

Main page

Contents

Featured content

Current events

Random article

Wikipedia store

About Wikipedia

Community portal

Recent changes Contact page

Interaction

Help

Donate to Wikipedia

Article

Talk

Read	Edit	View history	Search Wikipedia

The Three-Body Problem (novel)

From Wikipedia, the free encyclopedia

For other uses, see Three-body problem (disambiguation). "San Ti" redirects here. For the martial arts stance, see Xing Yi Quan.

The Three-Body Problem (Chinese: 三体; literally: 'Three-Body'; pinyin: *sān tī*) is a science fiction novel by the Chinese writer Liu Cixin. It is the first novel of the *Remembrance of Earth's Past* (Chinese: 地球往事) trilogy, but Chinese readers generally refer to the whole series by the title of this first novel.^[1] The second and third novels in the trilogy are titled *The Dark Forest* and *Death's End*. The title of the first novel refers to the three-body problem in orbital mechanics.

The work was serialized in *Science Fiction World* in 2006, published as a book in 2008 and became one of the most popular science fiction pougla in Chines [2] It received the Chinese Science

The Three-Body Problem

Not logged in Talk Contributions Create account Log in

Q

the Trisolaran invasion force has departed, but will not reach Earth for 450 years, as they are traveling at 1/100-th of lightspeed....society splits into factions, with the Adventists seeking complete destruction of humanity by the Trisolarans, and the Redemptionists seeking to help the Trisolarans to find a computational solution to the three-body problem, which plagues their home planet...

the three-body problem: nuclear physics

Piarullia, Baroni, Schiavilla et al. [2017]

the three-body problem: nuclear physics

Piarullia, Baroni, Schiavilla et al. [2017]

the three-body problem: from nuclei to atoms - Efimov physics

Consider two non-relativistic bosons in the unitary limit: $p \cot \delta = -\frac{1}{a} + \frac{rp^2}{2} + \cdots = 0$

The two-body scattering amplitude will have a pole, right at threshold:

$$\mathcal{M} \sim \frac{1}{p \cot \delta - ip} = \frac{1}{ip}$$

Efimov [1970] predicted an infinite tower of geometrically-separated three-body bound states:

$$E_N = E_0 \lambda^{-2N}, \qquad \lambda = 22.69438\dots$$

the three-body problem: from nuclei to atoms - Efimov physics

a somewhat curious observation lead to a wide range of prediction and strong overlap between two seemingly disconnected fields: atomic and nuclear physics

the three-body problem: from nuclei to atoms - Efimov physics

Vitaly Efimov

the three-body problem: hadron spectroscopy

Most excited lie above three-particle thresholds and couple strongly onto these states... ...just look at the first excited states of the simplest QCD states

the three-body problem: hadron spectroscopy

Most excited lie above three-particle thresholds and couple strongly onto these states... ...just look at the first excited states of the simplest QCD states

the three-body problem: lattice QCD

How does the three-body problem creep its head in lattice QCD?

Lattice QCD in not "brute force"

Lattice QCD in not "brute force"

Lattice QCD

- Solution Wick rotation [Euclidean spacetime]: $t_M \rightarrow -it_E$
- Monte Carlo sampling
- quark masses: $m_q \to m_q^{\text{phys.}}$
- a lattice spacing: $a \sim 0.03 0.15$ fm
- finite volume

Lattice QCD

- Solution Wick rotation [Euclidean spacetime]: $t_M \rightarrow -it_E$
- Monte Carlo sampling
- quark masses: $m_q \rightarrow m_q^{\text{phys.}}$
- a lattice spacing: $a \sim 0.03 0.15$ fm
- finite volume

few-body systems in LQCD

few-body systems in LQCD

few-body systems in LQCD

Alternative approaches

Perturbative - Beane, Detmold, Savage, Tan

EFT driven - Rusetski, Hammer, et al.

Unitarity driven - Mai & Doring

Alternative approaches

Unitarity using all orders perturbation theory:

non-perturbative kernel including all diagrams not shown...

"yep, the left hand cut is there"

Unitarity using all orders perturbation theory:

$$i\mathcal{M} = \mathbf{X} + \mathbf{X} +$$

 $\rho \equiv \frac{p}{8\pi E} \sim \sqrt{s - s_{th}}$ square root singularity.

Unitarity using all orders perturbation theory:

$$i\mathcal{M} = \mathbf{X} + \mathbf{X} +$$

Unitarity using all orders perturbation theory:

$$i\mathcal{M} = \mathbf{X} + \mathbf{X} + \mathbf{X} + \mathbf{X} + \cdots$$

Unitarity using all orders perturbation theory:

Next, we want to consider two particles in a box, but before we do this we need to understand how one particle behaves.

