \text{ MeV}$$

Convergence

Modern
$$\pi N$$
 scattering data

Convergence

$$\sigma_{\pi N} = 78(4)$$
 10 MeV = 59 ± 4(stat.) ± 6(sys.) MeV = 59(7) MeV

Convergence

$$\sigma_{\pi N} = 78(4) \underbrace{-19}_{\text{LO}} \underbrace{(6)}_{\text{NLO}} \text{MeV} = 59 \pm 4 \text{(stat.)} \pm 6 \text{(sys.)} \text{MeV} = 59(7) \text{ MeV}$$

Convergence

$$\sigma_{\pi N} = 78(4) \underbrace{-19}_{\text{LO}} \underbrace{(6)}_{\text{NLO}} \text{MeV} = 59 \pm 4 \text{(stat.)} \pm 6 \text{(sys.)} \text{MeV} = 59(7) \text{MeV}$$

Convergence

$$\sigma_{\pi N} = 78(4)$$
 10 MeV = 59 ± 4(stat.) ± 6(sys.) MeV = 59(7) MeV

Convergence

$$\sigma_{\pi N} = 78(4) \underbrace{-19}_{\text{LO}} \underbrace{(6)}_{\text{NLO}} \text{MeV} = 59 \pm 4 \text{(stat.)} \pm 6 \text{(sys.)} \text{MeV} = 59(7) \text{ MeV}$$

$$\sigma_s \equiv \frac{m_s}{2m_N} \langle N|\bar{s}s|N\rangle$$

$$\sigma_s \equiv \frac{m_s}{2m_N} \langle N|\bar{s}s|N\rangle \quad \longrightarrow \quad \sigma_s = \frac{m_s}{2\hat{m}} (\sigma_{\pi N} - \sigma_0)$$

$$\sigma_s \equiv \frac{m_s}{2m_N} \langle N | \bar{s}s | N \rangle \longrightarrow \sigma_s = \underbrace{\frac{m_s}{2\hat{m}}}_{\sim |4} (\sigma_{\pi N} - \sigma_0)$$

• The strangeness content of the nucleon is related to the sigmaterm through $\sigma_0 \equiv \frac{\hat{m}}{2m_N} \langle N|\bar{u}u + \bar{d}d - 2\bar{s}s|N\rangle$

$$\sigma_s \equiv \frac{m_s}{2m_N} \langle N|\bar{s}s|N\rangle \longrightarrow \sigma_s = \underbrace{\frac{m_s}{2\hat{m}}}_{\sim |4} (\sigma_{\pi N} - \sigma_0)$$

• A reevaluation of σ_0 points to a larger value \longrightarrow a sigma-term of ~60 MeV does not imply a large strangeness content

$$\sigma_s \equiv \frac{m_s}{2m_N} \langle N|\bar{s}s|N\rangle \longrightarrow \sigma_s = \underbrace{\frac{m_s}{2\hat{m}}}_{\sim |4} (\sigma_{\pi N} - \sigma_0)$$

- A reevaluation of σ_0 points to a larger value \longrightarrow a sigma-term of ~60 MeV does not imply a large strangeness content
- A new scenario emerges:

$$\sigma_s \equiv \frac{m_s}{2m_N} \langle N|\bar{s}s|N\rangle \longrightarrow \sigma_s = \underbrace{\frac{m_s}{2\hat{m}}}_{\sim |4} (\sigma_{\pi N} - \sigma_0)$$

- A reevaluation of σ_0 points to a larger value \longrightarrow a sigma-term of ~60 MeV does not imply a large strangeness content
- A new scenario emerges:

	$\sigma_{\pi N}$	σ_0	σ_s	y
Old scenario	45(8)	35(5)	130(91)	0,23
New scenario	59(7)	58(8)	16(80)	0.02(13)

$$\sigma_s \equiv \frac{m_s}{2m_N} \langle N|\bar{s}s|N\rangle \longrightarrow \sigma_s = \underbrace{\frac{m_s}{2\hat{m}}}_{\sim |4} (\sigma_{\pi N} - \sigma_0)$$

- A reevaluation of σ_0 points to a larger value \longrightarrow a sigma-term of ~60 MeV does not imply a large strangeness content
- A new scenario emerges:

	$\sigma_{\pi N}$	σ_0	σ_s	y
Old scenario	45(8)	35(5)	130(91)	0,23
New scenario	59(7)	58(8)	16(80)	0.02(13)

- Compatible with modern experimental information.
- σ_s Compatible with LQCD.

Nucleon Polarizabilities & Lamb shift

• Nucleon Polarizabilities encode the response of the nucleon under electromagnetic probes.

- Nucleon Polarizabilities encode the response of the nucleon under electromagnetic probes.
- Show up in the theoretical prediction ($\mathcal{O}(\alpha_{em}^5)$) of the proton radius through the Lamb shift ΔE_{2P-2S} .

