CEBAF Polarized Electron Source

Jim Clark, Matt Poelker, Steve Covert, Phil Adderley, Riad Suleiman, John Hansknecht, Marcy Stutzman, <u>Joe Grames</u>

Jefferson Lab

JLAB Summer Lecture Series, July 17th 2012

mass ~ $1/\lambda$ ~ energy

What to do? Build a 5 mile long electron microscope!

Make electrons energetic enough (E_{beam}) to peek inside proton or neutron ($M_{nucleon}$).

How to make the electrons "powerful" ?

Use radio(frequency) waves !!!

The "C" in CEBAF

Jefferson Lab Accelerator Site

Continuous Electron Beam Accelerator Facility

Photo Finish, but at 2 billionths of a second !!!

3 lasers pulsing

DC beam, not so useful

Jefferson Lab

What about the probing with spin ?

Electron Bunch Spin & Polarization

Thomas Jefferson National Accelerator Facility

lerson (

Parity Violation Experiments at CEBAF

Experiment	Energy (GeV)	Ι (μΑ)	Target	A _{pv} (ppb)	Maximum Charge Asym (ppb)	Maximum Position Diff (nm)	Maximum Angle Diff (nrad)	Maximum Size Diff (δσ/σ)
HAPPEx-II (Achieved)	3.0	55	¹ H (20 cm)	1400	400	1	0.2	Was not specified
HAPPEx-III (Achieved)	3.484	100	¹ H (25 cm)	16900	200±100	3±3	0.5±0.1	10 ⁻³
PREx	1.063	70	²⁰⁸ Pb (0.5 mm)	500	100±10	2±1	0.3±0.1	10-4
QWeak	1.162	180	¹ H (35 cm)	234	100±10	2±1	30±3	10-4
Møller	11.0	75	¹ H (150 cm)	35.6	10±10	0.5±0.5	0.05±0.05	10-4

PV experiments motivate polarized e-source R&D

Jefferson Lab

What does "234 ppb" even mean?

Polarized Electron Source "Musts"

Good Photocathode

Many electrons/photon
High Polarization
Fast response time

Jefferson Lab

Good Laser

Lots of PhotonsCW PulsesHigh Polarization

Good Electron Gun

Accelerate Electrons
Happy Photocathode
Integrate Laser

Photoemission from GaAs

Bulk GaAs

Jefferson Lab

- ► Laser excitation from $P_{3/2}$ to $S_{1/2}$: $E_{gap} < E_{\gamma} < E_{gap} + \Delta$
- Electron Polarization: $P_e < \frac{3-1}{3+1} = 50\%$

- σ +: Right-handed circularly polarized light σ : Left-handed circularly polarized light
- Reverse electron polarization by reversing light polarization

The First GaAs Photoemission Source

PHYSICAL REVIEW B

lerson (

VOLUME 13, NUMBER 12

Photoemission of spin-polarized electrons from GaAs

Daniel T. Pierce* and Felix Meier

Laboratorium für Festkörperphysik, Eidgenössische Technische Hochschule, CH 8049, Zürich, Switzerland (Received 10 February 1976)

Thomas Jefferson National Accelerator Facility

First High Voltage GaAs Photogun

Polarized e- Gun for SLAC Parity Violation Experiment

Collaboration announces parity violation June, 1978

Thomas Jefferson National Accelerator Facility

efferson Pab

Higher P: Breaking GaAs Degeneracy

- Split degeneracy of $P_{3/2}$: Introduce strain on GaAs crystal by growing it on substrate (GaAsP) with different lattice constant
- ➤ High polarization by laser excitation from P_{3/2} to S_{1/2}: $E_{gap} < E_{\gamma} < E_{gap} + \delta$

Higher QE: Alternating layers of GaAs and GaAsP – Superlattice GaAs

Jefferson Lab

Strained layer GaAs

Bandwidth Semiconductor (formerly SPIRE)

• MOCVD-grown epitaxial spin-polarizer wafer • Lattice mismatch \Rightarrow split degeneracy of P_{3/2} 0.1 µm 250 µm 250 µm 250 µm 250 µm 250 µm 600 µm 9-type GaAs substrate

Thomas Jefferson National Accelerator Facility

llerson (

Strained Layer - Superlattice GaAs

And, it really works!

Thomas Jefferson National Accelerator Facility

efferson Lat

Polarized Electron Injector

Bird's Eye View

Thomas Jefferson National Accelerator Facility

Laser Room for Dust & Climate Control

Thomas Jefferson National Accelerator Facility

Fiber-based Drive Laser

PHYSICAL REVIEW SPECIAL TOPICS - ACCELERATORS AND BEAMS 9, 063501 (2006)

Synchronous photoinjection using a frequency-doubled gain-switched fiber-coupled seed laser and ErYb-doped fiber amplifier

J. Hansknecht* and M. Poelker

Thomas Jefferson National Accelerator Facility, 12000 Jefferson Avenue, Newport News, Virginia 23606, USA (Received 12 April 2006; published 21 June 2006)

Light at 1560 nm from a gain-switched fiber-coupled diode laser and ErYb-doped fiber amplifier was frequency doubled to obtain over 2 W average power at 780 nm with \sim 40 ps pulses and pulse repetition rate of 499 MHz. This light was used to drive the 100 kV DC high voltage GaAs photoemission gun at the

Load-lock Photogun

Jefferson Lab

- Best vacuum inside HV Chamber, which is never vented except to change electrodes
- Photocathode Heat and Activation takes place inside Preparation Chamber
- Use "Suitcase" to replace photocathodes through a Loading Chamber

Electron Gun Cut-Away

Jefferson Lab

Laser shines on GaAs & frees the electrons...

