#### IMPROVING THE MULTIPLICITY GENERATOR FOR THE EMPIRICALLY TRAINED HADRONIC EVENT REGENERATOR

Luisa Velasco, University of Dallas

<u>ODU</u>

Yasir Alanzi

Yaohang Li

Evan McClellan Wally Melnitchouk Nobuo Sato

<u>JLAB</u>

DAVIDSON Michelle Kuchera Evan Pritchard Michael Robertson



# OUTLINE

Background: Event Generators

#### $\circ$ ETHER

• Generative Adversarial Nets

Improvements: Ensemble
 Learning and Conditional
 Feature

○ Future: Interpolation

# EVENT GENERATORS

PYTHIA
 Lund String Model



http://home.thep.lu.se/~ torbjorn/Pythia.html

- Tools for experimental analysis
- Simulate hadronization processes
- Incomplete knowledge
  requires compromises
- Theory-dependent



### THE EMPIRICALLY TRAINED HADRONIC EVENT REGENERATOR (ETHER)

- No "baked in" theory to govern vertex interactions
- Trained on collision event data
- Generate samples from real data distribution
- Wider applications in phenomenological investigation
- Generative Adversarial Networks (GANs)



# GENERATIVE ADVERSARIAL NETWORKS [1]

- Powerful <u>unsupervised</u> model
- Adaptable
- $\odot$  2 neural networks
  - $\bigcirc$  Generator
  - **Discriminator**



#### GENERATIVE ADVERSARIAL NETWORKS [1] <u>Generator Training Step</u> Generator update weights Z ○ Adversarial training $x_{g}$ Discriminator ○ Alternating training steps $\bigcirc$ *D* trained on true data probability **Discriminator Training Step** $\bigcirc$ *G* evaluated by *D* Discriminator ○ Once fully trained, generator used independently $\chi_t$ probability update weights

### **ENSEMBLE LEARNING** [3]

 Multiple models learning to solve the same problem
 "Bagging"

OLearn rare events faster

○ Reduce variance

 $\bigcirc$  Parallel training

 $\bigcirc$  Reduce training time



#### ENSEMBLE LEARNING





- $\circ$  1 GAN
  - o 100,000 event data set
  - 0 10,000 epochs
  - $\circ$  Training time: ~5 days
  - 10,000 events generated

- $\circ$  10 GANs
  - o 10,000 event data sets
  - 0 10,000 epochs
  - $\odot~$  Training time for 1 GAN: ~14 hr
  - 10 x 10,000 events generated and averaged

# CONDITIONAL FEATURE: CENTER OF MASS ENERGY [2]

- Event data changes as a function of energy
- Condition GAN on CoM energy
- $\bigcirc$  Labels y and y' concatenated to inputs of D and G.
  - $\bigcirc$  Continuous labels
  - Discrete labels
- Adds another degree of freedom







# 0

# FUTURE: INTERPOLATION

- Goal: Continuous conditional energy feature
- $\circ~$  Continuous labels
  - Preserved relationships between labels
  - $\circ$  Conducive to interpolation
- Necessary future step in ETHER development





#### REFERENCES

[1] Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D.,
 Ozair, S., Courville, A., Bengio, Y. (2014). Generative Adversarial Networks.
 arXiv:1406.2661 [stat.ML].

[2] Mirza, M., Osindero S. (2014). Conditional Generative Adversarial Nets. arXiv:1411.1784 [cs.LG].

[3] Vadim Smolyakov, "Ensemble Learning to Improve Machine Learning Results", Medium. 2017.