- Nucleon Polarizabilities encode the response of the nucleon under electromagnetic probes.
- Show up in the theoretical prediction ($\mathcal{O}(\alpha_{em}^5)$) of the proton radius through the Lamb shift ΔE_{2P-2S} .
- They have the potential to solve "Proton Radius Puzzle":

- Nucleon Polarizabilities encode the response of the nucleon under electromagnetic probes.
- Show up in the theoretical prediction ($\mathcal{O}(\alpha_{em}^5)$) of the proton radius through the Lamb shift ΔE_{2P-2S} .
- They have the potential to solve "Proton Radius Puzzle":

$$\Delta E_{2P-2S}^{exp} - \Delta E_{2P-2S}^{th}(r_E^{\text{CODATA}}) = 0.31 \text{ meV} = 310 \ \mu\text{eV}$$

- Nucleon Polarizabilities encode the response of the nucleon under electromagnetic probes.
- Show up in the theoretical prediction ($\mathcal{O}(\alpha_{em}^5)$) of the proton radius through the Lamb shift ΔE_{2P-2S} .
- They have the potential to solve "Proton Radius Puzzle":

$$\Delta E_{2P-2S}^{exp} - \Delta E_{2P-2S}^{th}(r_E^{\text{CODATA}}) = 0.31 \text{ meV} = 310 \ \mu\text{eV}$$

• The polarizability contributions starts with the 2γ exchange.

- Nucleon Polarizabilities encode the response of the nucleon under electromagnetic probes.
- Show up in the theoretical prediction ($\mathcal{O}(\alpha_{em}^5)$) of the proton radius through the Lamb shift ΔE_{2P-2S} .
- They have the potential to solve "Proton Radius Puzzle":

$$\Delta E_{2P-2S}^{exp} - \Delta E_{2P-2S}^{th}(r_E^{\text{CODATA}}) = 0.31 \text{ meV} = 310 \ \mu\text{eV}$$

• The polarizability contributions starts with the 2γ exchange.

$$T^{\mu\nu}(P,q) = -\left(g^{\mu\nu} + \frac{q^{\mu}q^{\nu}}{q^2}\right)T_1(\nu^2, Q^2) + \frac{1}{M_p^2}\left(P^{\mu} - \frac{P \cdot q}{q^2}q^{\mu}\right)\left(P^{\nu} - \frac{P \cdot q}{q^2}q^{\nu}\right)T_2(\nu^2, Q^2)$$

- Nucleon Polarizabilities encode the response of the nucleon under electromagnetic probes.
- Show up in the theoretical prediction ($\mathcal{O}(\alpha_{em}^5)$) of the proton radius through the Lamb shift ΔE_{2P-2S} .
- They have the potential to solve "Proton Radius Puzzle":

$$\Delta E_{2P-2S}^{exp} - \Delta E_{2P-2S}^{th}(r_E^{\text{CODATA}}) = 0.31 \text{ meV} = 310 \ \mu\text{eV}$$

• The polarizability contributions starts with the 2γ exchange.

$$T^{\mu\nu}(P,q) = -\left(g^{\mu\nu} + \frac{q^{\mu}q^{\nu}}{q^2}\right)T_1(\nu^2, Q^2) + \frac{1}{M_p^2}\left(P^{\mu} - \frac{P \cdot q}{q^2}q^{\mu}\right)\left(P^{\nu} - \frac{P \cdot q}{q^2}q^{\nu}\right)T_2(\nu^2, Q^2)$$

$$\Delta E_{2S}^{(pol)} \approx \frac{\alpha_{em}}{\pi} \phi_{n=2}^2 \int_0^\infty \frac{dQ}{Q^2} w(\tau_\ell) \Big[T_1^{(NB)}(0, Q^2) - T_2^{(NB)}(0, Q^2) \Big] \qquad T_1^{(NB)} = 4\pi Q^2 \beta_{M1}(Q^2) + \dots$$
$$T_2^{(NB)} = 4\pi Q^2 [\alpha_{E1}(Q^2) + \beta_{M1}(Q^2)] + \dots$$

• The main contribution to the polarizabilities comes from the low Q^2 region

• The main contribution to the polarizabilities comes from the low Q^2 region \longrightarrow Chiral EFT

- The main contribution to the polarizabilities comes from the low Q^2 region \longrightarrow Chiral EFT
- Chiral EFT provides **predictions** of the leading contribution.

- The main contribution to the polarizabilities comes from the low Q^2 region \longrightarrow Chiral EFT
- Chiral EFT provides **predictions** of the leading contribution.
- Important to reduce contributions from $Q^2 > \Lambda_{\chi SB}^2$.

- The main contribution to the polarizabilities comes from the low Q^2 region \longrightarrow Chiral EFT
- Chiral EFT provides **predictions** of the leading contribution.
- Important to reduce contributions from $Q^2 > \Lambda_{\chi SB}^2$.

$$\Delta E_{2S}^{(pol)} \approx \frac{\alpha_{em}}{\pi} \phi_{n=2}^2 \int_0^{Q_{max}} \frac{dQ}{Q^2} w(\tau_\ell) \Big[T_1^{(NB)}(0,Q^2) - T_2^{(NB)}(0,Q^2) \Big] \qquad w(\tau_\ell) = \sqrt{1+\tau_\ell} - \sqrt{\tau_\ell}$$

$$\tau_\ell = \frac{Q^2}{4m_\ell^2}$$

$$-8.2 \} \sim 10\% \longrightarrow \text{Within the uncertainty of the calculation}$$

$$-15 \longrightarrow \text{HB}\chi \text{PT} \longrightarrow -8.2 \} > 20\% \longrightarrow \text{Too large contribution from } Q^2 > \Lambda_{\chi SB}^2$$

$$Q_{\text{max}}^2 \text{ (GeV}^2)$$

[Alarcón, Lensky, Pascalutsa, EPJ C 74 (2014).]

• The relativistic structure is important to agree with phenomenological determinations of $\Delta E_{2S}^{(\mathrm{pol})}$.

