BChPT x I/Nc: masses and currents

Jose L. Goity

Hampton University and Jefferson Lab

OUTLINE

- General motivation
- The need for combining BChPT and I/Nc
- BChPT $\times \mathrm{I} / \mathrm{Nc}$: brief basics
- Masses, sigma terms
- Vector currents in $\mathrm{SU}(3)$
- Axial currents in $\mathrm{SU}(3)$
- Summary, comments

MOTIVATION

- QCD has small scales:
i) SChSB gives nearly massless GBs (small quark masses)
ii) emergent small scale at large Nc : $m_{\Delta}-m_{N}=\mathcal{O}\left(1 / N_{c}\right)$
- All the small scales MUST be treated consistently in any EFT: in QCD we need to combine ChPT with the I/Nc expansion!
- There is broad evidence that most aspects of the large Nc limit survive for Nc as small as 3: phenomenological observations and LQCD at $\mathrm{Nc}>3$.
- Enhanced symmetries in large $\mathrm{Nc}: \mathrm{SU}(3)$ to $\mathrm{U}(3)$ in mesons; spin-flavor $\mathrm{SU}(6)$ in baryons.
- meson-meson interactions suppressed; meson-baryon interactions can be enhanced by a factor $\sqrt{N_{c}}$
- Very interesting case BChPT and the I/Nc expansion: BChPT x I/Nc

The need for combining BChPT and I/Nc

Ordinary BChPT (only $\mathrm{S}=1 / 2$ baryons) has poor convergence
$g_{\pi N}$ is large: need for large CTs
Inclusion of $\mathrm{S}=3 / 2$ baryons gives significant improvement in convergence: [Jenkins \& Manohar; many others]

QCD at large N_{c} :

$$
\begin{aligned}
& F_{\pi}=\mathcal{O}\left(\sqrt{N_{c}}\right) \\
& m_{B}=\mathcal{O}\left(N_{c}\right) \\
& g_{A}=\mathcal{O}\left(N_{c}\right) \Rightarrow g_{\pi N}=\mathcal{O}\left(N_{c}{ }^{\frac{3}{2}}\right)
\end{aligned}
$$

well defined large N_{c} limit imposes constraints!

Ordinary BChPT violates $1 / N_{c}$ power counting

- Emergent dynamical spin-flavor symmetry
[Gervais \& Sakita; Dashen \& Manohar] last millenium

$\sim \frac{k^{i} k^{\prime j}}{k_{0}} \frac{\stackrel{g}{g}_{A}^{2} N_{c}^{2}}{F_{\pi}^{2}}\left\langle B^{\prime}\right|\left[X^{i a}, X^{j b}\right]|B\rangle$
must be order N_{c}^{0}
$X^{i a}$ axial current
$\left[X^{i a}, X^{j b}\right]=\mathcal{O}\left(1 / N_{c}\right) \quad$ key requirement at large Nc
$\left\{T^{a}, S^{i}, X^{i a}\right\}$ generate contracted $S U\left(2 N_{f}\right)$ dynamical symmetry
classify baryons in multiplets of $S U\left(2 N_{f}\right)$ with generators $\left\{T^{a}, S^{i}, G^{i a}\right\}$

$$
G^{i a}=N_{c} X^{i a}
$$

ground state baryons: tower with $S=\frac{1}{2} \cdots \frac{N_{c}}{2}$
$\frac{1}{N_{c}}$ expansion as spin-flavor operator product expansion
$\left\langle B^{\prime}\right| \hat{O}_{Q C D}|B\rangle=\sum_{n} C_{n} \frac{1}{N_{c}^{\nu-1}}\left\langle B^{\prime}\right| \hat{O}_{n}|B\rangle$
O_{n} : tensor operator product of spin-flavor generators and momenta ν_{n} : spin-flavor n-bodyness of O_{n}

