

Constraining neutrino-nucleus interactions with electron scattering data

Mariana Khachatryan - ODU

Outline

□ The importance of energy reconstruction in neutrino oscillation experiments.

□ What can we learn from e- scattering studies?

Testing neutrino beam energy reconstruction methods with electron scattering JLab CLAS data.

(Long Baseline) Oscillation Challenge

T2K experiment L=295km

T2K, Phys. Rev. D 91, 072010 (2015)

Neutrino-nucleus interaction modeling

=> Incorrect neutrinonucleus interaction modeling can bias the extracted oscillation parameters

Events created with GiBUU and reconstructed with GiBUU and GENIE.

Energy Reconstruction for QE reactions

(1) Cherenkov detectors:

- Detect: leptons & pions
- Miss: protons and neutrons

(2) Tracking detectors:

- Detect: Charged particles + π⁰
- Miss: Neutrons and charged particles below threshold.

Use Lepton kinematics Assuming QE interaction

$$E_{QE} = \frac{2M\varepsilon + 2ME_l - m_l^2}{2(M - E_l + |k_l|\cos(\theta_l))}$$

Use Final-State Calorimetry Assuming low residual excitations

$$E_{Cal} = E_l + T_p + \varepsilon$$

Why electrons?

- Known incident energy
- High intensity
- Similar interaction with nuclei
 - Single boson exchange
 - CC Weak current [vector plus axial]

•
$$j_{\mu}^{\pm} = \overline{u} \frac{-ig_W}{2\sqrt{2}} (\gamma^{\mu} - \gamma^{\mu}\gamma^5) u$$

- EM current [vector]
 - $j^{em}_{\mu} = \overline{u} \gamma^{\mu} u$
- Similar nuclear physics

Nuclear Physics

Nuclear Physics

What neutrino expts want

Nuclear Physics

What we get (even for Opi)

Resonance

Meson Exchange Currents r'

Short Range Correlations

Final State Interactions

E2a experiment

Targets:

CLAS: ³He , ⁴He, ¹²C, ⁵⁶Fe T2K: CH, H_2O Minerva: 3 He, 4 He, C, Fe, H₂O Microboone: Ar Miniboone: mineral oil (C, H, O) Nova: $C_6H_3(CH_3)_3$ DUNE: Ar Neutrino expt. beam energies v_μ flux (arb.) 2K off-axis 0.8 MiniBooNE 0.7 1.1GeV 2.2GeV T2K on-axis 0.6E 0.5**E** 0.4

4.4GeV **CLAS** NOvA near energies detector MINERvA 0.3 0.2 0.1 0.0 2 E_v (GeV) 1 3 4 5

Scale the electron scattering data with $1/\sigma_{\rm Mott}$ to have 'neutrino like' data!

CLAS detector package

3D view

- ♦ 4π acceptance (almost).
 ♦ Charged particles (8-143°):
 - *P_p* >300 MeV/c
 - P_{π} >150 MeV/c
- \diamond Neutral particles:
 - EM calorimeter (8-45°)

As close to QE as one can get:

- Scattered electron,
- Knockout proton,
- Zero pion,
- Zero γ in the EC.

Background Subtraction

Want 0π (e,e') and (e,e'p) events. Need to account for undetected π , γ and extra protons.

Want A(e,e'p) events. Subtract for undetected π , γ and multiple p.

Data Driven Correction:

- 1. Use measured (e,e'p π) events,
- 2. Rotate π around q to determine their acceptance,
- 3. Subtract (e,e'p) π contributions
- 4. Do the same for 2p, 3p, 2p+ π etc

Results

Large A dependence

E_{QE} vs E_{Cal}

Agreement between to methods doesn't imply correct energy reconstruction.

How do we do better?

2.2 GeV ⁵⁶Fe

$P_{\rm miss}^{\perp}$ slices

2.2 GeV

Data – Generator Comparisons

C(e,e'p) 2.26 GeV

0π Data vs Genie: everywhere

C(e,e'p) 2.26 GeV 80 70 Diff **i**0 50 No RadCorr 40 30 RadCorr 20 Data 10 0<u>`</u> 0.2 0.5 0.6 0.7 0.1 0.3 0.4 0.8 0.9 P_{I}^{miss} (GeV/c) <u>MC-Data</u> Data 0.5 0 -0.5 _

Data vs Genie: E_{beam} Reconstruction

$$E_{QE} = \frac{2M\varepsilon + 2ME_l - m_l^2}{2(M - E_l + |k_l|\cos(\theta_l))}$$

- Compare E_{rec} for eA to E_{rec} for vA
- Used 2.26 GeV eA E_{rec} for all incident energies
- Threw events with vA Genie
- Reconstruct with vA Neut or eA data

Will do with latest data.

oscillation parameters!