(µeV)	Pachucki [1]	Martynenko [2]	Nevado & Pineda [3]	Carlson & Vanderhaeghen [4]	Birse & McGovern [5]	Gorchtein Llanes-Estrada & Szczepaniak [6]	Alarcón, Lensky & Pascalutsa [7]	Peset & Pineda [8]
$\Delta E_{2S}^{(\mathrm{pol})}$	-12(2)	-11.5	-18.5	-7.4(2.4)	-8.5(1.1)	-15.3(5.6)	-8.2 ^{+2.0} _{-2.5}	-26.5

- Chiral EFT calculations
- Phenomenological determinations (dispersion relations+data)

Relativistic chiral EFT agrees with dispersive determinations!

^[1] K. Pachucki, Phys. Rev. A 60 (1999).

^[2] A. P. Martynenko, Phys. Atom. Nucl. 69 (2006).

^[3] D. Nevado and A. Pineda, Phys. Rev. C 77 (2008).

^[4] C. E. Carlson and M. Vanderhaeghen, Phys. Rev. A 84, (2011).

^[5] Birse and McGovern, EPJ A 48, (2012). Carlson & Vanderhaeghen, PRA 84 (2011)

^[6] M. Gorchtein, F. J. LLanes-Estrada and A. P. Szczepaniak, Phys. Rev. A 87 (2013).

^[7] J. M. Alarcón, V. Lensky, V. Pascalutsa, Eur. Phys. J. C 74 (2014).

^[8] C. Peset and A. Pineda Eur. Phys. J. A 51 (2015).

• The relativistic structure is important to agree with phenomenological determinations of $\Delta E_{2S}^{(\mathrm{pol})}$.

(µeV)	Pachucki [1]	Martynenko [2]	Nevado & Pineda [3]	Carlson & Vanderhaeghen [4]	Birse & McGovern [5]	Gorchtein Llanes-Estrada & Szczepaniak [6]	Alarcón, Lensky & Pascalutsa [7]	Peset & Pineda [8]
$\Delta E_{2S}^{(\mathrm{pol})}$	-12(2)	-11.5	-18.5	-7.4(2.4)	-8.5(1.1)	-15.3(5.6)	-8.2 ^{+2.0} _{-2.5}	-26.5

- Chiral EFT calculations
- Phenomenological determinations (dispersion relations+data)

```
[1] K. Pachucki, Phys. Rev. A 60 (1999).
```

Relativistic chiral EFT agrees with dispersive determinations!

^[2] A. P. Martynenko, Phys. Atom. Nucl. 69 (2006).

^[3] D. Nevado and A. Pineda, Phys. Rev. C 77 (2008).

^[4] C. E. Carlson and M. Vanderhaeghen, Phys. Rev. A 84, (2011).

^[5] Birse and McGovern, EPJ A 48, (2012). Carlson & Vanderhaeghen, PRA 84 (2011)

^[6] M. Gorchtein, F. J. LLanes-Estrada and A. P. Szczepaniak, Phys. Rev. A 87 (2013).

^[7] J. M. Alarcón, V. Lensky, V. Pascalutsa, Eur. Phys. J. C 74 (2014).

^[8] C. Peset and A. Pineda Eur. Phys. J. A 51 (2015).

Lamb shift

• The relativistic structure is important to agree with phenomenological determinations of $\Delta E_{2S}^{(\mathrm{pol})}$.

(µeV)	Pachucki [1]	Martynenko [2]	Nevado & Pineda [3]	Carlson & Vanderhaeghen [4]	Birse & McGovern [5]	Gorchtein Llanes-Estrada & Szczepaniak [6]	/	Peset & Pineda [8]
$\Delta E_{2S}^{(\mathrm{pol})}$	-12(2)	-11.5	-18.5	-7.4(2.4)	-8.5(1.1)	-15.3(5.6)	-8.2 ^{+2.0} _{-2.5}	-26.5

- Chiral EFT calculations
- Phenomenological determinations (dispersion relations+data)

Relativistic chiral EFT agrees with dispersive determinations!

^[1] K. Pachucki, Phys. Rev. A 60 (1999).

^[2] A. P. Martynenko, Phys. Atom. Nucl. 69 (2006).

^[3] D. Nevado and A. Pineda, Phys. Rev. C 77 (2008).

^[4] C. E. Carlson and M. Vanderhaeghen, Phys. Rev. A 84, (2011).

^[5] Birse and McGovern, EPJ A 48, (2012). Carlson & Vanderhaeghen, PRA 84 (2011)

^[6] M. Gorchtein, F. J. LLanes-Estrada and A. P. Szczepaniak, Phys. Rev. A 87 (2013).

^[7] J. M. Alarcón, V. Lensky, V. Pascalutsa, Eur. Phys. J. C 74 (2014).

^[8] C. Peset and A. Pineda Eur. Phys. J. A 51 (2015).

• Nucleon FFs parametrize the transition matrix elements of local operators between nucleon states.

- Nucleon FFs parametrize the transition matrix elements of local operators between nucleon states.
- Provide information about the nucleon internal structure.

- Nucleon FFs parametrize the transition matrix elements of local operators between nucleon states.
- Provide information about the nucleon internal structure.
- Can be related to the spatial distribution of the properties encoded in the operator (transverse densities) Moment of the GPD.

- Nucleon FFs parametrize the transition matrix elements of local operators between nucleon states.
- Provide information about the nucleon internal structure.
- Can be related to the spatial distribution of the properties encoded in the operator (transverse densities) Moment of the GPD.
- A deeper knowledge of the FFs is needed in order to understand the properties of the nucleon in terms of its QCD constituents.