> Example: mass operator in chiral limit: $H_{Q C D} \Rightarrow N_{c} m_{0}+C_{H F} \frac{1}{N_{c}} \hat{S}^{2}+\mathcal{O}\left(\frac{1}{N_{c}^{3}}\right) \hat{S}^{4}+\cdots$ expansion is in $1 / N_{c}^{2}, m_{\Delta}-m_{N}=\mathcal{O}\left(\frac{1}{N_{c}}\right)$

$$
\begin{aligned}
& \text { A test: } g_{A} s \\
& \frac{g_{A}^{N \Delta}}{g_{A}^{N}}=1+\mathcal{O}\left(\frac{1}{N_{c}^{2}}\right) \text { [Dashen \& Manohar] } \\
& g_{A}^{N}=-1.2724 \pm 0.0023 \quad g_{A}^{N \Delta}=-1.235 \pm 0.011
\end{aligned}
$$

- BChPT x I/Nc: brief basics

- $m_{B}=\mathcal{O}\left(N_{c}\right) \Rightarrow \mathrm{HB}$ expansion is a $1 / N_{c}$ expansion
- Lagrangians built with chiral and spin-flavor tensor operators:

$$
\begin{aligned}
& \mathbf{B}^{\dagger} T_{\chi} \otimes T_{S F} \quad \mathbf{B} \\
& \mathbf{B}=\left(\begin{array}{l}
B_{S=1 / 2} \\
B_{S=3 / 2} \\
\vdots \\
B_{S=N_{c} / 2}
\end{array}\right) \quad \text { GS tower of baryon fields }
\end{aligned}
$$

T_{χ} chiral tensor $\quad T_{S F}$ spin-flavor tensor product of $\mathrm{SU}(6)$ generators
chiral and $1 / N_{c}$ power counting determined by operators
LECs: chosen to be $\mathcal{O}\left(N_{c}^{0}\right)$, have a $1 / N_{c}$ expansion themselves each Lagrangian term has a well defined leading chiral and $1 / N_{c}$ power need to link chiral and $1 / N_{c}$ expansions: small mass scale $\Delta_{H F}=m_{3 / 2}-m_{1 / 2}$
ξ expansion: $\xi=\mathcal{O}\left(1 / N_{c}\right)=\mathcal{O}(p)$