Summary

1. The first use of electron data to test neutrino energy reconstruction algorithms

- select zero-pion events to enhance quasi-elastic signal
 - ♦ Subtract for undetected π , γ and extra p.
- just using scattered lepton (E_{QE})
 - \diamond used in Cherenkov-type neutrino detectors
- total energy of electron plus proton (E_{Cal})
 - \diamond used in calorimetric neutrino detectors
- 2. Only 0.1-0.66 of events reconstruct to within 5% of the beam energy
 - better for lighter nuclei
 - improved by a transverse momentum cut
- 3. First preliminary attempt to quantify the impact of this work on oscillation analysis.

- 4. Under CLAS analysis review.
- 5. Anticipate paper submission soon.

Chris Marshal (LBL)

Afroditi Papadopoulou (MIT@FNAL)

Appearance probability expected in DUNE for three different sets of values of δ_{CP} and θ_{13}

Need $\Delta E_v < 0.1$ GeV.

arXiv:1307.7335 LBNE Collaboration ²⁵

Fractional energy feed down ($E_{rec.} - E_{true} / E_{true}$)

Percent of events reconstructed to within 5% of the beam energy

	1.1 GeV		2.2 GeV		4.4GeV	
	E _{QE} 1e	E _{Cal} 1e1p	E _{QE} 1e	E _{Cal} 1e1p	E _{QE} 1e	E _{Cal} 1e1p
^з Не	44	66	32	54	21	41
⁴He			25	46	16	32
¹² C	28	47	22	39	13	27
⁵⁶ Fe			17	25	10	16

From 10 to 66% of events reconstruct to within 5% of beam energy.

Error sources (new)

- Statistical error.
- Errors of the weights for subtraction of undetected pions and protons.
 - ♦ Statistical error due to number of (e,e' π) events used to determine undetected pion contribution
 - \diamond Rotate (e,e' π) events enough times to reduce statistical error below 1%.
- Systematic error due to the ϕ -dependence of the pion cross section modeled and found to be negligible (less than 1%).

Error sources

-Systematic error due to the ϕ -dependence of the cross section.

$$\frac{d^{6}\sigma}{d\Omega_{e}d\Omega_{p}dE_{\text{miss}}d\omega} = K\sigma_{\text{Mott}} \left[v_{L}R_{L} + v_{T}R_{T} + v_{LT}R_{LT}\cos(\varphi) + v_{TT}R_{TT}\cos(2\varphi) \right]$$

$$K = (\text{phase space})$$

$$v = v(q,\omega) \text{ electron kinematics}$$

Phi dependence

Cross section for unpolarized pion electroproduction on a single nucleon: $\frac{d\sigma}{d\Omega^*}(W,Q^2,\theta_{\pi},\phi_{\pi}) = A + B\cos\phi + C\cos 2\phi$ $A = (\sigma_{\rm T} + \epsilon \sigma_{\rm L}) \frac{p_{\pi}^*}{k_{\gamma}^*}$ $B = \sigma_{\rm LT} \frac{p_{\pi}^*}{k_{\sim}^*} \sin \theta_{\pi} \sqrt{2\epsilon(\epsilon+1)}$ $C = \sigma_{\rm TT} \frac{p_\pi^*}{k^*} \sin^2 \theta_\pi \epsilon$ $k_{\gamma} = \frac{W^2 - M^2}{2M}$ $k_{\gamma}^* = k_{\gamma}M/W$ $\epsilon = \frac{1}{1 + 2(1 + \frac{\nu^2}{C^2}\tan^2\frac{\theta_e}{2})}$

Where p_{π}^* , θ_{π} and ϕ_{π} are the momentum, scattering and azimuthal angles of the π^0 in the CM frame.

Weight without φ dependence

Weight with φ dependence

$$W = \frac{\sum_{i=1}^{N_{\text{Undet}}} 1}{\sum_{i=1}^{N_{\text{Det}}} 1} \qquad \qquad W = \frac{\sum_{i=1}^{N_{\text{Undet}}} 1 + B/A \cos \phi_{\pi} + C/A \cos 2\phi_{\pi}}{\sum_{i=1}^{N_{\text{Det}}} 1 + B/A \cos \phi_{\pi} + C/A \cos 2\phi_{\pi}}$$

Phi dependence

Use maximum of structure functions from Markov et al. paper [ref] for $cos\theta_{\pi} = 0.1$ and $0.4 \le Q^2 \le 1 GeV^2$. The absolute values are the biggest for $Q^2=0.45 \text{GeV}^2$. $\sigma_T + \epsilon \sigma_L = 30 \mu b$, $\sigma_{TT} = -10 \mu b$ and $\sigma_{LT} = -2 \mu b$.

$$A = (\sigma_{\rm T} + \epsilon \sigma_{\rm L}) \frac{p_{\pi}^*}{k_{\gamma}^*}$$
$$B = \sigma_{\rm LT} \frac{p_{\pi}^*}{k_{\gamma}^*} \sin \theta_{\pi} \sqrt{2\epsilon(\epsilon+1)}$$
$$C = \sigma_{\rm TT} \frac{p_{\pi}^*}{k_{\gamma}^*} \sin^2 \theta_{\pi} \epsilon$$

Subtracting for undetected one π events in ⁵⁶Fe(e,e') 4 GeV analysis

Negligible phi dependence!