JLab Cake seminars

Phenomenological analysis of 3D nucleon structure

Filippo Delcarro

Jefferson Lab

Introduction to phenomenology of TMDs
'Extraction of partonic unpolarized TMDs: global fit
'Relation between experimental observables and TMDs

- Our choices for parametrization
- Overview of experiments and data considered
-Results and comparisons
'Extractions of Sivers function
'Relation between Sivers distribution and unpolarized TMDs
-Data considered
'Results
'Outlook

Investigating nucleon internal structure

Test what we know about QCD
\rightarrow perturbative and lattice

Measure what we don't know about QCD
\rightarrow extraction from data

Momentum and Position: how partons move inside the nucleon and distribution dependence on x

Flavor: how different flavors affect partonic distributions.

Spin: correlation between parton movement (OAM) and overall nucleon properties (missing spin budget).

Information summarized as
Parton Distribution
Function

1D picture of the nucleon: PDF

collinear

Parton Distribution Function \rightarrow
one dimensional probability density

Longitudinal momentum

$$
k^{+}=x P^{+}
$$

3Dimensional structure

Considers also transverse momentum k_{\perp}

Longitudinal momentum $k^{+}=x P^{+}$

Transverse Momentum Distributions

quark polarization

		U	L	T
nucleon polarization	U	f_{1}		h_{1}^{\perp}
	L		$g_{1 L}$	$h_{1 L}^{\perp}$
	T	$f_{1 T}^{\perp}$	$g_{1 T}$	$h_{1}, h_{1 T}^{\perp}$

Twist-2 TMDs

Transverse Momentum Distributions

quark polarization

| nucleon
 polarization U L
 U f_{1}
 $h_{1 L}^{\perp}$
 L $h_{1 L}^{\perp}$
 T $f_{1 T}^{\perp}$
 $n_{1 T}$ $h_{1}, h_{1 T}^{\perp}$ l |
| :---: | :---: | :---: | :---: | :---: |

Unpolarized Longitudinal Transverse

Momentum direction perp. screen

Transverse Momentum Distributions

Unpolarized

$\stackrel{i}{2}$	quark pol.			
		U	L	T
	U	(f_{1}		h_{1}^{\perp}
\%	L		$g_{1 L}$	$h_{1 L}^{\perp}$
In	T	(f_{17}^{\perp}	$g_{1 T}$	$h_{1}, h_{1 T}^{\perp}$

TMD Parton Distribution Functions

quark pol.

Unpolarized		U	L	T
$\dot{8}$	U	$\left(f_{1}\right)$		h_{1}^{\perp}
Ö	L		$g_{1 L}$	$h_{1 L}^{\perp}$
-	T	$f_{1 T}^{\perp}$	$g_{1 T}$	$h_{1}, h_{1 T}^{\perp}$

dependence on:
longitudinal momentum fraction \boldsymbol{X} transverse momentum k_{\perp} energy scale

TMD Parton Distribution Functions

quark pol.

Unpolarized		U	L	T
$\dot{8}$	U	(f_{1}		h_{1}^{\perp}
\%	L		$g_{1 L}$	$h_{1 L}^{\perp}$
O	T	$f_{\frac{1}{1 T}}^{\perp}$	$g_{1 T}$	$h_{1}, h_{1 T}^{\perp}$

Why study unpolarized TMDs?
Nucleon tomography High-energy phenomenology
Necessary to describe polarized processes

Nucleon tomography

High-energy phenomenology

Necessary to describe also polarized processes

Open questions :

1. What is the functional form of TMDs at low transverse momentum ? And their kinematic and flavor dependence?
2. How can we separate the descriptions at low and high transverse momenta?
3. How can we match TMD and collinear factorization ?
4. Can we test the generalized universality of TMDs ?
5. Can we perform a global fit of TMDs ?

Extraction from SIDIS \& Drell-Yan

Drell-Yan / Z production

$A+B \rightarrow \gamma^{*} / Z \rightarrow l^{+} l^{-}$

Extraction from SIDIS \& Drell-Yan

Drell-Yan / Z production

$$
A+B \rightarrow \gamma^{*} / Z \rightarrow l^{+} l^{-}
$$

Extraction from SIDIS \& Drell-Yan

Semi-inclusive Deep Inelastic Scattering

Extraction from SIDIS \& Drell-Yan

Semi-inclusive Deep Inelastic Scattering

quark polarization

TMD Fragmentation Functions

(TMD FFs)

longitudinal momentum fraction \mathbf{Z}
dependence on: transverse momentum \boldsymbol{P}_{\perp}
energy scale

Extraction from SIDIS \& Drell-Yan

universality

Structure functions and TMDs: SIDIS

multiplicities

$m_{N}^{h}\left(x, z, \boldsymbol{P}_{h T}^{2}, Q^{2}\right)=\frac{d \sigma_{N}^{h} /\left(d x d z d \boldsymbol{P}_{h T}^{2} d Q^{2}\right)}{d \sigma_{D I S} /\left(d x d Q^{2}\right)} \approx \frac{\pi F_{U U, T}\left(x, z, \boldsymbol{P}_{h T}^{2}, Q^{2}\right)}{F_{T}\left(x, Q^{2}\right)}$