- Nucleon FFs parametrize the transition matrix elements of local operators between nucleon states.
- Provide information about the nucleon internal structure.
- Can be related to the spatial distribution of the properties encoded in the operator (transverse densities) Moment of the GPD.
- A deeper knowledge of the FFs is needed in order to understand the properties of the nucleon in terms of its QCD constituents.
- Scalar FF:

- Nucleon FFs parametrize the transition matrix elements of local operators between nucleon states.
- Provide information about the nucleon internal structure.
- Can be related to the spatial distribution of the properties encoded in the operator (transverse densities) Moment of the GPD.
- A deeper knowledge of the FFs is needed in order to understand the properties of the nucleon in terms of its QCD constituents.
- Scalar FF:
 - Encodes the response of the nucleon under scalar probes.
 - Essential input in EFT of DM detection. [Bishara, et al., JCAP 1702 (2017)]

- Nucleon FFs parametrize the transition matrix elements of local operators between nucleon states.
- Provide information about the nucleon internal structure.
- Can be related to the spatial distribution of the properties encoded in the operator (transverse densities) Moment of the GPD.
- A deeper knowledge of the FFs is needed in order to understand the properties of the nucleon in terms of its QCD constituents.
- Scalar FF:
 - Encodes the response of the nucleon under scalar probes.
 - Essential input in EFT of DM detection. [Bishara, et al., JCAP 1702 (2017)]
- Electromagetic FF:

- Nucleon FFs parametrize the transition matrix elements of local operators between nucleon states.
- Provide information about the nucleon internal structure.
- Can be related to the spatial distribution of the properties encoded in the operator (transverse densities) Moment of the GPD.
- A deeper knowledge of the FFs is needed in order to understand the properties of the nucleon in terms of its QCD constituents.
- Scalar FF:
 - Encodes the response of the nucleon under scalar probes.
 - Essential input in EFT of DM detection. [Bishara, et al., JCAP 1702 (2017)]
- Electromagetic FF:
 - Encodes the response of the nucleon under electromagnetic probes.
 - Important to understand and solve the "Proton Radius Puzzle".

• ChEFT shows important limitations in calculating some interesting quantities like Form Factors.

- ChEFT shows important limitations in calculating some interesting quantities like Form Factors.
- Non-perturbative pion dynamics play an essential role in the Q² dependence of the Form Factors.

- ChEFT shows important limitations in calculating some interesting quantities like Form Factors.
- Non-perturbative pion dynamics play an essential role in the Q² dependence of the Form Factors.

- ChEFT shows important limitations in calculating some interesting quantities like Form Factors.
- Non-perturbative pion dynamics play an essential role in the Q² dependence of the Form Factors.

- ChEFT shows important limitations in calculating some interesting quantities like Form Factors.
- Non-perturbative pion dynamics play an essential role in the Q² dependence of the Form Factors.

Higher order calculations become necessary —— Unpractical

$$\langle N(p',s')|J_{\mu}(0)|N(p,s)\rangle = \bar{u}(p',s')\Big[\gamma_{\mu}F_{1}(t) + \frac{i\sigma_{\mu\nu}q^{\nu}}{2m_{N}}F_{2}(t)\Big]u(p,s) \qquad J_{\mu}(x) \equiv \sum_{q=u,d,...} e_{q}\bar{q}(x)\gamma_{\mu}q(x)$$

$$\langle N(p',s')|J_{\mu}(0)|N(p,s)\rangle = \bar{u}(p',s')\Big[\gamma_{\mu}F_{1}(t) + \frac{i\sigma_{\mu\nu}q^{\nu}}{2m_{N}}F_{2}(t)\Big]u(p,s) \qquad J_{\mu}(x) \equiv \sum_{q=u,d,...} e_{q}\bar{q}(x)\gamma_{\mu}q(x)$$

$$G_E(t) = F_1(t) + \frac{t}{4m_N^2} F_2(t)$$
 $G_M(t) = F_1(t) + F_2(t)$ $G_{E,M}^{V,S} \equiv \frac{1}{2} (G_{E,M}^p \mp G_{E,M}^n)$

$$\langle N(p',s')|J_{\mu}(0)|N(p,s)\rangle = \bar{u}(p',s')\Big[\gamma_{\mu}F_{1}(t) + \frac{i\sigma_{\mu\nu}q^{\nu}}{2m_{N}}F_{2}(t)\Big]u(p,s) \qquad J_{\mu}(x) \equiv \sum_{q=u,d,...} e_{q}\bar{q}(x)\gamma_{\mu}q(x)$$

$$G_E(t) = F_1(t) + \frac{t}{4m_N^2} F_2(t)$$
 $G_M(t) = F_1(t) + F_2(t)$ $G_{E,M}^{V,S} \equiv \frac{1}{2} (G_{E,M}^p \mp G_{E,M}^n)$

 $\operatorname{Im} t$

 $\operatorname{Re} t$

$$\langle N(p',s')|J_{\mu}(0)|N(p,s)\rangle = \bar{u}(p',s')\Big[\gamma_{\mu}F_{1}(t) + \frac{i\sigma_{\mu\nu}q^{\nu}}{2m_{N}}F_{2}(t)\Big]u(p,s) \qquad J_{\mu}(x) \equiv \sum_{q=u,d,...} e_{q}\bar{q}(x)\gamma_{\mu}q(x)$$

$$G_E(t) = F_1(t) + \frac{t}{4m_N^2} F_2(t)$$
 $G_M(t) = F_1(t) + F_2(t)$ $G_{E,M}^{V,S} \equiv \frac{1}{2} (G_{E,M}^p \mp G_{E,M}^n)$