Lagrangians in ξ expansion

$$
\begin{aligned}
\mathcal{L}_{B}^{(1)}= & \mathbf{B}^{\dagger}\left(i D_{0}-\frac{C_{H F}}{N_{c}} \hat{S}^{2}-\stackrel{\circ}{g}_{A} u^{i a} G^{i a}+\frac{c_{1}}{2 \Lambda} \hat{\chi}_{+}\right) \mathbf{B} \\
\mathcal{L}_{B}^{(2)} & =\mathbf{B}^{\dagger}\left\{\left(-\frac{1}{2 N_{c} m_{0}}+\frac{w_{1}}{\Lambda}\right) \vec{D}^{2}+\left(\frac{1}{2 N_{c} m_{0}}-\frac{w_{2}}{\Lambda}\right) \tilde{D}_{0}^{2}+\frac{c_{2}}{\Lambda} \chi_{+}^{0}\right. \\
& +\frac{C_{1}^{A}}{N_{c}} u^{i a} S^{i} T^{a}+\frac{C_{2}^{A}}{N_{c}} \epsilon^{i j k} u^{i a}\left\{S^{j}, G^{k a}\right\} \\
& +\kappa \epsilon^{i j k} F_{+i j}^{a} G^{k a}+\rho_{0} F_{-0 i}^{0} S^{i}+\rho_{1} F_{-0 i}^{a} G^{i a} \\
& \left.+\frac{\tau_{1}}{N_{c}} u_{0}^{a} G^{i a} D_{i}+\frac{\tau_{2}}{N_{c}^{2}} u_{0}^{a} S^{i} T^{a} D_{i}+\frac{\tau_{3}}{N_{c}} \nabla_{i} u_{0}^{a} S^{i} T^{a}+\tau_{4} \nabla_{i} u_{0}^{a} G^{i a}+\cdots\right\} \mathbf{B} \\
\mathcal{L}_{B}^{(3)} & =\mathbf{B}^{\dagger}\left\{\frac{c_{3}}{N_{c} \Lambda^{3}} \hat{\chi}_{+}^{2}+\frac{h_{1} \Lambda}{N_{c}^{3}} \hat{S}^{4}+\frac{h_{2}}{N_{c}^{2} \Lambda} \hat{\chi} \hat{S}^{2}+\frac{h_{3}}{N_{c} \Lambda} \chi_{+}^{0} \hat{S}^{2}+\frac{h_{4}}{N_{c} \Lambda} \chi_{+}^{a}\left\{S^{i}, G^{i a}\right\}\right. \\
& +\frac{C_{3}^{A}}{N_{2}^{2}} u^{i a}\left\{\hat{S}^{2}, G^{i a}\right\}+\frac{C_{4}^{A}}{N_{c}^{2}} u^{i a} S^{i} S^{j} G^{j a} \\
& +\frac{D_{1}^{A}}{\Lambda^{2}} \chi_{+}^{0} u^{i a} G^{i a}+\frac{D_{2}^{A}}{\Lambda^{2}} \chi_{+}^{a} u^{i a} S^{i}+\frac{D_{3}^{A}(d)}{\Lambda^{2}} d^{a b c} \chi_{+}^{a} u^{i b} G^{i c}+\frac{D_{3}^{A}(f)}{\Lambda^{2}} f^{a b c} \chi_{+}^{a} u^{i b} G^{i c} \\
& \left.+g_{1}^{E}\left[D_{i}, E_{+i a} T^{a}\right]+\frac{1}{N_{c}} g_{2}^{E}\left[D_{i}, E_{+i a} S^{j} G^{j a}\right]+\kappa_{1} \frac{1}{N_{c}} B_{+}^{i a} S^{i} T^{a}+\cdots\right\} \mathbf{B} \\
\mathcal{L}_{B}^{(4)} & =\mathbf{B}^{\dagger} \frac{1}{2 \Lambda}\left\{\frac{1}{\Lambda^{2}}\left(\kappa_{2} \chi_{+}^{0} B_{+}^{i a} G^{i a}+\kappa_{3} d^{a b c} \chi_{+}^{a} B_{+}^{i b} G^{i c}+\kappa_{4} \chi_{+}^{a} B_{+}^{i a} S^{i}\right)\right. \\
& \left.+\kappa_{5} \frac{1}{N_{c}^{2}} B_{+}^{i a}\left\{\hat{S}^{2}, G^{i a}\right\}+\kappa_{6} \frac{1}{N_{c}} B_{+}^{i a} S^{i} T^{a}+\kappa_{7} \frac{1}{N_{c}^{2}} B_{+}^{i a} S^{i} S^{j} G^{j a}+\cdots\right\} \mathbf{B}
\end{aligned}
$$

Loops and the non-commutativity of the expansions

contains non-analytic terms:

$$
\left(M_{\pi}^{2}-\left(m_{\Delta}-m_{N}\right)^{2}\right)^{\frac{3}{2}}, \tanh ^{-1}\left(\frac{\left(m_{\Delta}-m_{N}\right)}{\sqrt{1 /\left(-M_{\pi}^{2}+\left(m_{\Delta}-m_{N}\right)^{2}\right.}}\right)
$$

link $1 / N_{c}$ and chiral expansions:

$$
\xi \text { expansion: } \xi=\mathcal{O}\left(1 / N_{c}\right)=\mathcal{O}(p)
$$

equivalent to not expanding non-analytic terms

$$
\nu_{\xi}=1+3 L+\frac{n_{\pi}}{2}+\sum_{i} n_{i}\left(\nu_{O_{i}}+\nu_{p_{i}}-1\right)
$$

