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Overview

Heavy-ion physics and the quark-gluon plasma

Quantum Chromo-Dynamics (QCD) is almost universally accepted as the theory describ-
ing the strong interactions, and is nowadays a fundamental block of the Standard Model
of elementary particle physics. However, most of the applications of QCD have been con-
fined to the regime of very short distances and high energy transfers, where the theory
can be linearized and perturbation theory is adequate. Indeed, thanks to the property
called asymptotic freedom, the coupling constant in such a regime is small, allowing a
systematic theoretical treatment. On the other hand, when one decreases the momentum
transfer the coupling constant increases; at the same time the dynamics becomes rapidly
nonlinear, so that its study becomes very difficult and has mostly to rely on models or
lattice simulations.

Heavy-ion collisions allow physicists to study strong interactions under extreme con-
ditions of the hadronic matter. Indeed, by increasing the atomic number of the colliding
systems and by raising the energy of the collision, we get access to a regime where a very
high energy density is created in the collision volume, and very dense matter at high tem-
perature and pressure is produced. In this regime the coupling constant may be relatively
small while the fields may be still in the nonlinear regime, giving us access to an entirely
new set of phenomena, which we may try to describe from first principles. Heavy-ion
collisions allow, therefore, to study QCD in a region not accessible to more traditional
methods, see Fig. 1.

The possible states of QCD matter may be represented on a two dimensional phase
diagram with the temperature T on the y-axis, and with the chemical potential pp as-

A

"traditional”
nuclear
physics

Figure 1: The place of heavy-ion physics
in the study of QCD. The vertical axis is
the product of the two atomic number of the
projectile and the target. On the horizontal
axis there are the logarithm of the momentum
- 2 transfer @) and the “rapidity” y = log(1/z),
InQ where x is the Bjorken’s scaling variable. The
big arrow shows the region accessible to heavy-
ion interactions at collider energies. Figure
taken from Ref. [58].

formfactors

"hard" QCD
Deep Inelastic Scattering

In(1/x)



6 Semihard parton rescatterings in heavy-ion collisions

T T T T T T T T
early universe

quark-gluon
plasma

Figure 2: Sketch of the QCD phase diagram.
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sociated with the baryon density pp on the x-axis (the higher pp, the higher pg), see
Fig. 2. Our knowledge of QCD matter at ug = 0 is based on lattice QCD [56], but at
g # 0 we have to rely on models which interpolate between low-density hadronic matter,
described by low-energy effective theories and high-density quark-gluon plasma (QGP),
which can be described by perturbative QCD (pQCD), see, e.g., Ref. [83]. These studies
predict basically two phases for the strongly interacting matter, which can be created in
the laboratory by heavy-ion collisions. At low temperature (i.e., low energy density) or
low baryon density the matter is a gas of hadron resonances. Conversely, at high tem-
perature (i.e., high energy densities) or high baryon density the matter may enter in the
quark-gluon plasma phase. This phase of the matter is characterized by the possibility for
the basic QCD degrees of freedom, the quarks and the gluons, to propagate freely over
much larger distances than the hadron scales over which they are usually confined. At
zero baryon density, lattice simulations of QCD with three light quark flavour predict a
critical temperature T, = 170 MeV + 10% for the phase transition. This value decreases
with increasing baryon density.

Heavy-ion collisions allow to explore the QCD phase diagram. At low energies —
Vs ~ 2 AGeV! at the Darmstadt Heavy Ion Synchrotron (SIS) — the nuclei are stopped,
compressed and moderately heated; moderately high baryon densities but low energy
densities are reached. At higher energies — /s ~ 4 AGeV at the Brookhaven AGS
accelerator, and /s &~ 17 AGeV at the CERN Super Proton Synchrotron (SPS) — the
colliding nuclei are no longer completely stopped and the baryon density of the produced
system decreases. At collider energies — /s = 200 AGeV at the Brookhaven Relativistic
Heavy Ion Collider (RHIC), and /s &~ 6000 AGeV at the CERN Large Hadron Collider
(LHC) — the two nuclei nearly pass through each other, losing a large amount of energy
in the process. The produced system has a large energy density and very low baryon
content, simulating the conditions of the matter in the very early universe.

