

JLab Cake seminars

Phenomenological analysis of 3D nucleon structure

Filippo Delcarro

1 May 2019

Introduction to phenomenology of TMDs

Extraction of partonic unpolarized TMDs: global fit

.

- Relation between experimental observables and TMDs
- 'Our choices for parametrization
- •Overview of experiments and data considered
- 'Results and comparisons
- Extractions of Sivers function
 - Relation between Sivers distribution and unpolarized TMDs
 - Data considered
 - [,]Results
- [,]Outlook

Investigating nucleon internal structure

Test what we know about QCD

→ perturbative and lattice

Measure what we don't know about QCD \rightarrow extraction from data

Momentum and Position: how partons move inside the nucleon and distribution dependence on x

Flavor: how different flavors affect partonic distributions.

Spin: correlation between parton movement (OAM) and overall nucleon properties (missing spin budget).

Information summarized as Parton Distribution Function

1D picture of the nucleon: PDF

3Dimensional structure

Transverse Momentum Distributions

quark polarization

 $\begin{array}{|c|c|c|c|c|c|c|c|} & U & L & T \\ \hline U & f_1 & & h_1^{\perp} \\ \hline L & g_{1L} & h_{1L}^{\perp} \\ \hline T & f_{1T}^{\perp} & g_{1T} & h_1, h_{1T}^{\perp} \end{array}$

nucleon polarization

Twist-2 TMDs

Transverse Momentum Distributions

quark polarization

Transverse Momentum Distributions

TMD Parton Distribution Functions

dependence on:

longitudinal momentum fraction \mathcal{X} transverse momentum k_{\perp} energy scale

TMD Parton Distribution Functions

Why study unpolarized TMDs?

Nucleon tomography High-energy phenomenology Necessary to describe polarized processes

- Nucleon tomography
- High-energy phenomenology
- Necessary to describe also polarized processes

Open questions :

- 1. What is the functional form of TMDs at low transverse momentum ? And their kinematic and flavor dependence?
- 2. How can we separate the descriptions at low and high transverse momenta ?
- 3. How can we match TMD and collinear factorization ?
- 4. Can we test the generalized universality of TMDs ?
- 5. Can we perform a global fit of TMDs ?

Extraction from SIDIS & Drell-Yan

Drell-Yan / Z production

Extraction from SIDIS & Drell-Yan

 $A + B \to \gamma^*/Z \to l^+l^-$

Semi-inclusive Deep Inelastic Scattering

Semi-inclusive Deep Inelastic Scattering

 $l(\ell) + N(\mathcal{P}) \to l(\ell') + h(\mathcal{P}_h) + X$

TMDs: Fragmentation Function

TMD Fragmentation Functions (TMD FFs)

longitudinal momentum fraction Z

dependence on:

transverse momentum P_{\perp} energy scale

Extraction from SIDIS & Drell-Yan

universality

Structure functions and TMDs: SIDIS

multiplicities

$$m_N^h\left(x, z, \boldsymbol{P}_{hT}^2, Q^2\right) = \frac{d\sigma_N^h / \left(dx dz d\boldsymbol{P}_{hT}^2 dQ^2\right)}{d\sigma_{DIS} / \left(dx dQ^2\right)} \approx \frac{\pi F_{UU,T}\left(x, z, \boldsymbol{P}_{hT}^2, Q^2\right)}{F_T(x, Q^2)}$$

Structure functions and TMDs

multiplicities

$$m_N^h\left(x, z, \boldsymbol{P}_{hT}^2, Q^2\right) = \frac{d\sigma_N^h / \left(dx dz d\boldsymbol{P}_{hT}^2 dQ^2\right)}{d\sigma_{DIS} / \left(dx dQ^2\right)} \approx \frac{\pi F_{UU,T}\left(x, z, \boldsymbol{P}_{hT}^2, Q^2\right)}{F_T(x, Q^2)}$$