Structure functions and TMDs

multiplicities

$m_{N}^{h}\left(x, z, \boldsymbol{P}_{h T}^{2}, Q^{2}\right)=\frac{d \sigma_{N}^{h} /\left(d x d z d \boldsymbol{P}_{h T}^{2} d Q^{2}\right)}{d \sigma_{D I S} /\left(d x d Q^{2}\right)} \approx \frac{\pi F_{U U, T}\left(x, z, \boldsymbol{P}_{h T}^{2}, Q^{2}\right)}{F_{T}\left(x, Q^{2}\right)}$

TMD factorization

$$
\begin{aligned}
F_{U U, T}\left(x, z, \boldsymbol{P}_{h T}^{2}, Q^{2}\right)=\sum_{a} & \mathscr{H}^{a}\left(Q^{2}\right) x \int d^{2} \boldsymbol{k}_{\perp} d^{2} \boldsymbol{P}_{\perp} f_{1}^{a}\left(x, \boldsymbol{k}_{\perp}^{2} ; Q^{2}\right) D_{1}^{a \rightarrow h}\left(z, \boldsymbol{P}_{\perp}^{2} ; Q^{2}\right) \\
& \times \delta^{2}\left(z \boldsymbol{k}_{\perp}-\boldsymbol{P}_{h T}+\boldsymbol{P}_{\perp}\right)+Y_{U U, T}\left(Q^{2}, \boldsymbol{P}_{h T}^{2}\right)+\mathcal{O}\left(M^{2} / Q^{2}\right)
\end{aligned}
$$

Structure functions and TMDs

At our accuracy level:
Leading Order (expansion in α_{S})
Next-to Leading Log (corrections in $\alpha_{S l} \log \left(z^{2} Q^{2} / P_{h T}^{2}\right)$)

$$
\begin{gathered}
\simeq \mathcal{O}\left(\alpha_{s}^{0}\right) \\
F_{U U, T}\left(x, z, \boldsymbol{P}_{h T}^{2}, Q^{2}\right)=\sum_{a} \mathscr{H}^{a}\left(Q^{2}\right) x \int d^{2} \boldsymbol{k}_{\perp} d^{2} \boldsymbol{P}_{\perp} f_{1}^{a}\left(x, \boldsymbol{k}_{\perp}^{2} ; Q^{2}\right) D_{1}^{a \rightarrow h}\left(z, \boldsymbol{P}_{\perp}^{2} ; Q^{2}\right) \\
\times \delta^{2}\left(z \boldsymbol{k}_{\perp}-\boldsymbol{P}_{h T}+\boldsymbol{P}_{\perp}\right)+Y_{U U, T}\left(Q^{2}, \boldsymbol{P}_{h T}^{2}\right)+\mathcal{O}\left(M^{2} / Q^{2}\right) \\
\simeq 0
\end{gathered}
$$

Structure functions and TMDs

HERMES, $\mathrm{Q} \approx 1.5 \mathrm{GeV}$

reproduce shift of
TMD peak with energy scale

Aaltonen et al., PRD86 (2012)

Width of TMDs changes of one order of magnitude \rightarrow EVOLUTION

Evolved TMDs

Fourier transform: ६T space

CSS formalism

Evolved TMDs

Fourier transform: ६T space

Non-perturbative contributions have to be extracted from experimental data, after parametrization

Model: non perturbative elements

input TMD PDF @ Q ${ }^{2}=1 \mathrm{GeV}^{2}$

$$
\tilde{f}_{N P}^{a}=\mathcal{F} . \mathcal{T} \text {. of }
$$

sum of two different gaussians
with kinematic dependence on transverse momenta

$$
g_{1}(x)=N_{1} \frac{(1-x)^{\alpha} x^{\sigma}}{(1-\hat{x})^{\alpha} \hat{x}^{\sigma}}
$$

$$
\begin{gathered}
N_{1} \equiv g_{1}(\hat{x}) \\
\hat{x}=0.1
\end{gathered}
$$

Model: non perturbative elements

 input TMD PDF @ $Q^{2}=1 \mathrm{GeV}^{2}$
sum of two different gaussians with kinematic dependence on transverse momenta

For the FF we use two different variances: $\quad g_{3}(z), g_{4}(z)$

Model: non perturbative elements

Free parameters

$$
\begin{aligned}
& N_{1}, \alpha, \sigma, \lambda 4 \text { for TMD PDF } \\
& 6 \text { for TMD FF }
\end{aligned}
$$

$$
g_{K}=-g_{2} \frac{\xi_{T}^{2}}{2}
$$

1 for NP contribution to TMD evolution

Total: 11 parameters

Evolution and ξ r regions

$$
\begin{aligned}
& \mu_{b}=2 e^{-\gamma_{E}} / \bar{\xi}_{*} \\
& \bar{\xi}_{*}\left(\xi_{T}, \xi_{\min }, \xi_{\max }\right)=\xi_{\max }\left[\frac{1-\exp \left(\xi_{T}^{4} / \xi_{\max }^{4}\right)}{1-\exp \left(\xi_{T}^{4} / \xi_{\min }^{4}\right)}\right]^{1 / 4}
\end{aligned}
$$