- Masses, sigma terms: $\mathrm{SU}(3)$

WF renormalization factor is $\mathcal{O}\left(N_{c}\right)$! plays key role in N_{c} power counting consistency in loops

- mass corrections are $\mathcal{O}\left(N_{c}\right)$ (terms proportional to $M_{G B}^{3}$)
- SU(3) mass splitting of course $\mathcal{O}\left(N_{c}^{0}\right)$
M_{π} dependency from LQCD $\left(M_{K} \sim 500 \mathrm{MeV}\right)$:
poor convergence above $M_{\pi} \sim 250 \mathrm{MeV}$

Mass relations

GMO

$$
\begin{aligned}
& \Delta_{G M O}=\mathrm{Th}:\left(\frac{g_{A}^{N}(L O)}{g_{A}^{N}}\right)^{2} 44 \pm 5 \mathrm{MeV} \text { vs Exp: } 25.6 \pm 1.5 \mathrm{MeV} \\
& \Delta_{G M O}=-\left(\frac{\mathfrak{g}_{A}}{4 \pi F_{\pi}}\right)^{2}\left(\frac{2 \pi}{3}\left(M_{K}^{3}-\frac{1}{4} M_{\pi}^{3}-\frac{2}{\sqrt{3}}\left(M_{K}^{2}-\frac{1}{4} M_{\pi}^{2}\right)^{\frac{3}{2}}\right)\right. \\
& \left.+\frac{2 C_{H F}}{N_{c}}\left(-M_{K}^{2} \log M_{K}^{2}+\frac{1}{4} M_{\pi}^{2} \log M_{\pi}^{2}+\left(M_{K}^{2}-\frac{1}{4} M_{\pi}^{2}\right) \log \left(\frac{4}{3} M_{K}^{2}-\frac{1}{3} M_{\pi}^{2}\right)\right)\right)+\mathcal{O}\left(1 / N_{c}^{3}\right) \\
& =37 \mathrm{MeV}+\mathcal{O}\left(1 / N_{c}^{3}\right) \\
& \quad \text { in large } N_{c}, \Delta_{G M O} \text { is } \mathcal{O}\left(1 / N_{c}\right)
\end{aligned}
$$

ES

$$
\begin{aligned}
& \Delta_{E S}=m_{\Xi^{*}}-2 m_{\Sigma^{*}}+m_{\Delta}= \\
& \text { Th: }-\left(\frac{g_{A}^{N}(L O)}{g_{A}^{N}}\right)^{2} 6.5 \mathrm{MeV} \text { vs Exp: }-4 \pm 7 \mathrm{MeV}=\mathcal{O}\left(1 / N_{c}\right)
\end{aligned}
$$

GR

$\Delta_{G R}=m_{\Xi^{*}}-m_{\Sigma^{*}}-\left(m_{\Xi}-m_{\Sigma}\right)=0, \quad$ Exp: $21 \pm 7 \mathrm{MeV}$,
$\Delta_{G R}=\frac{h_{2}}{\Lambda} \frac{12}{N_{c}}\left(M_{K}^{2}-M_{\pi}^{2}\right)+\underbrace{\mathrm{O}\left(1 / N_{c}\right) \text { UV finite no-analytic terms }}_{\sim 68 \mathrm{MeV} \times\left(\frac{g_{\Lambda}^{N}(L O)}{g_{\Lambda}^{A}}\right)^{2}})$
$\pi N \quad \sigma$-term

