

International Linear Collider (ILC) Superconducting Radio Frequency (SRF) Acceleration and ILC High Gradient SRF Cavity R&D at JLab

Rong-Li Geng Jefferson Lab

JLab Graduate Student Lunch Seminar, September 21, 2011

THE MYSTERIOUS UNIVERSE

Exploring Our World With Particle Accelerators

Wally Pacholka / AstroPics.com

~90 years ago ~60 years ago ~40 years ago Present

The Nature of Matter

Could there be more quarks? Or something smaller?

Atoms as we know them today

The fundamental questions

- What is the nature of the universe and what is it made of?
- What are matter, energy, space and time?
- How did we get here and where are we going?

Fermilab 95-759

Today's biggest question

What's beyond the Standard Model?

- 1. Are there undiscovered principles of nature: New symmetries, new physical laws?
- 2. How can we solve the mystery of dark energy?
- 3. Are there extra dimensions of space?
- 4. Do all the forces become one?
- 5. Why are there so many kinds of particles?
- 6. What is dark matter?

How can we make it in the laboratory?

- 7. What are neutrinos telling us?
- 8. How did the universe come to be?
- 9. What happened to the antimatter?

from the Quantum Universe

Addressing the Questions

- Neutrinos
 - Particle physics and astrophysics using a weakly interacting probe
- Particle Astrophysics/Cosmology
 Dark Matter; Cosmic Microwave, etc
- High Energy pp Colliders
 - Opening up a new energy frontier TeV scale)
- High Energy e⁺e⁻ Colliders
 - Precision Physics at the new energy frontier

Megascience project --- LHC

- + 2 b-jets
- + 4 jets
- + E^{miss}

Exploring the Terascale *the tools*

• The LHC

- It will lead the way and has large reach
- Quark-quark, quark-gluon and gluon-gluon collisions at 0.5 5 TeV
- Broadband initial state

• The ILC

- A second view with high precision
- Electron-positron collisions with fixed energies, adjustable between 0.1 and 1.0 TeV
- Well defined initial state

• Together, these are our tools for the terascale

Why a TeV Scale e⁺e⁻ Accelerator?

- Two parallel developments over the past few years (the science & the technology)
 - The precision information from LEP and other data have pointed to a low mass Higgs; Understanding electroweak symmetry breaking, whether supersymmetry or an alternative, will require precision measurements.
 - There are strong arguments for the complementarity between a ~0.5-1.0 TeV ILC and the LHC science.

Possible TeV Scale Lepton Colliders

The ILC

- Two linear accelerators, with tiny intense beams of electrons and positrons colliding head-on-head
- Total length ~ 30 km long (comparable scale to LHC)
- COM energy = 500 GeV, upgradeable to 1 TeV

LHC --- Deep Underground

ILC --- Deep Underground

Main Research Center

Particle Detector

~30 km long tunnel

Two tunnels

- accelerator units
- other for services RF power

ity of Bologna

Comparison: ILC and LHC

	ILC	LHC			
Beam Particle :	Electron x Positron	Proton x Proton			
CMS Energy :	0.5 – 1 TeV	14 TeV			
Luminosity Goal :	2 x 10 ³⁴ /cm²/sec	1 x10 ³⁴ /cm ² /sec			
Accelerator Type :	Linear	Circular Storage Ring			
Technology :	Supercond. RF	Supercond. Magnet			

LHC --- Superconducting Magnet

ILC - Superconducting RF Cryomodule

Linear Collider Conceptual Scheme

Final Focus

Demagnify and collide beams

Bunch Compressor

Reduce σ_z to eliminate hourglass effect at IP

Damping Ring

Reduce transverse phase space (emittance) so smaller transverse IP size achievable

Electron Gun

Deliver stable beam current

Positron Target

Use electrons to pair-produce positrons

Graduate Student Lunch Seminar, 9/21/2011

Main Linac

Accelerate beam to IP energy without spoiling DR emittance

ILC Subsystems

• Electron source

To produce electrons, light from a titanium-sapphire laser hit a target and knock out electrons. The laser emits 2-ns "flashes," each creating billions of electrons. An electric field "sucks" each bunch of particles into a 250-meter-long linear accelerator that speeds up the particles to 5 GeV.

• Positron source

To produce positron, electron beam go through an undulator. Then, photons, produced in an undulator, hit a titanium alloy target to generate positrons. A 5-GeV accelerator shoots the positrons to the first of two positron damping rings.

• Damping Ring for electron beam

In the 6-kilometer-long damping ring, the electron bunches traverse a wiggler leading to a more uniform, compact spatial distribution of particles. Each bunch spends roughly 0.2 sec in the ring, making about 10,000 turns before being kicked out. Exiting the damping ring, the bunches are about 6 mm long and thinner than a human hair.

• Damping Ring for positron beam

To minimize the "electron cloud effects," positron bunches are injected alternately into either one of two identical positron damping rings with 6kilometer circumference.