$$
\begin{aligned}
\xi_{\max } & =2 e^{-\gamma_{E}} \\
\xi_{\text {min }} & =2 e^{-\gamma_{E}} / Q
\end{aligned}
$$

alternative notation: b_{T}

Experimental data

SIDIS $\mu \mathrm{N}$
6252
data points

Total: 8059 data

Z Production

90
data points

Data selection and analysis

$\mathrm{Q} 2>1.4 \mathrm{GeV}^{2}$ $0.2<\mathrm{z}<0.7$
$\mathrm{P}_{\mathrm{hT}}, \mathrm{q}_{\mathrm{T}}<\operatorname{Min}[0.2 \mathrm{Q}, 0.7 \mathrm{Qz}]+0.5 \mathrm{GeV}$

Motivations behind kinematical cuts

TMD factorization ($\mathrm{Ph}_{\mathrm{T}} / \mathrm{z} \ll \mathrm{Q}^{2}$)
Avoid target fragmentation (low z) and exclusive contributions (high z)

Data regions

Data regions

An almost global fit

	Framework	HERMES	COMPASS	DY	Z production	N of points
Pavia 2017 (+ JLab)	LO-NLL	\vee	\vee	\checkmark	\vee	8059

Summary of results

[JHEP06(20I7)08I]

Total number of data points: 8059
Total number of free parameters: 11
$\rightarrow 4$ for TMD PDFs $\rightarrow 6$ for TMD FFs
$\rightarrow 1$ for TMD evolution

$$
\chi^{2} / d . o f .=1.55 \pm 0.05
$$

Replica Methodology

a)Example of original data (two bins)
b)Data are replicated with Gaussian noise
c) The fit is performed on the replicated data
d) The procedure is repeated 200 times
e)For each point a 68\% confidence level is identified
f) These point connects to create a 68% C.L. band

COMPASS data SIDIS h^{+}

Observable
to avoid known problems with Compass data normalization:
|

Drell-Yan data

Q2 Evolution: The peak is now at about 1 GeV , it was at 0.4 GeV for SIDIS

Z-boson production data

$\chi^{2} /$ dof $\quad 1.36$
1.11
2.00
1.73

Q2 Evolution: The peak is now at about 4 GeV
8

Best fit value: transverse momenta

管Bacchetta, Delcarro, Pisano, Radici, Signori JHEP06(2017)081 Signori, Bacchetta, Radici, Schnell arXiv:1309.3507
Schweitzer, Teckentrup, Metz, arXiv:1003.2190
Anselmino et al. arXiv:1312.6261 [HERMES]
Anselmino et al. arXiv:1312.6261 [HERMES, high z]
Anselmino et al. arXiv:1312.6261 [COMPASS, norm.]
Anselmino et al. arXiv:1312.6261 [COMPASS, high z, norm.]
Echevarria, Idilbi, Kang, Vitev arXiv:1401.5078 (Q = 1.5 GeV)

Red/orange regions: 68\% CL from replica method Inclusion of DY/Z diminishes the correlation
Inclusion of Compass increases the $\left\langle P_{\perp}^{2}\right\rangle$ and reduces its spread e+e- would further reduce the correlation

Stability of our results

Test of our default choices

How does the χ^{2} of a single replica change if we modify them?

Original $\chi^{2} /$ dof $=1.51$
Normalization of HERMES data as done for COMPASS:
$X^{2} / \mathrm{dof}=1.27$
Parametrizations for collinear PDFs
(NLO GJR 2008 default choice):
NLO MSTW 2008 (1.84), NLO CJ12 (1.85)
More stringent cuts
(TMD factorization better under control) $\chi^{2} /$ dof $\rightarrow 1$
Ex: Q2 $>1.5 \mathrm{GeV}^{2} ; 0.25<\mathrm{z}<0.6 ; \mathrm{PhT}<0.2 \mathrm{Qz} \Rightarrow x^{2} / \mathrm{dof}=1.02$ (477 bins)

Visualization of TMDs: PDF 3D structure

$\mathrm{f}_{1}\left(\mathrm{x}, \mathrm{k}_{\perp}^{2} ; 1 \mathrm{GeV}^{2}\right)$

$f_{1}\left(x, k_{\perp}^{2} ; 1 \mathrm{GeV}^{2}\right)$

Visualization of TMDs: PDF 3D structure

Visualization of TMDs: FF 3D structure
TMD Fragmentation Function

$$
\mathrm{D}_{1}\left(\mathrm{z}, \mathrm{P}_{\perp}^{2} ; 1 \mathrm{GeV}^{2}\right)
$$

0.2

Replica 105
$\mathrm{Q}^{2}=1 \mathrm{GeV}$

Momentum space

Transverse Momentum Distributions

Unpolarized

\rightarrow number density of unpolarized partons inside a transversely polarized nucleon

\rightarrow nucleon with transverse or longitudinal spin
\bigcirc (\bigcirc parton with transverse or longitudinal spin
parton transverse momentum

Spin and quark motion correlation: SSA

scattering of transversely polarized proton off an unpolarized proton or electron

The asymmetry is defined as

$$
A_{N}\left(x_{F}, k_{\perp}\right) \equiv \frac{L-R}{L+R}=\frac{\sigma_{\uparrow}-\sigma_{\downarrow}}{\sigma_{\uparrow}+\sigma_{\downarrow}}
$$

positive A_{N} means that for upward polarization, the pions tend to go to the left.