 $\operatorname{Im} t$

Space-like region (t < 0)

 $\operatorname{Re} t$

$$\langle N(p',s')|J_{\mu}(0)|N(p,s)\rangle = \bar{u}(p',s')\Big[\gamma_{\mu}F_1(t) + \frac{i\sigma_{\mu\nu}q^{\nu}}{2m_N}F_2(t)\Big]u(p,s) \qquad J_{\mu}(x) \equiv \sum_{q=u,d,\dots} e_q\bar{q}(x)\gamma_{\mu}q(x)$$

$$G_E(t) = F_1(t) + \frac{t}{4m_N^2} F_2(t)$$
 $G_M(t) = F_1(t) + F_2(t)$ $G_{E,M}^{V,S} \equiv \frac{1}{2} (G_{E,M}^p \mp G_{E,M}^n)$

 $\operatorname{Im} t$

Space-like region (t < 0)

 $\operatorname{Re} t$

Time-like region (t > 0)

$$\operatorname{Im} G_{E,M} \propto \sum_{h} \int d\Pi_{h} \ M(\gamma^{*} \to h) M(h \to \bar{N}N)$$

$$\operatorname{Im} G_{E,M} \propto \sum_{h} \int d\Pi_{h} \ M(\gamma^{*} \to h) M(h \to \bar{N}N)$$

$$\operatorname{Im} G_{E,M} \propto \sum_{h} \int d\Pi_{h} \ M(\gamma^{*} \to h) M(h \to \bar{N}N)$$

$$\operatorname{Im} G_{E,M} \propto \sum_{h} \int d\Pi_{h} \ M(\gamma^{*} \to h) M(h \to \bar{N}N)$$

$$\operatorname{Im} G_{E,M} \propto \sum_{h} \int d\Pi_{h} \ M(\gamma^{*} \to h) M(h \to \bar{N}N)$$

$$\operatorname{Im} G_{E,M} \propto \sum_{h} \int d\Pi_{h} \ M(\gamma^{*} \to h) M(h \to \bar{N}N)$$

$$\operatorname{Im} G_{E,M} \propto \sum_{h} \int d\Pi_{h} \ M(\gamma^{*} \to h) M(h \to \bar{N}N)$$

$$\operatorname{Im} G_{\{E,M\}}^{V}(t) = \frac{k_{cm}^{3}}{\{m_{N}, \sqrt{2}\}\sqrt{t}} F_{\pi}^{*}(t) f_{\pm}^{1}(t)$$

$$\operatorname{Im} G_{E,M} \propto \sum_{h} \int d\Pi_{h} \ M(\gamma^{*} \to h) M(h \to \bar{N}N)$$

$$Im G_M^V(t) = \frac{k_{cm}^3}{\sqrt{2t}} F_{\pi}^*(t) f_{-}^1(t)$$

$$\mathrm{Im}G^{V}_{\{E,M\}}(t)=\frac{k_{cm}^{3}}{\{m_{N},\sqrt{2}\}\sqrt{t}}F_{\pi}^{*}(t)f_{\pm}^{1}(t)$$
 Non-Perturbative

From unitarity + analyticity

$$\operatorname{Im} G_{E,M} \propto \sum_{h} \int d\Pi_{h} \ M(\gamma^{*} \to h) M(h \to \bar{N}N)$$

$$\gamma * \bigvee F_{\pi} \underbrace{f_{\pm}^{1}}_{N} \underbrace{f_{\bar{N}}^{1}}$$

$$\operatorname{Im} G_E^V(t) = \frac{k_{cm}^3}{m_N \sqrt{t}} F_{\pi}^*(t) f_+^1(t)$$
$$\operatorname{Im} G_M^V(t) = \frac{k_{cm}^3}{\sqrt{2t}} F_{\pi}^*(t) f_-^1(t)$$

[Frazer and Fulco, Phys. Rev. 117, 1609 (1960)]

$$\operatorname{Im} G^{V}_{\{E,M\}}(t) = \frac{k_{cm}^{3}}{\{m_{N},\sqrt{2}\}\sqrt{t}} F^{*}_{\pi}(t) f^{1}_{\pm}(t) \longrightarrow \operatorname{Im} G^{V}_{\{E,M\}}(t) = \frac{k_{cm}^{3}}{\{m_{N},\sqrt{2}\}\sqrt{t}} |F_{\pi}(t)|^{2} \frac{f^{1}_{\pm}(t)}{F_{\pi}(t)}$$

$$\operatorname{Non-Perturbative}$$

From unitarity + analyticity

$$\operatorname{Im} G_{E,M} \propto \sum_{h} \int d\Pi_{h} \ M(\gamma^{*} \to h) M(h \to \bar{N}N)$$

$$\operatorname{Im} G_E^V(t) = \frac{k_{cm}^3}{m_N \sqrt{t}} F_{\pi}^*(t) f_+^1(t)$$
$$\operatorname{Im} G_M^V(t) = \frac{k_{cm}^3}{\sqrt{2t}} F_{\pi}^*(t) f_-^1(t)$$