$$
\begin{gathered}
\sigma_{q}(B)=\frac{\partial}{\partial m_{q}} M_{B}=m_{q}\langle B| \bar{q} q|B\rangle \\
\hat{\sigma}(B)=m_{q}\langle B| \bar{u} u+\bar{d} d-2 \bar{s} s|B\rangle \quad \sigma_{\pi N}=\hat{\sigma}+\frac{2 \hat{m}}{m_{s}} \sigma_{s} . \\
\sigma_{\pi N} \sim 60 \mathrm{MeV} \text { from } \pi-N \text { analysis } \\
\hat{\sigma}=\underbrace{\searrow}_{\substack{\uparrow \\
\underbrace{\frac{\hat{m}-\hat{m}}{m_{s}}\left(\frac{N_{c}+3}{6} m_{\Xi}+\frac{2 N_{c}-3}{3} m_{\Sigma}-\frac{5 N_{c}-3}{6} m_{N}\right)}_{\mathcal{O}\left(N_{c}\right)}+\Delta \hat{\sigma} \\
@ N_{c}=3: \sim 23 \mathrm{MeV}} \mathcal{O}\left(N_{c}\right)} \quad 2.3 \times 10^{5} \mathrm{MeV}^{3} \times \frac{g_{A}^{2}}{F_{\tilde{\pi}}} \sim 40 \mathrm{MeV} \\
40 \% \text { from } 8 \text { in loop and } 60 \% \text { from } 10
\end{gathered}
$$

- $\frac{\Delta \sigma_{8}}{\Delta_{G M O}} \sim-13$: independent of g_{A} / F_{π}, virtually independent of $C_{H F}$, mild dependence on M_{K}, M_{π} !
- $\frac{\Delta \sigma_{8}}{\Delta_{G M O}}$ changes little if one turns off decuplet!
but g_{A} from $\Delta_{G M O}$ too large, clashes with axial couplings

$$
\hat{\sigma}=70 \pm 9 \mathrm{MeV} \quad \oplus \quad L Q C D \quad \sigma_{\pi N}=69 \pm 10 \mathrm{MeV}
$$

[LQCD: Alexandrou et al (2016)]

Quark mass dependencies of σ terms

Historically misleading statement:
" σ terms gives the quark mass contribution to the baryon mass" only true in the linear regime $\sigma \propto m_{q}$

	$\begin{aligned} & \hline \frac{\dot{g}_{A}}{F_{\pi}} \end{aligned}$	$\frac{M_{0}}{N_{c}}$	$C_{H F}$	c_{1}	c_{2}	h_{2}	h_{3}	h_{4}	α	β
Fit	MeV^{-1}	MeV	MeV						MeV	MeV
1	0.0126(2)	364(1)	166(23)	-1.48(4)	0	0	0.67(9)	0.56(2)	-1.63(24)	2.16(22)
2	0.0126(3)	213(1)	179(20)	-1.49 (4)	$-1.02(5)$	-0.018(20)	0.69(7)	0.56(2)	-1.62(24)	2.14(22)
3	0.0126*	262(30)	147(52)	$-1.55(3)$	-0.67 (8)	0	0.64(3)	0.63(3)	-1.63*	2.14*
	$\Delta_{G M O}^{\text {phys }}$	σ_{8}	$\Delta \sigma_{8}$	$\hat{\sigma}$	$\sigma_{\pi N}$	σ_{s}	σ_{3}	$\sigma_{u+d}(p-n)$		
	MeV									
1	25.6(1.1)	-583(24)	-382(13)	$70(3)(6)$	-	-	-1.0(3)	-1.6(6)		
2	25.5(1.5)	-582(55)	-381 (20)	70(7)(6)	69(8)(6)	-3(32)	-1.0(4)	-1.6(8)		
3	25.8*	-615(80)	-384(2)	74(1)(6)	65(15)(6)	$-121(15)$	-	-		

NNLO tree level relation between σ terms

GMO, ES and Gursey-Radicati should be very good additional ones not suppressed in $1 / N_{c}$: need test-- LQCD some day...