Phenomenology of Sivers function

\Rightarrow presence of a non-zero Sivers function will induce a dipole deformation of f_{1}

$$
x f_{1}\left(x, k_{T}, S_{T}\right)
$$

[EIC White Paper]

Sivers function sign change

vanishing Sivers function?
\longrightarrow
Final state interactions and Wilson lines to consider

Sign change in Sivers function

$$
f_{1 T, D I S}^{\perp}=-f_{1 T, D Y}^{\perp}
$$

Extraction of Sivers Function

The Sivers function can be determined through its contributions to the cross section of the polarized SIDIS process.

Extraction of Sivers Function

$$
\begin{aligned}
& \frac{d \sigma}{d x d y d z d \phi_{S} d \phi_{h} d \boldsymbol{P}_{h T}^{2}}=\frac{\alpha^{2}}{x y Q^{2}} \frac{y^{2}}{2(1-\varepsilon)}\left(1+\frac{\gamma^{2}}{2 x}\right)\left\{F_{U U, T}+\varepsilon F_{U U, L}\right. \\
& \left.+\sin \left(\phi_{h}-\phi_{S}\right)\left|\boldsymbol{S}_{T}\right|\left[F_{U T, T}^{\sin \left(\phi_{h}-\phi_{S}\right)}+\varepsilon F_{U T, L}^{\sin \left(\phi_{h}-\phi_{S}\right)}\right]+\cdots\right\}
\end{aligned}
$$

the spin structure function $F_{U T}^{\sin \left(\phi_{h}-\phi_{S}\right)}$ is a convolution of the Sivers function $f_{1 T}^{\perp}$ with the unpolarized fragmentation function $D_{h / q}$

Extraction of Sivers Function

Isolating the terms relevant to the $\sin \left(\phi_{h}-\phi_{S}\right)$ modulation

$$
\begin{gathered}
A_{U T}^{\sin \left(\phi_{h}-\phi_{S}\right)}=\frac{\int d \phi_{S} d \phi_{h}\left[d \sigma^{\uparrow}-d \sigma^{\downarrow}\right] \sin \left(\phi_{h}-\phi_{S}\right)}{\int d \phi_{S} d \phi_{h}\left[d \sigma^{\uparrow}+d \sigma^{\downarrow}\right]} \\
\downarrow \text { in terms of structure functions } \\
A_{U T}^{\sin \left(\phi_{h}-\phi_{S}\right)}=\frac{F_{U T, T}^{\sin \left(\phi_{h}-\phi_{S}\right)}+\varepsilon F_{U T, L}^{\sin \left(\phi_{h}-\phi_{S}\right)}}{F_{U U, T}+\varepsilon F_{U U, L}}
\end{gathered}
$$

we will consider only the terms at order as ${ }^{0}$
LO - NLL

$$
\begin{array}{ll}
F_{U T, T}^{\sin \left(\phi_{h}-\phi_{S}\right)}=\mathscr{C}\left[-\frac{\hat{\boldsymbol{h}} \cdot \boldsymbol{k}_{\perp}}{M} f_{1 T}^{\perp} D_{1}\right] & F_{U U, T}=\mathscr{C}\left[f_{1} D_{1}\right] \\
F_{U T, L}^{\sin \left(\phi_{h}-\phi_{S}\right)}=0 & F_{U U, L}=\mathcal{O}\left(M^{2} / Q^{2}, P_{h T}^{2} / Q^{2}\right)=0
\end{array}
$$

Extraction of Sivers Function

universality

first Sivers extraction with unpolarized TMDs extracted from data and inclusion of TMD evolution

Parametrization of Sivers function

Sivers function can be parametrized in terms of its first moment

$$
f_{1 T}^{\perp}\left(x, k_{\perp}^{2}\right)=f_{1 T}^{\perp(1)}(x) f_{1 T N P}^{\perp}\left(x, k_{\perp}^{2}\right)
$$

Its nonperturbative part is arbitrary, but constrained by the positivity bound.

$$
f_{\underline{1 T N P}}^{\perp}\left(x, k_{\perp}^{2}\right)=\frac{1}{\pi K_{f}} \frac{\left(1+\lambda_{S} k_{\perp}^{2}\right)}{\left(M_{1}^{2}+\lambda_{S} M_{1}^{4}\right)} e^{-k_{\perp}^{2} / M_{1}^{2}} \underline{f_{1 N P}\left(x, k_{\perp}^{2}\right)}
$$

following the definition of the nonperturbative part of the unpolarized TMD distribution

$$
\underline{f_{1 N P}\left(x, k_{\perp}^{2}\right)}=\frac{1}{\pi} \frac{\left(1+\lambda k_{\perp}^{2}\right)}{\left(g_{1}+\lambda g_{1}^{2}\right)} e^{-k_{\perp}^{2} / g_{1}}
$$