Next, we want to consider two particles in a box, but before we do this we need to understand how one particle behaves.

Masses of stable states are exponentially close

Exponentially suppressed effects in 1+1D

$$\underbrace{\underbrace{V}}_{k_{z}} - \underbrace{\left[\frac{1}{L}\sum_{k_{z}} - \int \frac{dk_{z}}{2\pi}\right] \int \frac{dk_{0}}{2\pi} \frac{i}{k_{0}^{2} - k_{z}^{2} - m^{2} + i\epsilon}}_{k_{z}^{2} - k_{z}^{2} - m^{2} + i\epsilon}}$$

$$= \left[\frac{1}{L}\sum_{k_{z}} - \int \frac{dk_{z}}{2\pi}\right] \frac{1}{2\sqrt{k_{z}^{2} + m^{2}}}$$

$$= \int \frac{dk_{z}}{2\pi} \left[\sum_{n} e^{ik_{z}Ln} - 1\right] \frac{1}{2\sqrt{k_{z}^{2} + m^{2}}}$$

$$= \sum_{n \neq 0} \int \frac{dk_{z}}{2\pi} \frac{e^{ik_{z}Ln}}{2\sqrt{k_{z}^{2} + m^{2}}}$$

Exponentially suppressed effects in 1+1D

$$\underbrace{\underbrace{V}}_{n \neq 0} - \underbrace{\left[\frac{1}{L}\sum_{k_z} - \int \frac{dk_z}{2\pi}\right] \int \frac{dk_0}{2\pi} \frac{i}{k_0^2 - k_z^2 - m^2 + i\epsilon}}_{k_z^2 - k_z^2 - m^2 + i\epsilon}}$$
$$= \left[\frac{1}{L}\sum_{k_z} - \int \frac{dk_z}{2\pi}\right] \frac{1}{2\sqrt{k_z^2 + m^2}}$$
$$= \int \frac{dk_z}{2\pi} \left[\sum_n e^{ik_z Ln} - 1\right] \frac{1}{2\sqrt{k_z^2 + m^2}}$$
$$= \sum_{n \neq 0} \int \frac{dk_z}{2\pi} \frac{e^{ik_z Ln}}{2\sqrt{k_z^2 + m^2}}$$

Only the integral along the cut contributes... $\sim \sum_{n \neq 0} \int_{1}^{\infty} dq \frac{1}{\sqrt{q^2 - 1}} e^{-q \, mL|n|} \sim \frac{e^{-mL}}{\sqrt{mL}}$ *if mL >>1*

$$C_L^{2pt.}(P) = \underbrace{V} + \underbrace{V} + \underbrace{V} + \cdots + \underbrace{V} + \underbrace$$

$$C_{L}^{2pt.}(P) = \bigvee + \bigvee \bigvee + \cdots$$

$$\bigvee V + \cdots$$

$$\bigvee V = \frac{1}{L^{3}} \sum_{\mathbf{k}} \frac{iB_{\ell'm'} iB_{\ell m}}{(2\omega_{k})^{2}} \frac{i4\pi Y_{\ell m}(\hat{k})Y_{\ell'm'}(\hat{k})}{E - 2\omega_{k}} + \text{"smooth"} \quad [\mathbf{k} = 2\pi\mathbf{n}/L]$$

$$\bigcup on-shellness: E = 2\sqrt{k^{2} + m^{2}}$$
fixes the magnitude but not the direction of the momentum

$$C_{L}^{2pt.}(P) = \bigvee + \bigvee \bigvee + \cdots$$

$$\bigvee V = \frac{1}{L^{3}} \sum_{\mathbf{k}} \frac{iB_{\ell'm'} iB_{\ell m}}{(2\omega_{k})^{2}} \frac{i4\pi Y_{\ell m}(\hat{k}) Y_{\ell'm'}(\hat{k})}{E - 2\omega_{k}} + \text{"smooth"} \quad [\mathbf{k} = 2\pi\mathbf{n}/L]$$

$$= (iB_{\ell'm'}) \left(\left[\frac{1}{L^{3}} \sum_{\mathbf{k}}^{\mathrm{UV}} - \int_{\mathbf{k}}^{\mathrm{UV}} \right] \frac{1}{(2\omega_{k})^{2}} \frac{i4\pi Y_{\ell m}(\hat{k}) Y_{\ell'm'}(\hat{k})}{E - 2\omega_{k} + i\epsilon} \right) (iB_{\ell m}) + i\epsilon \text{ integral}$$

$$(ut-off dependence is exponentially suppressed)$$

$$freedom: one could subtract the PV integral,$$

$$C_L^{2pt.}(P) = \underbrace{V} + \underbrace{V} + \underbrace{V} + \cdots$$

$$C_L^{2pt.}(P) = \underbrace{V}_V + \underbrace{V}_V \underbrace{V}_V + \cdots$$
$$= C_{\infty}(P) + \cdots$$