$$
\begin{aligned}
& \sigma_{N m_{s}}=\frac{m_{s}}{8 \hat{m}}\left(-4\left(N_{c}-1\right) \sigma_{N \hat{m}}+\left(N_{c}+3\right) \sigma_{\Lambda \hat{m}}+3\left(N_{c}-1\right) \sigma_{\sum \hat{m}}\right) \\
& \sigma_{\Lambda m_{s}}=\frac{m_{s}}{8 \hat{m}}\left(-4\left(N_{c}-3\right) \sigma_{N \hat{m}}+\left(N_{c}-5\right) \sigma_{\Lambda \hat{m}}+3\left(N_{c}-1\right) \sigma_{\Sigma \hat{m}}\right) \\
& \sigma_{\Sigma m_{s}}=\frac{m_{s}}{8 \hat{m}}\left(-4\left(N_{c}-3\right) \sigma_{N \hat{m}}+\left(N_{c}+3\right) \sigma_{\Lambda \hat{m}}+\left(3 N_{c}-11\right) \sigma_{\Sigma \hat{m}}\right) \\
& \sigma_{\Delta m_{s}}=\frac{m_{s}}{8 \hat{m}}\left(-4\left(N_{c}-1\right) \sigma_{\Delta \hat{m}}-5\left(N_{c}-3\right)\left(\sigma_{\Lambda \hat{m}}-\sigma_{\Sigma \hat{m}}\right)+4 N_{c} \sigma_{\Sigma^{*} \hat{m}}\right) \\
& \sigma_{\Sigma^{*} m_{s}}=\frac{m_{s}}{8 \hat{m}}\left(-\left(N_{c}-3\right)\left(4 \sigma_{\Delta \hat{m}}+5 \sigma_{\Lambda \hat{m}}-5 \sigma_{\Sigma \hat{m}}\right)+4\left(N_{c}-2\right) \sigma_{\Sigma^{*} \hat{m}}\right) .
\end{aligned}
$$

$1 / N_{c}$ power counting for currents at one-loop

$$
\begin{aligned}
\mathrm{UV} \operatorname{div} & =\frac{1}{(4 \pi)^{2}}\left(\frac{\hat{g}_{A}}{F_{\pi}}\right)^{2}\left\{\frac{1}{2}\left(\lambda_{\epsilon}+1\right) M_{a b}^{2}\left[G^{i a},\left[G^{i b}, \Gamma\right]\right]\right. \\
& \left.+\frac{1}{3}\left(\lambda_{\epsilon}+2\right)\left(2\left[\left[G^{i a}, \Gamma\right],\left[\delta \hat{m},\left[\delta \hat{m}, G^{i a}\right]\right]\right]+\left[\left[\Gamma,\left[\delta \hat{m}, G^{i a}\right]\right],\left[\delta \hat{m}, G^{i a}\right]\right]\right)\right\}
\end{aligned}
$$

- Individual diagrams violate N_{c} power counting
- WF renormalization key for consistency
- Diagrams where current couples to GBs or vertices baryon-GB do not violate N_{c} power counting

Vector Currents

SU(3) breaking corrections to the vector currents:

SU(3) breaking to vector charges

Charge	$\frac{f_{1}}{f_{1}^{S U(3)}}$	$\begin{gathered} \frac{f_{1}}{f_{1}^{S U(3)}}-1 \\ \substack{\text { [Flores-Mendieta \& JLG: 2014] } \\ \text { HBChPT } \times 1 / N_{c}} \end{gathered}$	[Villadoro:2006] HBChPT with 8 and 10	[Lacour et al: 2007]	[Geng et al:2009] RBChPT with 8 and 10
Λp	0.952	-0.048	-0.080	-0.097	-0.031
$\Sigma^{-} n$	0.966	-0.034	-0.024	0.008	-0.022
$\Xi^{-} \Lambda$	0.953	-0.047	-0.063	-0.063	-0.029
$\Xi^{-} \Sigma^{0}$	0.962	-0.038	-0.076	-0.094	-0.030

LQCD

[Shanahan et al, (2015)]

$$
f_{1}^{\Sigma \rightarrow N}(0)=-0.9662(43), \quad f_{1}^{\Xi \rightarrow \Sigma}(0)=+0.9742(28)
$$

[S. Sasaki, (2017)]