Free parameters $\quad \lambda_{S}, M_{1}$

Parametrization of Sivers function

Free parameters $\quad N_{S i v}^{a}, \alpha_{a}, \beta_{a}, A_{a}, B_{a}$

Flavor dependent: different for up, down, sea

Evolution of Sivers

We simply assume that $f_{1 T}^{\perp(1)}$ evolves in the same way as unpolarized f_{1}

Difference in the Wilson coefficients: $\quad C^{i} \rightarrow C^{S i v}$

At our accuracy level (LO): $\quad C^{S i v(0)}=\delta(1-x) \delta^{a i}$

The evolved Sivers function first moment becomes
$\tilde{f}_{1 T}^{\perp(1) a}\left(x, \xi_{T}^{2} ; Q^{2}\right)=f_{1}^{a}\left(x ; \mu_{b}^{2}\right) e^{S\left(\mu_{b}^{2}, Q^{2}\right)} e^{g_{K}\left(\xi_{T}\right) \ln \left(Q^{2} / Q_{0}^{2}\right)} \tilde{f}_{1 T N P}^{\perp(1) a}\left(x, \xi_{T}^{2}\right)$
same choices used for evolved unpolarized TMDs

Experimental data

Jefferson Lab

neutron $\left.{ }^{[3} \mathrm{He}\right]$

deuteron [GLiD] 88
data points

Proton $\left[\mathrm{NH}_{3}\right]$
$\underset{\substack{\text { datapons }}}{111}$

Same kinematic cuts
applied to unpolarized
$\mathrm{X}, \mathrm{z}, \mathrm{P}_{\mathrm{ht}}$ data projections

Experimental data

hermes

proton [H]

$\xrightarrow{95}$

30

Jefferson Lab

neutron $\left.{ }^{[3} \mathrm{He}\right]$
${ }_{\text {data }}^{6}{ }^{2}$

Same kinematic cuts applied to unpolarized

Summary of results

Total number of data points: 118
Total number of free parameters: 14
\rightarrow for 3 different flavors
Replica method

$$
\chi^{2} / d . o . f=1.06 \pm 0.12
$$

proton positive hadron

Jefferson Lab

JLAB (2011)

Sivers function first moment

logarithmic plots of 68\% C.L bands for first moment of Sivers function for down, up and s quarks

Results comparison

Internal structure deformation

First global extraction of evolved partonic unpolarized TMDs from SIDIS, DY and Z boson

> Determination of Sivers function featuring evolution and extracted unpolarized TMDS

Test of the universality and evolution formalism of partonic TMDs

First global extraction of evolved partonic unpolarized TMDs from SIDIS, DY and Z boson

Determination of Sivers function featuring evolution and extracted unpolarized TMDS

Test of the universality and evolution formalism of partonic TMDs

First global extraction of evolved partonic unpolarized TMDs from SIDIS, DY and Z boson

Determination of Sivers function featuring evolution and extracted unpolarized TMDS

Test of the universality and evolution formalism
of partonic TMDs

First global extraction of evolved partonic unpolarized TMDs from SIDIS, DY and Z boson

Determination of Sivers function featuring evolution and extracted unpolarized TMDS

Test of the universality and evolution formalism
of partonic TMDs
Thanks and Buon Primo Maggio!

Future outlooks: unpolarised

NLO

Higher accuracy

Future outlooks: Sivers

Anomalous magnetic moment (testing Pavia2011 hypothesis)

$$
\begin{array}{r}
J^{a}\left(Q^{2}\right)=\frac{1}{2} \int_{0}^{1} d x x\left[H^{a}\left(x, 0,0 ; Q^{2}\right)\right. \\
\left.+E^{a}\left(x, 0,0 ; Q^{2}\right)\right] .
\end{array}
$$

Higher accuracy (after unpol. TMD improved fit)

Predictions of

A_{N} asymmetries for W/Z production

BACKUP

Structure functions and TMDs: DY

Differential cross section

$$
\frac{d \sigma}{d Q^{2} d q_{T}^{2} d \eta}=\sigma_{0}^{\gamma, Z}\left(F_{U U}^{1}+\frac{1}{2} F_{U U}^{2}\right)
$$

Evolution and ξ regions

$$
\bar{\xi}_{*}\left(\xi_{T}, \xi_{\min }, \xi_{\max }\right)=
$$

$$
\xi_{\max }\left[\frac{1-\exp \left(\xi_{T}^{4} / \xi_{\max }^{4}\right)}{1-\exp \left(\xi_{T}^{4} / \xi_{\min }^{4}\right)}\right]^{1 / 4}
$$

$$
\mu_{b}=2 e^{-\gamma_{E}} / \bar{\xi}_{*}
$$

.