TMD factorization

$$\begin{split} F_{UU,T}\left(x, z, P_{hT}^{2}, Q^{2}\right) &= \sum_{a} \mathscr{H}^{a}\left(Q^{2}\right) x \int d^{2}k_{\perp} d^{2}P_{\perp} f_{1}^{a}(x, k_{\perp}^{2}; Q^{2}) D_{1}^{a \to h}(z, P_{\perp}^{2}; Q^{2}) \\ &\times \delta^{2}(zk_{\perp} - P_{hT} + P_{\perp}) + Y_{UU,T}(Q^{2}, P_{hT}^{2}) + \mathcal{O}(M^{2}/Q^{2}) \end{split}$$

At our accuracy level: Leading Order (expansion in α_S) Next-to Leading LOg (corrections in $\alpha_{slog} (z^2 Q^2 / P_{hT}^2)$)

$$F_{UU,T}(x, z, \boldsymbol{P}_{hT}^{2}, Q^{2}) = \sum_{a} \mathcal{H}^{a}(Q^{2}) x \int d^{2}\boldsymbol{k}_{\perp} d^{2}\boldsymbol{P}_{\perp} f_{1}^{a}(x, \boldsymbol{k}_{\perp}^{2}; Q^{2}) D_{1}^{a \to h}(z, \boldsymbol{P}_{\perp}^{2}; Q^{2}) \times \delta^{2}(z\boldsymbol{k}_{\perp} - \boldsymbol{P}_{hT} + \boldsymbol{P}_{\perp}) + \frac{Y_{UU,T}(Q^{2}, \boldsymbol{P}_{hT}^{2})}{\sum_{\alpha} 0} + \mathcal{O}(M^{2}/Q^{2})$$

Structure functions and TMDs

Evolved TMDs

Fourier transform: ξ_T space

CSS formalism

Evolved TMDs

Fourier transform: ξ_T space

Non-perturbative contributions have to be extracted from experimental data, after parametrization

Model: non perturbative elements

input TMD PDF @ Q²=1GeV²

with kinematic dependence on transverse momenta

$$g_1(x) = N_1 \frac{(1-x)^{\alpha} x^{\sigma}}{(1-\hat{x})^{\alpha} \hat{x}^{\sigma}}$$

where

$$N_1 \equiv g_1(\hat{x})$$
$$\hat{x} = 0.1$$

Model: non perturbative elements

input TMD PDF @ Q²=1GeV²

with kinematic dependence on transverse momenta

For the FF we use two different variances:

 $g_3(z), g_4(z)$

Model: non perturbative elements

Free parameters

 $N_1, \alpha, \sigma, \lambda$ $N_3, N_4, \beta, \delta, \gamma, \lambda_F$

4 for TMD PDF 6 for TMD FF

$$g_K = -g_2 \frac{\xi_T^2}{2}$$

1 for NP contribution to TMD evolution

Total: 11 parameters

Experimental data

SIDIS eN

Total: 8059 data

Z Production

Data selection and analysis

Motivations behind kinematical cuts

TMD factorization ($Ph_T/z \ll Q^2$) Avoid target fragmentation (low z) and exclusive contributions (high z)

Data regions

	Framework	HERMES	COMPASS	DY	Z production	N of points
Pavia 2017 (+ JLab)	LO-NLL			~	~	8059

published in

[]HEP06(2017)081]

Summary of results

Total number of data points: 8059

Total number of free parameters: 11 → 4 for TMD PDFs → 6 for TMD FFs → 1 for TMD evolution

Replica Methodology

a)Example of original data (two bins)

b)Data are replicated with Gaussian noise

c) The fit is performed on the replicated data

d)The procedure is repeated 200 times

e)For each point a 68% confidence level is identified

f) These point connects to create a 68% C.L. band

COMPASS data SIDIS h⁺

to avoid known problems with Compass data normalization:

Observable $\frac{m_N^h\left(x, z, \boldsymbol{P}_{hT}^2, Q^2\right)}{m_N^h\left(x, z, \min[\boldsymbol{P}_{hT}^2], Q^2\right)}$ 37