Charge radii

Two possible counter terms $\propto T^{a}$ needed to subtract UV div $\propto S^{i} G^{i a}$ finite renormalization

$$
\text { fix LECs with } p \text { and } n \text { charge radii }
$$

$g_{1}^{E}=1.48$			
	$g_{2}^{E}=0.74$		
Baryon	$\left\langle r^{2}\right\rangle_{\mathrm{Th}}\left[\mathrm{fm}^{2}\right]$	Exp	CT
p	0.7658	0.7658 ± 0.01068	0.66
n	-0.1161	-0.1161 ± 0.0022	-0.049
Σ^{-}	0.74	0.61 ± 0.16	0.61

Baryon $\left\langle r^{2}\right\rangle_{\mathrm{Th}}\left[f m^{2}\right] \quad\left\langle r^{2}\right\rangle_{\mathrm{CT}}\left(\mu=m_{\rho}\right)\left[f m^{2}\right]$

Charge form factors at low Q^{2}

Interesting lesson:
Curvature of FFs ($\frac{d^{2}}{d Q^{2}} G^{E}\left(Q^{2}\right)$) from loop non-analytic terms Correct signs, but too small!; cancellation between diags B and E

Detailed long distance (peripheral) charge distribution consistent with N_{c} power counting [Alarcon, Granados, Weiss]

Magnetic moments

LO: only one operator : $\kappa \mu_{N} G^{i a}$

Ratio	Exp	LO
p / n	-1.46	-1.5
Σ^{+} / Σ^{-}	-2.12	-3.
Λ / Σ^{+}	-0.25	$-1 / 3$
p / Σ^{+}	1.14	1.
Ξ^{0} / Ξ^{-}	1.92	2.
p / Ξ^{0}	-2.23	-1.5
Δ^{++} / Δ^{+}	1.37	2.
Ω^{-} / Δ^{+}	-0.75	-1.
p / Δ^{+}	1.03	1.

SU(3) breaking is important

NNLO Counterterms

$$
\begin{aligned}
& \frac{1}{\Lambda} \kappa_{1} \frac{1}{N_{c}} B_{+}^{i a} S^{i} T^{a}+\frac{1}{2 \Lambda}\left\{\frac{1}{\Lambda^{2}}\left(\kappa_{2} \chi_{+}^{0} B_{+}^{i a} G^{i a}+\kappa_{3} d^{a b c} \chi_{+}^{a} B_{+}^{i b} G^{i c}+\kappa_{4} \chi_{+}^{a} B_{+}^{i a} S^{i}\right)\right. \\
+\quad & \left.\kappa_{5} \frac{1}{N_{c}^{2}} B_{+}^{i a}\left\{\hat{S}^{2}, G^{i a}\right\}+\kappa_{6} \frac{1}{N_{c}^{2}} B_{+}^{i a} S^{i} S^{j} G^{j a}\right\}
\end{aligned}
$$

NNLO Magnetic moments: 1-loop

LECs	
κ	2.00
κ_{1}	3.36
κ_{2}	0
κ_{3}	1.69
κ_{4}	0.61
κ_{5}	-5.67
κ_{6}	0

Octet	$\mu_{\mathrm{Th}}\left[\mu_{N}\right]$	$\mu_{\operatorname{Exp}}\left[\mu_{N}\right]$
p	2.724	2.79285
n	-1.92	-1.91304
$\Sigma+$	2.457	2.458
$\Sigma 0$	0.717	-
$\Sigma-$	-1.02	-1.16
Λ	-0.60	-0.61
$\Xi 0$	-1.29	-1.25
$\Xi-$	-0.65	-0.65

Decuplet	$\mu_{\mathrm{Th}}\left[\mu_{N}\right]$	$\mu_{\operatorname{Exp}}\left[\mu_{N}\right]$
Δ^{++}	5.1	3.7
Δ^{+}	2.5	2.7
Δ^{0}	-0.13	-
Δ^{-}	-2.8	-
Σ^{*+}	2.7	-
$\Sigma^{* 0}$	0.1	-
Σ^{*-}	-2.5	-
$\Xi^{* 0}$	0.3	-
Ξ^{*-}	-2.2	-
Ω	-2.0	-2.0