$$
\begin{align*}
& \text { Choice Choice } \\
& \tilde{f}_{1}^{a}\left(x, b_{T} ; \mu^{2}\right)=\sum_{i}\left(\tilde{C}_{a / i} \otimes f_{1}^{i}\right)\left(x, b_{*} ; \mu_{b}\right) e^{\tilde{S}\left(b_{*} ; \mu_{b}, \mu\right)} e^{g_{K}\left(b_{T}\right) \ln \frac{\mu}{\mu_{0}} \hat{f}_{\mathrm{NP}}^{a}\left(x, b_{T}\right)} \\
& \mu_{b}=2 e^{-\gamma_{E}} / b_{*} \quad b_{*} \equiv \frac{b_{T}}{\sqrt{1+b_{T}^{2} / b_{\text {max }}^{2}}} \quad \text { Collins, Soper, Sterman, NPB250 (85) } \\
& \mu_{b}=2 e^{-\gamma_{E}} / b_{*} \quad b_{*} \equiv b_{\max }\left(1-e^{-\frac{b_{T}^{4}}{b_{\max }}}\right)^{1 / 4} \quad \begin{array}{l}
\text { Bacchetta, Echevarria, Mulders, Radici, Signori } \\
\text { arkiv: } 1508.00402
\end{array} \\
& \mu_{b}=Q_{0}+q_{T} \quad b_{*}=b_{T} \tag{DEMS 2014}
\end{align*}
$$

Pavia 2017 perturbative ingredients

$$
\begin{aligned}
& \tilde{f}_{1}^{a}\left(x, b_{T} ; \mu^{2}\right)=\sum_{i}\left(\tilde{C}_{a / i} \otimes f_{1}^{i}\right)\left(x, b_{*} ; \mu_{b}\right) e^{\tilde{S}\left(b_{;} ; \mu_{b}, \mu\right)} e^{g_{K}\left(b_{T}\right) \ln \frac{\mu}{\mu_{0}} \hat{f}_{\mathrm{NP}}^{a}\left(x, b_{T}\right)} \\
& \begin{array}{ccc}
A_{1}\left(\mathcal{O}\left(\alpha_{S}^{1}\right)\right) & A_{2}\left(\mathcal{O}\left(\alpha_{S}^{2}\right)\right) & A_{3}\left(\mathcal{O}\left(\alpha_{S}^{3}\right)\right) \\
\boldsymbol{V} & \\
& B_{1}\left(\mathcal{O}\left(\alpha_{S}^{1}\right)\right) & B_{2}\left(\mathcal{O}\left(\alpha_{S}^{2}\right)\right)
\end{array} \\
& C_{0}\left(\mathcal{O}\left(\alpha_{S}^{0}\right)\right) \\
& C_{1}\left(\mathcal{O}\left(\alpha_{S}^{1}\right)\right) \\
& C_{2}\left(\mathcal{O}\left(\alpha_{S}^{2}\right)\right)
\end{aligned}
$$

Model: non perturbative elements

input TMD FF ($\mathrm{Q}^{2}=1 \mathrm{GeV}^{2}$)
$\hat{D}_{1 N P}^{a \rightarrow h}=$ F.T. of $\frac{1}{g_{3 a \rightarrow h}+\left(\lambda_{F} / z^{2}\right) g_{4 a \rightarrow h}^{2}}\left(e^{-\frac{P_{\perp}^{2}}{g_{3 a \rightarrow h}}}+\lambda_{F} \frac{P_{\perp}^{2}}{z^{2}} e^{-\frac{P_{\perp}^{2}}{g_{4 a \rightarrow h}}}\right)$
sum of two different gaussians
with different variance
with kinematic dependence on transverse momenta
width z-dependence
$g_{3,4}(z)=N_{3,4} \frac{\left(z^{\beta}+\delta\right)(1-z)^{\gamma}}{\left(\hat{z}^{\beta}+\delta\right)(1-\hat{z})^{\gamma}}$

$$
\begin{gathered}
N_{3,4} \equiv g_{3,4}(\hat{z}) \\
\hat{z}=0.5
\end{gathered}
$$

Average transverse momenta

$$
\left\langle\boldsymbol{k}_{\perp}^{2}\right\rangle(x)=\frac{g_{1}(x)+2 \lambda g_{1}^{2}(x)}{1+\lambda g_{1}(x)}
$$

$$
\left\langle\boldsymbol{P}_{\perp}^{2}\right\rangle(z)=\frac{g_{3}^{2}(z)+2 \lambda_{F} g_{4}^{3}(z)}{g_{3}(z)+\lambda_{F} g_{4}^{2}(z)}
$$

Quark unpol. TMD: extractions

		Framework	Hermes	compass	Dr	$\begin{array}{\|l\|l\|} \hline \mathrm{z} \text { boson } \\ \text { production } \end{array}$	$\begin{aligned} & \text { No of } \\ & \text { poins } \end{aligned}$
	${ }^{\text {KN } 2006 ~}$	NLLNLO	\times	\times	\checkmark	\checkmark	98
		No evo	\checkmark	\times	x	x	1538
1	Torino 2014 axixis20er	No evo	(separately)	$\mid \text { separately) }$	x	x	$576(\mathrm{H})$ $6284(\mathrm{C})$
	DEMS 2014	NnLINLO	\times	x	\checkmark	\checkmark	223
		nLLLO	$1\left(x, Q^{2}\right)$ bin	$1\left(x^{\prime}, Q^{2}\right.$ b ${ }^{\text {b }}$	\checkmark	\checkmark	500 (?)
	${ }_{\text {Paviv } 2016}^{\text {axiza }}$	NLLLO	\checkmark	\checkmark	\checkmark	v	8059
r	SV 2017	$\begin{aligned} & \text { NNLL } \\ & \text { NNLO } \end{aligned}$	\times		\checkmark		309