• Main Linac

Two main linear accelerators, one for electrons and one for positrons, accelerate bunches of particlesup to 250 GeV with 8000 superconducting cavities nestled within cryomodules. The modules use liquid helium to cool the cavities to - 2°K. Two 12-km-long tunnel segments, about 100 meters below ground, house the two accelerators. An adjacent tunnel provides space for support instrumentation, allowing for the maintenance of equipment while the accelerator is running. Superconducting RF system accelerate electrons and positrons up to 250 GeV.

• Beam Delivery System

Traveling toward each other, electron and positron bunches collide at 500 GeV. The baseline configuration of the ILC provides for two collision points, offering space for two detectors.

RDR Design Parameters

Max. Center-of-mass energy	500	GeV
Peak Luminosity	~2x10 ³⁴	1/cm ² s
Beam Current	9.0	mA
Repetition rate	5	Hz
Average accelerating gradient	31.5	MV/m
Beam pulse length	0.95	ms
Total Site Length	31	km
Total AC Power Consumption	~230	MW

ILC Reference Cryomodule

- Developed by INFN for TTF-TESLA
- 3rd generation of improvements
- Many years of successful operation
- Baseline for XFEL and ILC
- Reference for others (Project X, etc)

Superconducting RF Linac Technology

Milestones that led to accelerators based on SRF

Superconductivity

1908: Heike Kamerlingh Onnes (Holland) 1924: Gustaf Ising (Sweden) Liquefied Helium for the first time. The First Publication on RF Acceleration Arkiv för Matematik, Astronomi och Fysik. <u>1911:</u> Heike Kamerlingh Onnes **Discovered Superconductivity.** 1928: Rolf Wideröe (Norway, Germany) Built the first RF Accelerator, Arch. für Elektrotechnik 21, vol.18. 1928-34: Walther Meissner (Germany) Discovered Superconductivity of Ta, V, Ti and Nb. 1947: Luis Alvarez (USA) Built first DTL (32 MeV protons). 1947: W. Hansen (USA) Built first 6 MeV e-accelerator, Mark I (TW-structure). Graduate Student Lunch Seminar, **Rongli Geng** 9/21/2011

RF Acceleration

24

Developed and Constructed the Superconducting Accelerator SCA

Since then, many sc accelerators were built and we are constructing and making plans for many new facilities.

Rongli Geng

Graduate Student Lunch Seminar, 9/21/2011

Rongli Geng

9/21/201:

Superconductivity – Zero DC Resistance

Heike Kammerlingh-Onnes, 1911, discovery of SC in mercury

Superconductivity – Meissner Effect

Magnetic field is expelled from a superconductor

Complete magnetic shielding by circulating surface supercurrents

Graduate Student Lunch Seminar, 9/21/2011

Energy Gap and Two-Fluid Model

Losses in Superconductor

- Now look at the RF case
- Cooper pairs have inertia
 - They can not follow the AC field instantly
 - Thus do not shield AC field perfectly
 - A residual field remains
 - The normal electrons are accelerated
 - Thus dissipate power
- Scaling of RF surface resistance
 - The faster the field oscillates the less perfect the shielding
 - RF surface resistance increases with frequency
 - The more normal electrons, the lossier the material
 - RF surface resistance deceases with temperature below Tc

Figure of Merit

Features of SRF Cavity

- Low power dissipation
 - allows high gradient in CW or long-pulsed operation
 - Less number of cells
 - Less disruption to beam
 - Shorter linac and tunnel length
 - Cost saving
 - allows cavity design with large beam tube
 - Many benefits (next slide)

Features of SRF Cavity

Large beam tube & Fewer cells

- Reduces the <u>interaction</u> of the beam with the cavity (scales as size³) →
- The beam quality is better preserved (important for, e.g., FELs).
- HOMs are removed easily → better beam stability → more current accelerated (important for, e.g., B-factories)
- Reduce the amount of beam scraping → less activation in, e.g., proton machines (important for, e.g., SNS, Neutrino factory)

Large aperture of SRF cavity relaxes wakefields

Type-I and Type-II Superconductor

Two types of superconductors defined by Ginsburg-Landau

 $\kappa = \lambda(T) \,/\, \xi(T)$

Graduate Student Lunch Seminar, 9/21/2011

DC and RF Critical Field of Superconductor

Superheating field due to surface barrier to vertex penetration

SCRF Technology Required

Parameter	Value				
C.M. Energy	500 GeV				
Peak luminosity	2x10 ³⁴ cm ⁻² s ⁻¹				
Beam Rep. rate	5 Hz				
Pulse time duration	1 ms				
Average beam current	9 mA (in pulse)				
Av. field gradient	31.5 MV/m				
# 9-cell cavity	14,560				
# cryomodule	1,680				
# RF units	560				