Magnetic radii

$\kappa_{0}=10.5$			
Baryon	$\left\langle r^{2}\right\rangle_{\text {Exp }}\left[\mathrm{fm}^{2}\right]$	$\left.<r^{2}\right\rangle_{\mathrm{Th}}\left[\mathrm{fm}^{2}\right]$	$<r^{2}>_{\text {Loop }}\left(\mu=m_{\rho}\right)\left[\mathrm{fm}^{2}\right]$
		0.8	
p	0.78	0.86	0.28
n	0.87	0.86	0.32

Axial-vector currents

[Flores-Mendieta, Hernandez \& Hofmann; Fernando \& JLG] [SU(2): A. Calle-Cordon \& JLG]
Definition of axial couplings

$$
\left\langle B^{\prime}\right| A^{i a}|B\rangle=\frac{6}{5} g_{A}^{a B B^{\prime}}\left\langle B^{\prime}\right| G^{i a}|B\rangle
$$

cancellations to accuracy $1 / N_{c}^{2}$ in large N_{c} persist at $N_{c}=3$

Fit to $\operatorname{SU}(3) \mathrm{LQCD} g_{A}$'s

Key observed feature:@ fixed M_{K}, g_{A} 's have little dependence on M_{π}

```
SU(3) calculation by Cyprus Group [Alexandrou et al, (2016)]
g}\mp@subsup{A}{}{3BB}\mathrm{ and }\mp@subsup{g}{A}{8BB
```

Fit	$\chi_{\text {dof }}^{2}$	$\stackrel{\circ}{g}_{A}$	δg_{A}°	C_{1}^{A}	C_{2}^{A}	C_{3}^{A}	C_{4}^{A}	D_{1}^{A}	D_{2}^{A}	D_{3}^{A}	D_{4}^{A}
LO	3.9	1.35	\ldots								
NLO Tree	0.91	1.42	\ldots	-0.18	\ldots	\ldots	\ldots	\ldots	0.009	\ldots	\ldots
NLO Full	1.08	1.02	0.15	-1.11	0.	1.08	0.	-0.56	-0.02	-0.08	0.
	1.13	1.04	0.08	-1.17	0.	1.15	0.	-0.59	-0.02	-0.09	0.
	1.19	1.06	0.	-1.23	0.	1.21	0.	-0.62	-0.03	-0.09	0.

[I. Fernando \& JLG (2018)]

Mild M_{π} dependence of axial couplings cannot be described without the cancellations of N_{c} violating terms

Observations on axial couplings

- show most prominently the need for theory consistent with $1 / N_{c}$ expansion
- natural fit at one-loop of the axial couplings from SU(3) LQCD
- impossible to fit g_{A} s of octet when turning off decuplet
- in $\operatorname{SU}(3): g_{A}^{N}(L O) / g_{A}^{N} \sim 0.8$ from fit to axial couplings and from $\Delta_{G M O}$
- numerous relations among axial couplings with calculable corrections

Summary and comments

- BChPT x 1/Nc improves convergence by eliminating large Nc power violating terms from loop corrections.
- In baryons it requires implementing a dynamical spin-flavor symmetry, broken at sub-leading orders in 1/Nc: use to implement BChPT x 1/Nc
- It affects every observable
- Convergence improvement is especially important in $\operatorname{SU}(3)$.
- New insights on σ terms.
- Axial couplings are particularly important tests of the approach.
- New results for the vector currents.
- Need for more LQCD results at different values of $m_{u, d, s}$.
- Works in progress:
i) Compton scattering [with Ishara Fernando and Cintia Willemyns].
ii) $\pi-N$ scattering [with Dulitha Jayakodige].