Hermes data

π
$\chi^{2} /$ dof
4.83

Hermes data pion production

$\left\langle Q^{2}\right\rangle=1.5 \mathrm{GeV}^{2}$
$\langle x\rangle=0.061 \quad\left\langle Q^{2}\right\rangle=1.8 \mathrm{GeV}^{2}$
$\langle\mathrm{x}\rangle=0.096$
$\left\langle\mathrm{Q}^{2}\right\rangle=2.9 \mathrm{GeV}^{2}$
$\left\langle Q^{2}\right\rangle=5.2 \mathrm{GeV}^{2}$
$\left\langle\mathrm{Q}^{2}\right\rangle=9.2 \mathrm{GeV}^{2}$
$\chi^{2} /$ dof

| $\langle\mathrm{x})=0.061$ |
| :--- | :--- |

Mean transverse momentum

Change in TMD width x-dependence

in TMD PDF

$$
\mathrm{Q}^{2}=1 \mathrm{GeV}^{2}
$$

in TMD FF

Spin and quark motion correlation: SSA

scattering of transversely polarized proton off an unpolarized proton or electron

The asymmetry is defined as

$$
A_{N}\left(x_{F}, k_{\perp}\right) \equiv \frac{L-R}{L+R}=\frac{\sigma_{\uparrow}-\sigma_{\downarrow}}{\sigma_{\uparrow}+\sigma_{\downarrow}}
$$

positive A_{N} means that for upward polarization, the pions tend to go to the left.

Evolution of Sivers

The evolved Sivers function first moment becomes

$$
\tilde{f}_{1 T}^{\perp(1) a}\left(x, \xi_{T}^{2} ; Q^{2}\right)=f_{1}^{a}\left(x ; \mu_{b}^{2}\right) e^{S\left(\mu_{b}^{2}, Q^{2}\right)} e^{g_{K}\left(\xi_{T}\right) \ln \left(Q^{2} / Q_{0}^{2}\right)} \tilde{f}_{1 T N P}^{\perp(1) a}\left(x, \xi_{T}^{2}\right)
$$

The first moment $\mathrm{f}^{\perp(1)}(\mathrm{x})$ is related to the twist-3 Qiu-Sterman function by the following relation

$$
f_{1 T}^{\perp(1)}(x)=-\frac{1}{2 M} T_{F}(x, x)
$$

The $\mu \mathrm{b}$ evolution for this term follows the Efremov-Teryaev-Qiu-Sterman (ETQS) evolution equations

HERMES (2009)

proton

COMPASS (2009)

deuteron

proton
negative
hadron

Jefferson Lab

JLAB (2011)

Sivers in coordinate space

ξ_{T} space

to apply
CSS formalism for evolution

Sivers distribution function
$\tilde{f}_{1 T}^{\perp(n) a}\left(x, \xi_{T}^{2} ; Q^{2}\right)=n!\left(-\frac{-2}{M^{2}} \partial_{\xi_{T}^{2}}^{n}\right)^{n} \tilde{f} \dot{\perp}\left(a, x, \xi_{T}^{2} ; Q^{2}\right)=\frac{n!}{\left(M^{2}\right)^{n}} \int_{0}^{\infty} d\left|k_{\perp}\right|\left|k_{\perp}\right|\left(\frac{\left|\boldsymbol{k}_{\perp}\right|}{\xi_{T}}\right)^{n} J_{n}\left(\xi_{T}\left|\boldsymbol{k}_{\perp}\right|\right) \tilde{f}_{1 T}^{\perp a}\left(x, \xi_{T}^{2} ; Q^{2}\right)$
first moment

$$
\tilde{f}_{1 T}^{\perp(1) a}\left(x, \xi_{T}^{2} ; Q^{2}\right)=\frac{1}{M^{2}} \int_{0}^{\infty} d\left|k_{\perp}\right|\left|k_{\perp}\right|\left(\frac{\left|k_{\perp}\right|}{\xi_{T}}\right) J_{1}\left(\xi_{T}\left|k_{\perp}\right|\right) \tilde{f}_{1 T}^{\perp a}\left(x, \xi_{T}^{2} ; Q^{2}\right)
$$

Results comparison: Pavia 2011

Constraining Quark Angular Momentum through Semi-Inclusive Measurements

Angular momentum

$$
\begin{array}{r}
J^{a}\left(Q^{2}\right)=\frac{1}{2} \int_{0}^{1} d x x\left[H^{a}\left(x, 0,0 ; Q^{2}\right)+E^{a}\left(x, 0,0 ; Q^{2}\right)\right] . \\
f_{1}^{a}\left(x, Q^{2}\right) \quad \text { no corresponding collinear pdf } \\
\sum_{q} e_{q_{v}} \int_{0}^{1} d x E^{q_{v}}(x, 0,0)=\kappa,
\end{array}
$$