[Frazer and Fulco, Phys. Rev. 117, 1609 (1960)]

$$\operatorname{Im} G_{\{E,M\}}^{V}(t) = \frac{k_{cm}^{3}}{\{m_{N},\sqrt{2}\}\sqrt{t}} F_{\pi}^{*}(t) f_{\pm}^{1}(t) \longrightarrow \operatorname{Im} G_{\{E,M\}}^{V}(t) = \frac{k_{cm}^{3}}{\{m_{N},\sqrt{2}\}\sqrt{t}} |F_{\pi}(t)|^{2} \frac{f_{\pm}^{1}(t)}{F_{\pi}(t)} J_{\pm}^{1}$$

Non-Perturbative

From unitarity + analyticity

$$\operatorname{Im} G_{E,M} \propto \sum_{h} \int d\Pi_{h} \ M(\gamma^{*} \to h) M(h \to \bar{N}N)$$

$$\gamma * \bigvee F_{\pi} \underbrace{f_{\pm}^{1}}_{N} \underbrace{f_{\bar{N}}^{1}}$$

$$\operatorname{Im} G_E^V(t) = \frac{k_{cm}^3}{m_N \sqrt{t}} F_{\pi}^*(t) f_+^1(t)$$
$$\operatorname{Im} G_M^V(t) = \frac{k_{cm}^3}{\sqrt{2t}} F_{\pi}^*(t) f_-^1(t)$$

[Frazer and Fulco, Phys. Rev. 117, 1609 (1960)]

$$\operatorname{Im} G^{V}_{\{E,M\}}(t) = \frac{k_{cm}^{3}}{\{m_{N},\sqrt{2}\}\sqrt{t}} F^{*}_{\pi}(t) f^{1}_{\pm}(t) \longrightarrow \operatorname{Im} G^{V}_{\{E,M\}}(t) = \frac{k_{cm}^{3}}{\{m_{N},\sqrt{2}\}\sqrt{t}} |F_{\pi}(t)|^{2} f^{1}_{\pm}(t) J^{1}_{\pm}$$

$$\operatorname{Non-Perturbative}$$

Perturbative

From unitarity + analyticity

$$\operatorname{Im} G_{E,M} \propto \sum_{h} \int d\Pi_{h} \ M(\gamma^{*} \to h) M(h \to \bar{N}N)$$

$$\gamma * \bigvee F_{\pi} \underbrace{f_{\pm}^{1}}_{N} \underbrace{f_{\bar{N}}^{1}}$$

$$\operatorname{Im} G_E^V(t) = \frac{k_{cm}^3}{m_N \sqrt{t}} F_{\pi}^*(t) f_+^1(t)$$
$$\operatorname{Im} G_M^V(t) = \frac{k_{cm}^3}{\sqrt{2t}} F_{\pi}^*(t) f_-^1(t)$$

[Frazer and Fulco, Phys. Rev. 117, 1609 (1960)]

$$\operatorname{Im} G^{V}_{\{E,M\}}(t) = \frac{k_{cm}^{3}}{\{m_{N},\sqrt{2}\}\sqrt{t}} F^{*}_{\pi}(t) f^{1}_{\pm}(t) \longrightarrow \operatorname{Im} G^{V}_{\{E,M\}}(t) = \frac{k_{cm}^{3}}{\{m_{N},\sqrt{2}\}\sqrt{t}} F^{1}_{\pi}(t) f^{1}_{\pm}(t) \int_{\mathbb{T}_{\pi}(t)}^{1} f^{1}_{\pm$$

$DI\chi EFT$

$$\operatorname{Im} G_E^V(t) = \frac{k_{cm}^3}{m_N \sqrt{t}} |F_{\pi}(t)|^2 J_+^1(t) \qquad \operatorname{Im} G_M^V(t) = \frac{k_{cm}^3}{\sqrt{2t}} |F_{\pi}(t)|^2 J_-^1(t)$$

$DI\chi EFT$

$${\rm Im} G_E^V(t) = \frac{k_{cm}^3}{m_N \sqrt{t}} |F_\pi(t)|^2 J_+^1(t) \qquad {\rm Im} G_M^V(t) = \frac{k_{cm}^3}{\sqrt{2t}} |F_\pi(t)|^2 J_-^1(t)$$
 ChEFT

$$\operatorname{Im} G_E^V(t) = \frac{k_{cm}^3}{m_N \sqrt{t}} F_\pi(t) |^2 J_+^1(t)$$

$$\operatorname{ChEFT}$$

$$\operatorname{Im} G_E^V(t) = \frac{k_{cm}^3}{m_N \sqrt{t}} \underbrace{F_\pi(t)|^2 J_+^1(t)}_{\text{ChEFT}} \qquad \operatorname{Im} G_M^V(t) = \frac{k_{cm}^3}{\sqrt{2t}} \underbrace{F_\pi(t)|^2 J_-^1(t)}_{\text{ChEFT}}$$

$DI\chi EFT$

$$\mathrm{Im} G_E^V(t) = \frac{k_{cm}^3}{m_N \sqrt{t}} \underbrace{F_\pi(t)|^2 J_+^1(t)}_{\mathrm{ChEFT}} \qquad \mathrm{Im} G_M^V(t) = \frac{k_{cm}^3}{\sqrt{2t}} \underbrace{F_\pi(t)|^2 J_-^1(t)}_{\mathrm{ChEFT}}$$

[J. M. Alarcón, C. Weiss, PLB 784 (2018)]

[1] Belushkin, Hammer and Meißner, PRC 75 (2007) [2] Hoferichter, Kubis, Ruiz de Elvira, Hammer, Meißner EPJA 52 (2016)

• To compute the EM form factors of proton and neutron, we need the isoscalar component as well.