Drell-Yan data

‡ Fermilab

Q² Evolution: The peak is now at about 1 GeV, it was at 0.4 GeV for SIDIS

Z-boson production data

Best fit value: transverse momenta

]	Bacchetta, Delcarro, Pisano, Radici, Signori JHEP06(2017)081
)	Signori, Bacchetta, Radici, Schnell arXiv:1509.5507
	Schweitzer, Teckentrup, Metz, arXiv:1003.2190
	Anselmino et al. arXiv:1312.6261 [HERMES]
	Anselmino et al. arXiv:1312.6261 [HERMES, high z]
	Anselmino et al. arXiv:1312.6261 [COMPASS, norm.]
	Anselmino et al. arXiv:1312.6261 [COMPASS, high z, norm.]
/	Echevarria, Idilbi, Kang, Vitev arXiv:1401.5078 (Q = 1.5 GeV)

Red/orange regions: 68% CL from replica method Inclusion of DY/Z diminishes the correlation Inclusion of Compass increases the $\langle P_{\perp}^2 \rangle$ and reduces its spread e+e- would further reduce the correlation

Stability of our results

Test of our default choices

How does the χ^2 of a single replica change if we modify them?

Original χ^2 /dof = **1.51**

Normalization of HERMES data as done for COMPASS: χ^2 /dof = 1.27

Parametrizations for collinear PDFs

(NLO GJR 2008 default choice): NLO MSTW 2008 (1.84), NLO CJ12 (1.85)

More stringent cuts

(TMD factorization better under control) $\chi^2/dof \rightarrow 1$ Ex: Q2 > 1.5 GeV²; 0.25 < z < 0.6; PhT < 0.2Qz $\Rightarrow \chi^2/dof = 1.02$ (477 bins)

Visualization of TMDs: PDF 3D structure

Repl = 191

1.0

0.5

0.0

 k_y (GeV)

0.0

 k_{χ} (GeV)

-0.5

-1.0└── -1.0

x = 0.04

1.0

0.5

Repl = 149

x = 0.04

1.0

0.5

Repl = 185

x = 0.2

1.0

0.5

0.0

-0.5

 k_y (GeV)

2 6 12 0 8 10 4 14

 $\rho(\text{GeV}^{-2})$

1.0

0.5

0.0

-0.5

-1.0^{__}

-0.5

0.0

k_x (GeV)

 k_y (GeV)

Visualization of TMDs: PDF 3D structure

Visualization of TMDs: FF 3D structure

TMD Fragmentation Function

Momentum space

Transverse Momentum Distributions

TMDs: Sivers function distribution

→number density of unpolarized partons inside a transversely polarized nucleon

scattering of transversely polarized proton off an unpolarized proton or electron

The asymmetry is defined as

$$A_N(x_F, k_\perp) \equiv \frac{L - R}{L + R} = \frac{\sigma_\uparrow - \sigma_\downarrow}{\sigma_\uparrow + \sigma_\downarrow}$$

positive A_N means that for upward polarization, the pions tend to go to the left.

Phenomenology of Sivers function

⇒ presence of a non-zero Sivers function will induce a dipole deformation of f_1

u quark d quark 0.5 0.5 k_y(GeV) o k_y(GeV) o -0.5 -0.5 -0.5 0.5 0.5 -0.5 0 0 k_x(GeV) k_x(GeV)

 $x f_1(x, k_T, S_T)$

[EIC White Paper]

vanishing Sivers function?

Final state interactions and Wilson lines to consider

Sign change in Sivers function

$$f_{1T,DIS}^{\perp} = -f_{1T,DY}^{\perp}$$

The Sivers function can be determined through its contributions to the cross section of the polarized SIDIS process.

50

Extraction of Sivers Function

$$\frac{d\sigma}{dx\,dy\,dz\,d\phi_S\,d\phi_h dP_{hT}^2} = \frac{\alpha^2}{xyQ^2} \frac{y^2}{2(1-\varepsilon)} \left(1 + \frac{\gamma^2}{2x}\right) \left\{F_{UU,T} + \varepsilon F_{UU,L} + \sin(\phi_h - \phi_S) |S_T| \left[F_{UT,T}^{\sin(\phi_h - \phi_S)} + \varepsilon F_{UT,L}^{\sin(\phi_h - \phi_S)}\right] + \cdots\right\}$$

the spin structure function $F_{UT}^{\sin(\phi_h-\phi_S)}$ is a convolution of the Sivers function f_{1T}^{\perp} with the unpolarized fragmentation function $D_{h/q}$

