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OUTLINE

o Background: Event Generators

o ETHER

o Generative Adversarial Nets

o Improvements: Ensemble 

Learning and Conditional 

Feature

o Future: Interpolation



EVENT GENERATORS

o Tools for experimental 

analysis

o Simulate hadronization 

processes

o Incomplete knowledge 

requires compromises

o Theory-dependent

o PYTHIA

o Lund String Model
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THE EMPIRICALLY TRAINED HADRONIC EVENT 
REGENERATOR (ETHER)

o No “baked in” theory to govern vertex 

interactions

o Trained on collision event data

o Generate samples from real data 

distribution

o Wider applications in 

phenomenological investigation

o Generative Adversarial Networks 

(GANs)
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GENERATIVE ADVERSARIAL NETWORKS [1]

o Powerful unsupervised model

o Adaptable

o 2 neural networks

oGenerator

oDiscriminator
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GENERATIVE ADVERSARIAL NETWORKS [1]

o Adversarial training

oAlternating training steps

o D trained on true data

o G evaluated by D 

o Once fully trained, generator 

used independently
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ENSEMBLE LEARNING [3]

o Multiple models learning to 

solve the same problem

o “Bagging”

oLearn rare events faster

o Reduce variance

o Parallel training

o Reduce training time

Data Sample 1
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Data Sample 2
Averaged Distribution



ENSEMBLE LEARNING
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Photon Multiplicity Distribution

Photon Multiplicity Distribution

o 1 GAN

o 100,000 event data set

o 10,000 epochs

o Training time: ~5 days

o 10,000 events generated 

o 10 GANs

o 10,000 event data sets

o 10,000 epochs

o Training time for 1 GAN: ~14 hr

o 10 x 10,000 events generated 

and averaged



CONDITIONAL FEATURE: CENTER OF MASS ENERGY [2]

o Event data changes as a function of 

energy

o Condition GAN on CoM energy

o Labels y and y’ concatenated to 

inputs of D and G. 

o Continuous labels

o Discrete labels

o Adds another degree of freedom
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CONDITIONAL FEATURE: CENTER OF MASS ENERGY

χ2 = 
(𝑔 − 𝑡)2

(𝑔 + 𝑡)
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True 10 and 100 GeV vs True All

Generated 10 and 100 GeV vs True All

Generated 10 and 100 GeV vs True All
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FUTURE: INTERPOLATION

10 40 70 100

o Goal: Continuous conditional energy 

feature

o Continuous labels 

o Preserved relationships between 

labels

o Conducive to interpolation

o Necessary future step in ETHER 

development

Generated vs True 
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