- To compute the EM form factors of proton and neutron, we need the isoscalar component as well.
- One cannot apply the same approach as in the isovector case.

- To compute the EM form factors of proton and neutron, we need the isoscalar component as well.
- One cannot apply the same approach as in the isovector case.
- We parametrize the isoscalar spectral function through the ω exchange in the narrow with approximation + higher mass pole P_S .

- To compute the EM form factors of proton and neutron, we need the isoscalar component as well.
- One cannot apply the same approach as in the isovector case.
- We parametrize the isoscalar spectral function through the ω exchange in the narrow with approximation + higher mass pole P_S .

$$\operatorname{Im} G_{E,M}^{S} = -\pi \sum_{V=\omega, P_{S}} a_{i}^{E,M} \delta(t - M_{i}^{2})$$

- To compute the EM form factors of proton and neutron, we need the isoscalar component as well.
- One cannot apply the same approach as in the isovector case.
- We parametrize the isoscalar spectral function through the ω exchange in the narrow with approximation + higher mass pole P_S .

$$\operatorname{Im} G_{E,M}^{S} = -\pi \sum_{V=\omega, P_{S}} a_{i}^{E,M} \delta(t - M_{i}^{2})$$

• We fix the couplings by imposing the charge and radii sum rules:

$$G_{E,M}^{S}(0) = \frac{1}{\pi} \int_{4M_{\pi}^{2}}^{\infty} dt' \frac{\text{Im}G_{i}^{S}(t')}{t'}$$

$$\langle r_{E,M}^2 \rangle^S = \frac{6}{\pi} \int_{4M_\pi^2}^{\infty} dt' \frac{\operatorname{Im} G_{E,M}^S(t')}{t'^2}$$

• Reconstructing the form factors with $G_{E,M}^{p,n}(t) = \frac{1}{\pi} \int_{4M_{\pi}^2}^{\infty} dt' \frac{\mathrm{Im} G_{E,M}^{p,n}(t')}{t'-t-i0^+}$

• Reconstructing the form factors with $G_{E,M}^{p,n}(t) = \frac{1}{\pi} \int_{4M_{\pi}^2}^{\infty} dt' \frac{\mathrm{Im} G_{E,M}^{p,n}(t')}{t'-t-i0^+}$

[J. M. Alarcón, D. W. Higinbotham, C. Weiss and Z. Ye, Phys. Rev. C99 (2019)]

$$\chi^{2}(r_{E}^{p}) \equiv N^{-1} \sum_{\text{bins } i} \frac{(\text{thy}_{i} - \text{fit}_{i})^{2}}{(\Delta \text{thy}_{i})^{2} + (\Delta \text{fit}_{i})^{2}}$$

$$\{ \text{thy}_i \equiv G_E^p(Q_i^2) \text{ [DI}\chi \text{EFT, given } r_E^p],$$
$$\text{fit}_i \equiv G_E^p(Q_i^2) \text{ [global fit, given } r_E^p] \}$$

$$r_E^p = 0.844(7) \text{ fm}$$

[J. M. Alarcón, D. W. Higinbotham, C. Weiss and Z. Ye, Phys.Rev. C99 (2019)]

Summary and Conclusions

Summary and Conclusions

- Chiral EFT is a useful tool to investigate hadronic processes at low energies from first principles.
- It provided important hadronic input for searches of physics beyond the standard model:
 - Dark Matter searches: $\sigma_{\pi N}$, t-dependence of the scalar FF ($Dl\chi EFT$).
 - Proton Radius Puzzle: ΔE_{2P-2S} , moments of the EM FF (DIXEFT), Proton radius from e^-p agrees with $\mu H \longrightarrow r_E^p = 0.844(7)$ fm
- Insights into the origin of mass:

	$\frac{1}{2m_N}\langle N \hat{m}(\bar{u}u+\bar{d}d) N\rangle$	$\frac{1}{2m_N}\langle N m_s\bar{s}s N\rangle$	$\frac{1}{2m_N}\langle N \frac{\beta}{2g}G_a^{\mu\nu}G_{\mu\nu}^a+\dots N\rangle$
$\overline{m_p}$	59(7) MeV	16(80) MeV	864(87) MeV
%	6.3(7)%	1.7(8.5)%	92.0(9.3)%

• Prominent role in the solution of current and future challenges in hadron and nuclear physics.

FIN

Spares

Fits to PWAs

Fits to PWAs

Fits to KA85

[Alarcón, Martin Camalich and Oller, Ann. of Phys. 336 (2013)]

Fits to PWAs

Fits to EM06

[Alarcón, Martin Camalich and Oller, Ann. of Phys. 336 (2013)]

Consecuences of $\sigma_{\pi N}$ for nuclear matter

Consecuences of $\sigma_{\pi N}$ for nuclear matter

$$\langle \Omega | \bar{q}q | \Omega \rangle = \langle 0 | \bar{q}q | 0 \rangle \left(1 - \frac{\sigma_{\pi N}}{M_{\pi}^2 f_{\pi}^2} \rho + \dots \right)$$

 \bullet Restoration of chiral symmetry requires a zero temporal component of f

$$f_t = f_\pi \left\{ 1 + \frac{2\rho}{f^2} \left(c_2 + c_3 - \frac{g_A^2}{8m_N} \right) \right\}$$

 σ_0

[Gasser, Annals of Phys. 136, 62 (1981)]

- This plot is for $m_0 = 750$ MeV, which is equivalent to fix b_0 .
- Gasser points out that the natural choice is $\Lambda=1~{\rm GeV}$ because corresponds to the axial vector form factor fit given by Sehgal [Sehgal, "Proceedings"]

of the International Conference on High Energy Physics"].