Extraction of Sivers Function

Isolating the terms relevant to the $sin(\phi_h - \phi_S)$ modulation

$$A_{UT}^{\sin(\phi_{h}-\phi_{S})} = \frac{\int d\phi_{S} d\phi_{h} [d\sigma^{\uparrow} - d\sigma^{\downarrow}] \sin(\phi_{h} - \phi_{S})}{\int d\phi_{S} d\phi_{h} [d\sigma^{\uparrow} + d\sigma^{\downarrow}]}$$

in terms of structure functions

$$A_{UT}^{\sin(\phi_{h}-\phi_{S})} = \frac{F_{UT,T}^{\sin(\phi_{h}-\phi_{S})} + \varepsilon F_{UT,L}^{\sin(\phi_{h}-\phi_{S})}}{F_{UU,T} + \varepsilon F_{UU,L}}$$

we will consider only the terms at order α_{S}^{0}
LO - NLL

$$F_{UT,T}^{\sin(\phi_{h}-\phi_{S})} = \mathscr{C} \left[-\frac{\hat{h} \cdot k_{\perp}}{M} f_{1T}^{\perp} D_{1} \right]$$

$$F_{UU,T} = \mathscr{C} \left[f_{1} D_{1} \right]$$

$$F_{UU,L} = \mathscr{O} \left(M^{2}/Q^{2}, P_{hT}^{2}/Q^{2} \right) = 0$$
(52)

Extraction of Sivers Function

universality

first Sivers extraction with unpolarized TMDs extracted from data and inclusion of TMD evolution

Sivers function can be parametrized in terms of its first moment

 $f_{1T}^{\perp}(x,k_{\perp}^{2}) = f_{1T}^{\perp(1)}(x)f_{1TNP}^{\perp}(x,k_{\perp}^{2})$

Its nonperturbative part is arbitrary, but constrained by the positivity bound.

$$f_{1TNP}^{\perp}(x,k_{\perp}^{2}) = \frac{1}{\pi K_{f}} \frac{(1+\lambda_{S}k_{\perp}^{2})}{(M_{1}^{2}+\lambda_{S}M_{1}^{4})} e^{-k_{\perp}^{2}/M_{1}^{2}} f_{1NP}(x,k_{\perp}^{2})$$

following the definition of the nonperturbative part of the unpolarized TMD distribution

$$f_{1NP}(x,k_{\perp}^2) = \frac{1}{\pi} \frac{(1+\lambda k_{\perp}^2)}{(g_1+\lambda g_1^2)} e^{-k_{\perp}^2/g_1}$$

Free parameters λ_S, M_1

Parametrization of Sivers function

Free parameters

$$N_{Siv}^a$$
, α_a , β_a , A_a , B_a

Flavor dependent: different for up, down, sea

We simply assume that $f_{1T}^{\perp(1)}$ evolves in the same way as unpolarized f_1

Difference in the Wilson coefficients: $C^i \rightarrow C^{Siv}$

At our accuracy level (LO): $C^{Siv(0)} = \delta(1-x)\delta^{ai}$

The evolved Sivers function first moment becomes

$$\tilde{f}_{1T}^{\perp(1)a}(x,\xi_T^2;Q^2) = f_1^a(x;\mu_b^2) \ e^{S(\mu_b^2,Q^2)} \ e^{g_K(\xi_T)\ln(Q^2/Q_0^2)} \ \tilde{f}_{1TNP}^{\perp(1)a}(x,\xi_T^2)$$

same choices used for evolved unpolarized TMDs

Experimental data

Same kinematic cuts applied to unpolarized

Experimental data

LO - NLL Replica method

Summary of results

Total number of data points: 118

Total number of free parameters: 14 → for 3 different flavors

positive hadron

neutron

Results comparison

Internal structure deformation

 $xf_1(x, k_{\perp}^2; Q^2) - xf_{1T}^{\perp}(x, k_{\perp}^2; Q^2)$

Determination of Sivers function featuring evolution and extracted unpolarized TMDS

Test of the universality and evolution formalism of partonic TMDs

Determination of Sivers function featuring evolution and extracted unpolarized TMDS

Test of the universality and evolution formalism of partonic TMDs

Determination of Sivers function featuring evolution and extracted unpolarized TMDS

Test of the universality and evolution formalism of partonic TMDs

Determination of Sivers function featuring evolution and extracted unpolarized TMDS

Test of the universality and evolution formalism of partonic TMDs

Thanks and Buon Primo Maggio!