Consider the finite-volume two-particle correlator (*E*~2*m*):

poles satisfy:
$$\det[F_2^{-1}(P,L) + \mathcal{M}_2(P^2)] = 0$$

🛱 Lüscher (1986, 1991)

- Rummukainen & Gottlieb (1995)
- 🖗 Kim, Sachrajda, & Sharpe/Christ, Kim & Yamazaki (2005)

Feng, Li, & Liu (2004); Hansen & Sharpe / RB & Davoudi (2012)
 RB (2014)

$\pi\pi$ scattering - (I=1 channel)

Dudek, Edwards & Thomas (2012) Wilson, RB, Dudek, Edwards & Thomas (2015)

Coupled-channel scattering - (I=0 channel)

The three-body scattering amplitude using all orders perturbation theory. Sum over all connected 3-to-3 diagrams...

any number of insertions leads to another integral equation

$$\begin{aligned} \mathcal{T} &= \mathcal{K}_{\mathrm{df},3} - \int \mathcal{K}_{\mathrm{df},3} \,\rho \,\mathcal{L} \,\mathcal{T} \\ \mathcal{L} &= \frac{1}{3} + \mathcal{M}_2 \rho - \mathcal{D} \rho \end{aligned}$$

Unitarity

Unitarity implies that the full amplitude satisfies: $2 \, \mathrm{Im} \mathcal{M} = \mathcal{M}^{\dagger} \mathcal{M}$

If add the disconnected pieces...

...it works...trust me...or trust these guys...

...or don't...do it yourself!

RB, Hansen, Sharpe & Szczepaniak (March 2019?)

Moving on to energies where two and three particles can go on-shell...

Moving on to energies where two and three particles can go on-shell...

Moving on to energies where two and three particles can go on-shell...

Near three-particle states

The *klm* basis has 1 + 4 + 6 = 11 d.o.f. ...also ok!

Near three-particle states

$$C_L^{2pt.}(P) = \underbrace{\bigvee_V}_V + \cdots$$

to avoid threshold singularities, we use PV prescriptions

Near three-particle states

$$C_L^{2pt.}(P) = \underbrace{\bigvee_V}_V + \cdots$$

Near three-particle states

$$C_{L}^{2pt.}(P) = \underbrace{v}_{v} + \underbrace{$$

Near three-particle states

Near three-particle states

Numerical checks - "isotropic approximation"

Consider the case where two-body system is an S-wave

$$[F_3^s]_{kp} = \frac{1}{L^3} \begin{bmatrix} \frac{F^s}{3} - F^s \frac{1}{1/(2\omega\mathcal{K}_2^s) + F^s + G^s} & F^s \end{bmatrix}_{kp}$$

Furthermore, consider the case where the K-matrix does not depend on the spectator momentum. Then the quantization condition reduces to:

$$F_3^{\text{iso}}(E, \vec{P}, L) = -1/\mathcal{K}_{\text{df},3}^{\text{iso}}(E^*)$$

Where:

$$F_3^{\rm iso}(E,L) = \sum_{k,p} \left[F_3^s\right]_{kp}$$

Numerical checks - "isotropic approximation"

Free states

Perturbative systems

Perturbative systems

Perturbative systems

Efimov-like physics

Efimov-like physics

Efimov-like physics

$$i\mathcal{M}_3(k,p) \sim \sum^k = i\Gamma(k) \frac{i}{s-s_B} i\Gamma(p)$$

Resonant systems

Unphysical solutions

Requiring states to be positively normed, imposes....

$$\left[\frac{\partial F_3^{\rm iso}(E,L,a)}{\partial E} + \frac{\partial 1/\mathcal{K}_{{\rm df},3}^{\rm iso}(E)}{\partial E}\right]_{E=E_n(L)} < 0$$

We found cases that clearly violate this

...we have ideas on possible explanations and solutions...

THE FUTURE IS OURS TO CREATE.