Gradient a Major Cost Driver for ILC

Cost vs Gradient

Global Plan for ILC Gradient R&D

Year	07	200	8	2009	20	010	2011	2012	
Phase	TDP-1				TDP-2				
Cavity Gradient in v. test to reach 35 MV/m		→ Yield 50%				ት	→ Yield 90%		
Cavity-string to reach 31.5 MV/m, with one- cryomodule	Global effort for string assembly and test (DESY, FNAL, INFN, KEK)								
System Test with beam acceleration	FLASH (DESY) , NML (FNAL) STF2 (KEK, test start in 2013)								
Preparation for Industrialization				Р	rod	uctio	n Techn R&D	ology	

New baseline gradient:

Vertical acceptance: 35 MV/m average, allowing ±20% spread (28-42 MV/m) Operational: 31.5 MV/m average, allowing ±20% spread (25-38 MV/m)

Rongli Geng

Baseline ILC Nb Cavity Proc. Procedure

- Cavity manufacture (EBW) using RRR 300 Nb
- Initial light chemistry 5-30 μm (BCP)
- Heavy chemistry 80-150 µm (EP)
- Post-EP cleaning
- Vacuum furnace heat treatment 750-800 °C
- Light chemistry 20-50 μm (EP)
- Post-EP cleaning (ER/USC+HOM coupler brushing)
- Initial HPR
- Clean room assembly
- Final HPR
- Pump down
- 120°Cx48hr bake-out

A15 gradient limit at 19 MV/m: T-mapping found a hot spot correlated to quench Long distance microscope identified a defect near hot spot

Fine grain EP twin defects causing quench 17 MV/m. Cavity by a new vendor

Rongli Geng

Graduate Student Lunch Seminar, 9/21/2011

Local Heating near Quench-Causing Defect

Examples with Observable Defect

Deep pit at boundary of under-bead of equator EBW

Twin defects 300-500µm dia. 8mm from equator EBW seam

Graduate Student Lunch Seminar, 9/21/2011

AES6 reached 36 MV/m at Q0 1E10 "Mirror finish" CBP at FNAL, then USC, HT, EP, bake, test at JLab

AES6 Performance

Rongli Geng

9/21/2011

Today July 15, 2011 at ILC ART Director Visit of JLab

Understanding FE Behaviors w/ Samples

Surface studies of Nb samples EP'ed together w/ 9-cell cavities

- Scan Nb surface with biased tip DC field upto 140 MV/m
- Field emission sites and I-V curve registered
- Sample transferred to SEM chamber under vacuum
- Nature of field emitter determined

Nb-O

Rongli Geng

Graduate Student Lunch Seminar, 9/21/2011

28.0 kV 10µm AMRAY

#0000

Understanding FE Behaviors w/ Samples

Bacteria growth after extended Contact with DI water

KEK Sponge cleaning Collaboration with JLab US-Japan Cooperation Fund

SEI

X1,700

10µm

20.0kV

After

ch Semina

WD 22.6mm

Understanding FE Behaviors w/ Real Cavities Observation of Baking Induced Field Emission in EP'ed Cavity

Graduate Student Lunch Seminar,

First Example of Reducing/Eliminating Field Emission by Re-cleaning

More details of multiple processing and testing results can be found in JLab report at ILC SCRF meeting, April 21-25, 2008, FNAL

Rongli Geng

Graduate Student Lunch Seminar, 9/21/2011

USC=ultrasonic cleaning HPR=high pressure water rinse

More Examples of Reducing/Eliminating Field Emission by Re-cleaning

Another example is A6: last S0 test at JLab 37 MV/m, limited by field emission. After shelf storage over a year, A6 re-cleaning (USC + HPR) and shipped under vacuum, RF test at FNAL saw an improved Q(Eacc) over the last test at JLab.

Gradient State-of-the-art then and now

2004 DESY EP 9-cell cavities Gradient distribution in cells from pass-band measurements (~ 8 cavities)

2004

Rongli Geng

Rongli Geng

9/21/2011

SRF Cavity Gradient R&D Impacts & Benefits

Cryomodule cavity 19.2 MV/m 80 cavities needed, many qualified to >25 MV/m, some up to 35-43 MV/m

SRF Cavity Gradient R&D Impacts & Benefits

As a result of DESY's TTF experience and FLASH operation, European XFEL, under construction now, will reach 14 GeV with 640 high gradient cavities.

Graduate Student Lunch Seminar, 9/21/2011 Photo courtesy Hans Weise of DESY

Steady progress in SRF cavity gradient makes SRF an enabling technology SRF based electron linacs (CW & pulsed) have track record of successful operations

Rongli Geng

Graduate Student Lunch Seminar, 9/21/2011

Conclusion

High gradient SRF cavity R&D at JLab a success

- Defended ILC design gradient choice
- Built a technical base of high gradient expertise at JLab
- Provided direct benefit to CEBAF upgrade project
 - Final surface processing of upgrade cavities
- Validated he first US industrial vendor for high performance SRF cavity fabrication

 Our understanding of gradient limiting mechanisms including quench limit and field emission is much improved by instrumented cavity testing and cryogenic temperatures.

• The program provided a unique opportunity for JLab SRF workers, scientists, technicians and students, to advance SRF science and technology.