Future outlooks: unpolarised

STAR

Predictions of A_N asymmetries for W/Z production Anomalous magnetic moment (testing Pavia2011 hypothesis)

$$J^{a}(Q^{2}) = \frac{1}{2} \int_{0}^{1} dx x [H^{a}(x, 0, 0; Q^{2}) + E^{a}(x, 0, 0; Q^{2})].$$

Higher accuracy (after unpol. TMD improved fit) BACKUP

Structure functions and TMDs: DY

Differential cross section

$$\frac{d\sigma}{dQ^2 dq_T^2 d\eta} = \sigma_0^{\gamma, Z} \left(F_{UU}^1 + \frac{1}{2} F_{UU}^2 \right)$$

Evolution and ξ_T regions

U and b_{*} prescriptions

$$\widetilde{f}_{1}^{a}(x, b_{T}; \mu^{2}) = \sum_{i} (\widetilde{C}_{a/i} \otimes f_{1}^{i})(x, b_{*}; \mu_{b}) e^{\widetilde{S}(b_{*}; \mu_{b}, \mu)} e^{g_{K}(b_{T}) \ln \frac{\mu}{\mu_{0}}} \widehat{f}_{NP}^{a}(x, b_{T})$$

$$\mu_{b} = 2e^{-\gamma_{E}}/b_{*} \qquad b_{*} \equiv \frac{b_{T}}{\sqrt{1 + b_{T}^{2}/b_{\max}^{2}}} \qquad \text{Collins, Soper, Sterman, NPB250 (85)}$$

$$\mu_{b} = 2e^{-\gamma_{E}}/b_{*} \qquad b_{*} \equiv b_{\max} \left(1 - e^{-\frac{b_{T}^{4}}{b_{\max}^{4}}}\right)^{1/4} \qquad \text{Bacchetta, Echevarria, Mulders, Radici, Signorian}$$

$$\mu_{b} = Q_{0} + q_{T} \qquad b_{*} = b_{T} \qquad \text{DEMS 2014}$$

Complex-b prescription

Laenen, Sterman, Vogelsang, PRL 84 (00)

Pavia 2017 perturbative ingredients

Model: non perturbative elements

input TMD FF (Q²=IGeV²)

$$\hat{D}_{1NP}^{a \to h} = \text{ F.T. of } \frac{1}{g_{3a \to h} + (\lambda_F/z^2)g_{4a \to h}^2} \left(e^{-\frac{P_{\perp}^2}{g_{3a \to h}}} + \lambda_F \frac{P_{\perp}^2}{z^2} e^{-\frac{P_{\perp}^2}{g_{4a \to h}}} \right)$$

sum of two different gaussians with different variance with kinematic dependence on transverse momenta

width z-dependence

$$g_{3,4}(z) = N_{3,4} \frac{(z^{\beta} + \delta) (1 - z)^{\gamma}}{(\hat{z}^{\beta} + \delta) (1 - \hat{z})^{\gamma}} \quad \text{where} \quad \begin{cases} N_{3,4} \equiv g_{3,4}(\hat{z}) \\ \hat{z} = 0.5 \end{cases}$$

Average transverse momenta

$$\left\langle \boldsymbol{k}_{\perp}^{2} \right\rangle(x) = \frac{g_{1}(x) + 2\lambda g_{1}^{2}(x)}{1 + \lambda g_{1}(x)}$$

$$\left\langle \mathbf{P}_{\perp}^2 \right\rangle(z) = \frac{g_3^2(z) + 2\lambda_F g_4^3(z)}{g_3(z) + \lambda_F g_4^2(z)}$$