Results comparison: Pavia 2011

Constraining Quark Angular Momentum through Semi-Inclusive Measurements

Angular momentum

$$
\begin{array}{r}
J^{a}\left(Q^{2}\right)=\frac{1}{2} \int_{0}^{1} d x x\left[H^{a}\left(x, 0,0 ; Q^{2}\right)+E^{a}\left(x, 0,0 ; Q^{2}\right)\right] . \\
f_{1}^{a}\left(x, Q^{2}\right) \quad \text { no corresponding collinear pdf } \\
\sum_{q} e_{q_{v}} \int_{0}^{1} d x E^{q_{v}}(x, 0,0)=\kappa,
\end{array}
$$

..from theoretical consideration and spectator model results:
$\rightarrow f_{1 T}^{\perp(0) a}\left(x ; Q_{L}^{2}\right)=-L(x) E^{a}\left(x, 0,0 ; Q_{L}^{2}\right)$,

Lensing function

$$
L(x)=\frac{K}{(1-x)^{\eta}}
$$

Results comparison: Pavia 2011

Azimuthal asymmetries

$$
\begin{aligned}
& A_{U T}^{\sin \left(\phi_{h}-\phi_{S}\right)}\left(x, z, P_{T}^{2}, Q^{2}\right) \\
&=-\frac{M_{1}^{2}\left(M_{1}^{2}+\left\langle k_{\perp}^{2}\right\rangle\right)}{\left\langle P_{\text {Siv }}^{2}\right\rangle^{2}} \frac{z P_{T}}{M}\left(z^{2}+\frac{\left\langle P_{\perp}^{2}\right\rangle}{\left\langle k_{\perp}^{2}\right\rangle}\right)^{3} e^{-z^{2} P_{T}^{2} /\left\langle P_{\text {Siv }}^{2}\right\rangle} \\
& \times \frac{\sum_{a} e_{a}^{2} f_{1 T}^{\perp(0) a}\left(x ; Q^{2}\right) D_{1}^{a}\left(z ; Q^{2}\right)}{\sum_{a} e_{a}^{2} f_{1}^{a}\left(x ; Q^{2}\right) D_{1}^{a}\left(z ; Q^{2}\right)},
\end{aligned}
$$

Hermes, Compass, Jlab data

TABLE I. Best-fit values of the 8 free parameters for the case $C^{s_{v}}=C^{\bar{s}}=0$. The final $\chi^{2} /$ d.o.f. is 1.323 . The errors are statistical and correspond to $\Delta \chi^{2}=1$

$C^{u_{v}}$	$C^{\alpha_{v}}$	0.054 ± 0.107	-0.083 ± 0.122
-0.229 ± 0.002	1.591 ± 0.009	$\eta(\mathrm{GeV})$	η
$M_{1}(\mathrm{GeV})$	1.888 ± 0.009	0.392 ± 0.040	$\alpha^{u_{v}}$
0.346 ± 0.015		0.783 ± 0.001	

Results comparison: TO - CA group

Same selection of data, considering all projections

$$
A_{U T}^{\sin \left(\phi_{h}-\phi_{S}\right)}
$$

3 cases for evolution: no evolution, collinear twist-3, TMD-like evolution

$\chi^{2} / d o f \sim 0.94$

Results comparison: EIKV

Global fit of the HERMES, COMPASS and JLab experimental data on polarized reactions to extract the Sivers functions.
\rightarrow Hermes, Compass, Jlab data
\rightarrow using CSS evolution
\rightarrow relating the first moment of the Sivers function to the twist-three Qiu-Sterman quark-gluon correlation function

$$
\begin{aligned}
& f_{1 T, \mathrm{SIDIS}}^{\perp q(\alpha)}(x, b ; Q)=\left(\frac{i b^{\alpha}}{2}\right) T_{q, F}\left(x, x, c / b_{*}\right) \exp \left\{-\int_{c / b_{*}}^{Q} \frac{d \mu}{\mu}\left(A \ln \frac{Q^{2}}{\mu^{2}}+B\right)\right\} \\
& \times \exp \left\{-b^{2}\left(g_{1}^{\text {sivers }}+\frac{g_{2}}{2} \ln \frac{Q}{Q_{0}}\right)\right\} \\
& T_{q, F}(x, x, \mu)=N_{q} \frac{\left(\alpha_{q}+\beta_{q}\right)^{\left(\alpha_{q}+\beta_{q}\right)}}{\alpha_{q}^{\alpha_{q}} \beta_{q}^{\beta^{q}}} x^{\alpha_{q}}(1-x)^{\beta_{q}} f_{q / A}(x, \mu)
\end{aligned}
$$

Results comparison: EIKV

$T_{q F}(x, x, \mu) \rightarrow$ "collinear counterpart" of the Sivers function

FIG. 11 (color online). Qiu-Sterman function $T_{q, F}(x, x, Q)$ for u, d and s flavors at a scale $Q^{2}=2.4 \mathrm{GeV}^{2}$, as extracted by our simultaneous fit of JLab, HERMES and COMPASS data.