• He finally takes $\Lambda=700~{
m MeV}$ because for $\Lambda=1~{
m GeV}$ the mass shift of the nucleon due to massless pions is $-200~{
m MeV}$ while for $\Lambda=700~{
m MeV}$ is $-90~{
m MeV}$.

Comparison with HB

	Octet $\mathcal{O}(p^3)$		Octet+Decuplet $\mathcal{O}(p^3)$		
	HB	Cov.	HB	Cov.	
$\sigma_0 \; ({ m MeV})$	58(23)	46(8)	89(23)	58(8)	

Subthreshold region

Subthreshold region

• The disagreement found in [Becher and Leutwyler, JHEP (2001)] is related to the disagreement in the subthreshold expansion.

$$T(\nu,t) = \bar{u}\Big(D(\nu,t) - \frac{1}{4m_N}B(\nu,t)[\not q,\not q']\Big)u \qquad \bar{D}^+(\nu,t) = d_{00}^+ + d_{01}^+ t + d_{10}^+ \nu^2 + d_{02}^+ t^2 + \dots \quad \bar{B}^+(\nu,t) = b_{00}^+ \nu + \dots \\ \bar{D}^-(\nu,t) = d_{00}^- \nu + d_{01}^- \nu t + d_{10}^- \nu^3 + \dots \quad \bar{B}^-(\nu,t) = b_{00}^- + \dots$$

	KA85	WI08 Д∕ -ChPT	EM06	KA85 Δ-ChPT	WI08 Δ-ChPT	EM06 Δ-ChPT	KA85 [50]	WI08 [4]
$d_{00}^+ (M_{\pi}^{-1})$	-2.02(41)	-1.65(28)	-1.56(5)	-1.48(15)	-1.20(13)	-0.98(4)	-1.46	-1.30
$d_{01}^{+}(M_{\pi}^{-3})$	1.73(19)	1.70(18)	1.64(4)	1.21(10)	1.20(9)	1.09(4)	1.14	1.19
$d_{10}^{+}(M_{\pi}^{-3})$	1.81(16)	1.60(18)	1.532(45)	0.99(14)	0.82(9)	0.631(42)	1.12(2)	_
$d_{02}^{+}(M_{\pi}^{-5})$	0.021(6)	0.021(6)	0.021(6)	0.004(6)	0.005(6)	0.004(6)	0.036	0.037
$b_{00}^{+2} (M_{\pi}^{-3})$	-6.5(2.4)	-7.4(2.3)	-7.01(1.1)	-5.1(1.7)	-5.1(1.7)	-4.5(9)	-3.54(6)	_
$d_{00}^{-1}(M_{\pi}^{-2})$	1.81(24)	1.68(16)	1.495(28)	1.63(9)	1.53(8)	1.379(8)	1.53(2)	_
$d_{01}^{-1}(M_{\pi}^{-4})$	-0.17(6)	-0.20(5)	-0.199(7)	-0.112(25)	-0.115(24)	-0.0923(11)	-0.134(5)	_
$d_{10}^{-1}(M_{\pi}^{-4})$	-0.35(10)	-0.33(10)	-0.267(14)	-0.18(5)	-0.16(5)	-0.0892(41)	-0.167(5)	_
$b_{00}^{-10} (M_{\pi}^{-2})$	17(7)	17(7)	16.8(7)	9.63(30)	9.755(42)	8.67(8)	10.36(10)	_

[Alarcón, Martin Camalich and Oller, Ann. of Phys. 336 (2013)]

Agreement with the dispersive results!

• CD theorem:
$$\Sigma \equiv f_\pi^2 \bar{D}^+(0,2M_\pi^2) = \sigma(t=2M_\pi^2) + \Delta_R = \sigma_{\pi N}$$
 Underestimated in ~10 MeV
$$\Sigma = f_\pi^2 (d_{00}^+ + 2M_\pi^2 d_{01}^+) + f_\pi^2 (4M_\pi^4 d_{02}^+ + \dots) \qquad \sigma_{\pi N} = \Sigma_d + \Delta_D - \Delta_\sigma - \Delta_R$$
 Remains small
$$\Delta_D - \Delta_\sigma = -3.3(2) \text{ MeV (disp.)} \longleftrightarrow \Delta_D^{(3)} - \Delta_\sigma^{(3)} = -3.5(2.0) \text{ MeV (O(p^3) ChEFT)}$$

The sigma-term puzzle

The sigma-term puzzle

• Phenomenological extractions rely on two different sources:

πN-scattering data

- •Inconsistent data base $(\pi^{\pm}N \to \pi^{\pm}N \text{ vs CEX reactions})$
- Coulomb [Tromborg, Waldenstrom and Overbo, PRD 15 (1977)].

π-atom spectroscopy

- Experimental uncertainties negligible compared to theoretical error relating (ϵ, Γ) to a^{\pm} .
- $\bullet \pi D$ scattering, isospin violation, Coulomb...

What can be done?

- Analysis of the πN world data base.
- Reanalysis of Coulomb corrections.
- ullet Reanalysis of extraction of SL through ullet and Γ .