...the -130kV "battery" accelerates and forms the electron beam.

🍘 📢

Jefferson Lab

PHYSICAL REVIEW SPECIAL TOPICS - ACCELERATORS AND BEAMS 13, 010101 (2010)

Load-locked dc high voltage GaAs photogun with an inverted-geometry ceramic insulator

P. A. Adderley, J. Clark, J. Grames, J. Hansknecht, K. Surles-Law, D. Machie, M. Poelker,* M. L. Stutzman, and R. Suleiman *Thomas Jefferson National Accelerator Facility, Newport News, Virginia 23606, USA* (Received 24 November 2009; published 26 January 2010)

A new dc high voltage spin-polarized photoelectron gun has been constructed that employs a compact inverted-geometry ceramic insulator. Photogun performance at 100 kV bias voltage is summarized.

Who wants polarized electrons?

Thomas Jefferson National Accelerator Facility

ellerson C

Better Vacuum = Longer Lifetime

Thomas Jefferson National Accelerator Facility

efferson 🤇

Thomas Jefferson National Accelerator Facility

erson

Bad, bad ions...

Imperfect vacuum => QE degrades via ion backbombardment

llerson C

Vacuum regimes

Air ~ 10^{16} / Torr-cm³

- Low, Medium Vacuum (>10⁻³ Torr)
 - Viscous flow
 - interactions between particles are significant
 - Mean free path less than 1 mm
- High, Very High Vacuum (10⁻³ to 10⁻⁹ Torr)
 Transition region
- Ultra High Vacuum (10⁻⁹ 10⁻¹² Torr)
 - Molecular flow
 - interactions between particles are negligible
 - interactions primarily with chamber walls
 - Mean free path 100-10,000 km
- Extreme High (<10⁻¹² Torr)
 - Molecular flow

efferson C

– Mean free path 100,000 km or greater

Thomas Jefferson National Accelerator Facility

Vacuum Conditions at CEBAF

Application	Pressure Range	Location	Vacuum Regime	
Beamline to dumps	10 ⁻⁵ Torr	Target to dump line	Medium	
Insulating vacuum for cryogens	10 ⁻⁴ Torr to 10 ⁻⁷ Torr	Cryomodules, transfer lines	Medium to high	
Targets, Scattering Chambers	10 ⁻⁶ to 10 ⁻⁷ Torr	Experimental Halls	High to very high	
RF waveguide warm to cold windows	10 ⁻⁷ to 10 ⁻⁹ Torr	Between warm and cold RF windows	High to very high	
Warm beamline vacuum	10 ⁻⁷ to 10 ⁻⁸ Torr or better	Arcs, Hall beamline, BSY, some injector	High to very high	
Warm region girders	10 ⁻⁹ Torr or better	Girders adjacent to cryomodules	Very high to ultrahigh	
Differential pumps	Below 10 ⁻¹⁰ Torr	Ends of linacs, injector cryomodules and guns	Ultrahigh vacuum	
Baked beamline	10 ⁻¹⁰ to 10 ⁻¹¹ Torr	Y chamber, Wien filter, Pcup	Ultra high vacuum	
Polarized guns	10 ⁻¹¹ to 10 ⁻¹² Torr	Inside Polarized guns	Ultra/Extreme high vacuum	
SRF cavity vacuum	< 10 ⁻¹² Torr	Inside SRF cavities with walls at 2K	Extreme high vacuum	

We understand Alice's worry...

The woods were dark and foreboding, and Alice sensed hat sinister eyes were watching her every step. Worst of all, she knew that Nature abhorred a vacuum. "The woods were dark and foreboding, and Alice sensed that sinister eyes were watching her every step. Worst of all, she knew that Nature abhorred a vacuum" – Gary Larson

Thomas Jefferson National Accelerator Facility

Where does the gas come from?

Outgassing from the system

- Metal and non-metal (viton o-rings, ceramics) all outgas
- Primarily water in unbaked systems
- Primarily hydrogen from steel in baked systems
- Leaks

lerson

- Real
 - Gaskets not sealed
 - Cracks in welds, bellows, ceramics, window joints
 - Superleaks that only open at very low temperatures
- Virtual
 - Small volumes of gas trapped inside system (screw threads, etc.) that pump out slowly over time

Gas load caused by the beam

- Desorption of gases by elevated temperatures, electrons or photons striking surfaces, etc.
- Engineered Loads (targets, etc.) where gas is added
- Permeation of gasses through materials
 - Viton gaskets worse than metal seals
 - Hydrogen can permeate through stainless steel!

Ultra High Vacuum Pumps

Getter Pumps

- Chemically active surface
 - Titanium sublimed from hot filament
 - Non-Evaporative Getters
- Molecules stick when they hit
 - Does not work well for inert gasses such as Argon, Helium or for methane

Ion Pumps

- Electric field to ionize gasses
- Magnetic field to direct gasses into cathodes where they are trapped
 - Has some pumping capability for noble gasses

• Baking used to get pressures below 10⁻¹⁰ Torr

- 250 C for 30 hours removes water vapor bonded to surface that otherwise limits pressure
- Avoid contamination by oils due to roughing pumps, fingerprints, machining residue.

NEG pump array

Ion Pump

Thomas Jefferson National Accelerator Facility

High Polarization from GaAs: Trending toward higher current...

Thomas Jefferson National Accelerator Facility