PAST		Framework	HERMES	COMPASS	DY	Z boson production	N° of points
	KN 2006 hep-ph/0506225	NLL/NLO	×	×	~	~	98
	Pavia 2013 arXiv:1309.3507	No evo		×	×	×	1538
	Torino 2014 arXiv:1312.6261	No evo	(separately)	(separately)	×	×	576 (H) 6284 (C)
	DEMS 2014 arXiv:1407.3311	NNLL/NLO	×	×	~	~	223
	EIKV 2014 arXiv:1401.5078	NLL/LO	1 (x,Q²) bin	1 (x,Q²) bin	~	~	500 (?)
PRESENT	Pavia 2016 arXiv:1703.10157	NLL/LO	~			~	8059
	SV 2017 arXiv:1706.01473	NNLL/ NNLO	×	×	•	~	309

Mean transverse momentum

scattering of transversely polarized proton off an unpolarized proton or electron

The asymmetry is defined as

$$A_N(x_F, k_\perp) \equiv \frac{L - R}{L + R} = \frac{\sigma_\uparrow - \sigma_\downarrow}{\sigma_\uparrow + \sigma_\downarrow}$$

positive A_N means that for upward polarization, the pions tend to go to the left.

The evolved Sivers function first moment becomes

$$\tilde{f}_{1T}^{\perp(1)a}(x,\xi_T^2;Q^2) = f_1^a(x;\mu_b^2) \ e^{S(\mu_b^2,Q^2)} \ e^{g_K(\xi_T)\ln(Q^2/Q_0^2)} \ \tilde{f}_{1TNP}^{\perp(1)a}(x,\xi_T^2)$$

The first moment $f^{\perp(1)}(x)$ is related to the twist-3 Qiu-Sterman function by the following relation

$$f_{1T}^{\perp(1)}(x) = -\frac{1}{2M}T_F(x,x)$$

The µb evolution for this term follows the Efremov-Teryaev-Qiu-Sterman (ETQS) evolution equations

hermes proton

COMPASS 2009

deuteron

negative hadron

neutron

Sivers in coordinate space

to apply CSS formalism for evolution

Sivers distribution function

$$\tilde{f}_{1T}^{\perp(n)a}(x,\xi_T^2;Q^2) = n! \left(-\frac{-2}{M^2}\partial_{\xi_T^2}\right)^n \tilde{f}_{1T}^{\perp a}(x,\xi_T^2;Q^2) = \frac{n!}{(M^2)^n} \int_0^\infty d|\mathbf{k}_{\perp}||\mathbf{k}_{\perp}| \left(\frac{|\mathbf{k}_{\perp}|}{\xi_T}\right)^n J_n(\xi_T|\mathbf{k}_{\perp}|) \tilde{f}_{1T}^{\perp a}(x,\xi_T^2;Q^2)$$

first moment

$$\tilde{f}_{1T}^{\perp(1)a}(x,\xi_T^2;Q^2) = \frac{1}{M^2} \int_0^\infty d|\mathbf{k}_{\perp}| |\mathbf{k}_{\perp}| \left(\frac{|\mathbf{k}_{\perp}|}{\xi_T}\right) J_1(\xi_T|\mathbf{k}_{\perp}|) \tilde{f}_{1T}^{\perp a}(x,\xi_T^2;Q^2)$$

Constraining Quark Angular Momentum through Semi-Inclusive Measurements

Angular momentum

$$J^{a}(Q^{2}) = \frac{1}{2} \int_{0}^{1} dxx[H^{a}(x, 0, 0; Q^{2}) + E^{a}(x, 0, 0; Q^{2})].$$

$$f_{1}^{a}(x, Q^{2}) \quad \text{no corresponding collinear pdf}$$

$$\sum_{q} e_{q_{v}} \int_{0}^{1} dx E^{q_{v}}(x, 0, 0) = \kappa,$$

[Bacchetta, Radici - PRL 107, 212001 (2011)

Constraining Quark Angular Momentum through Semi-Inclusive Measurements

Angular momentum

$$J^{a}(Q^{2}) = \frac{1}{2} \int_{0}^{1} dxx[H^{a}(x, 0, 0; Q^{2}) + E^{a}(x, 0, 0; Q^{2})].$$

$$f_{1}^{a}(x, Q^{2}) \quad \text{no corresponding collinear pdf}$$

$$\sum_{q} e_{q_{v}} \int_{0}^{1} dx E^{q_{v}}(x, 0, 0) = \kappa,$$

.. from theoretical consideration and spectator model results:

→
$$f_{1T}^{\perp(0)a}(x;Q_L^2) = -L(x)E^a(x,0,0;Q_L^2),$$

Lensing function

$$L(x) = \frac{K}{(1-x)^{\eta}}$$

[Bacchetta, Radici - PRL 107, 212001 (2011)

Results comparison: Pavia 2011

Azimuthal asymmetries

$$\begin{split} A_{UT}^{\sin(\phi_{h}-\phi_{S})}(x,z,P_{T}^{2},Q^{2}) \\ &= -\frac{M_{1}^{2}(M_{1}^{2}+\langle k_{\perp}^{2}\rangle)}{\langle P_{\text{Siv}}^{2}\rangle^{2}} \frac{zP_{T}}{M} \left(z^{2}+\frac{\langle P_{\perp}^{2}\rangle}{\langle k_{\perp}^{2}\rangle}\right)^{3} e^{-z^{2}P_{T}^{2}/\langle P_{\text{Siv}}^{2}} \\ &\times \frac{\sum_{a}e_{a}^{2}f_{1T}^{\perp(0)a}(x;Q^{2})D_{1}^{a}(z;Q^{2})}{\sum_{a}e_{a}^{2}f_{1}^{a}(x;Q^{2})D_{1}^{a}(z;Q^{2})}, \end{split}$$

Hermes, Compass, Jlab data

χ^2 /d.o.f. is 1.323.	$\sqrt{2}$ /d.o.f. is 1.323. The errors are statistical and correspond to $\Delta \chi^2 = 1$								
C^{u_v}	C^{d_v}	$C^{ar{u}}$	$C^{\bar{d}}$						
-0.229 ± 0.002	1.591 ± 0.009	0.054 ± 0.107	-0.083 ± 0.122						
$M_1 (\text{GeV})$	K (GeV)	η	$lpha^{u_v}$ 0.783 ± 0.001						
0.346 ± 0.015	1.888 ± 0.009	0.392 ± 0.040							

Results comparison: TO - CA group

Same selection of data, considering all projections

 $A_{UT}^{\sin(\phi_h - \phi_S)}$

3 cases for evolution: no evolution, collinear twist-3, TMD-like evolution

 $\chi^2/dof \sim 0.94$

[Eur. Phys. J., A39:89–100, 2009]

Global fit of the HERMES, COMPASS and JLab experimental data on polarized reactions to extract the Sivers functions.

- →Hermes, Compass, Jlab data
- →using CSS evolution

→relating the first moment of the Sivers function to the twist-three Qiu-Sterman quark-gluon correlation function

$$f_{1T,\text{SIDIS}}^{\perp q(\alpha)}(x,b;Q) = \left(\frac{ib^{\alpha}}{2}\right)T_{q,F}(x,x,c/b_{*})\exp\left\{-\int_{c/b_{*}}^{Q}\frac{d\mu}{\mu}\left(A\ln\frac{Q^{2}}{\mu^{2}}+B\right)\right\}$$
$$\times \exp\left\{-b^{2}\left(g_{1}^{\text{sivers}}+\frac{g_{2}}{2}\ln\frac{Q}{Q_{0}}\right)\right\}$$

$$T_{q,F}(x,x,\mu) = N_q \frac{(\alpha_q + \beta_q)^{(\alpha_q + \beta_q)}}{\alpha_q^{\alpha_q} \beta_q^{\beta^q}} x^{\alpha_q} (1-x)^{\beta_q} f_{q/A}(x,\mu)$$

[Echevarria et al. - Phys. Rev. D.89.074013 (2014)]

 $T_{qF}(x, x, \mu) \rightarrow$ "collinear counterpart" of the Sivers function

FIG. 11 (color online). Qiu-Sterman function $T_{q,F}(x, x, Q)$ for u, d and s flavors at a scale $Q^2 = 2.4 \text{ GeV}^2$, as extracted by our simultaneous fit of JLab, HERMES and COMPASS data.

[Echevarria et al. - Phys. Rev. D.89.074013 (2014)]