One of the problems in identifying experimentally the formation of the QGP is that it
is indeed difficult to compute accurately its detailed properties. Progress in this direction
is constant and the gap between what we can calculate and what we can measure is
diminishing (see the theoretical summary talk [14] of the “Quark Matter 2001” conference

1A is the atomic number of the projectile nucleus in fixed target experiments and of the colliding
nuclei, assumed equal, in collider experiments
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[1]). The second difficulty is that it is not possible to observe directly the QGP and we
have to reconstruct its properties from many later stage observables, like multiplicities
and transverse momentum spectra of the produced hadrons. The main problem is that
hadrons are produced more or less altogether at a late stage of the system evolution, see
Fig. 3. An exception are leptonic observables. Indeed, leptons are produced at all the
stages of the evolution of the system and interact rather weakly with the system, so that
they carry direct information on its evolution. The great challenge of heavy-ion physics
is thus to study and combine a large number of observables.

When the two nuclei collide (¢t = z = 0 in Fig. 3) a system of particles is produced. At
collider energies these particles are mainly quarks and gluons. The energy density created
in the collision is well above the critical energy density. The system then expands, mainly
in the beam direction, and the energy density drops down. If the system thermalizes
quickly enough for the energy density to remain above the critical one, it will pass through
the phase transition and a QGP is formed. It is then of fundamental importance to
have a quantitative control over the initial conditions. If this is reached, one can use
hydrodynamic or transport models to describe the evolution of the produced system and
compute final state observables to be compared with experimental data.

Plan of the thesis

One of the main advantages of heavy-ion interactions at collider energies is that, given
the very high incident energy, semihard and hard processes are an important feature at
RHIC and will be dominant at LHC. The result of the nuclear interaction is therefore the
production of a very large number of partons, also called minijets in a very short time
7 ~ 0.1 — 0.2 fm after the two nuclei passed through each other. This system of partons,
also called minijet plasma, will then expand and tend to thermalize, possibly entering in
the QGP phase. Thanks to the dominance of semihard and hard processes it is possible
to compute in perturbative QCD the gross properties of the interaction, and in particular
the initial conditions of the minijet plasma. The application of perturbative QCD to
these computations is the object of this thesis. The detailed discussion will be preceded
by a general introduction to nucleus-nucleus interactions, the quark-gluon plasma, and
the most recent data from RHIC [Chapter 1].
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Parton rescatterings

At ultrarelativistic energies the parton density of the colliding nuclei is so high that the
probability becomes high for a projectile parton to have more than one parton-parton
collision per event. We may distinguish these multiple collisions in two types: (a) dis-
connected collisions, when more than one pair of partons interact in different points in
transverse space, and (b) rescatterings, when the same parton scatters more than once
against the target partons. The conventional perturbative approach takes into account
only the first kind of multiple interactions; however, as the energy and the target nuclear
mass increase the rescattering probability becomes larger and larger, and gives a non
negligible effect both at RHIC and at LHC.

Inclusion of the rescatterings in the interaction dynamics can be performed without
introducing new free parameters, and after this a number of observables like the multi-
plicity and the transverse energy of the produced minijets get a weaker dependence on
the cutoff introduced to separate soft and hard interactions [Chapter 2]. This allows to
push in a reliable way the perturbative computations to lower values of this cutoff, in a
region of transition between a perturbative and a genuinely non perturbative regime.

Parton saturation and initial conditions

In Chapter 3 I show that the initial multiplicity and transverse energy of the minijets
show a tendency to saturate at low cutoff values. Based on this, in Chapter 4 I introduce
a saturation criterion to fix the cutoff to a physically meaningful value. The saturation
cutoff obtained in this way represents the typical scale of the interaction at which semi-
hard interactions extract from the two nuclei almost all their partons. This allows the
complete computation of the semihard contribution to global observables. The soft part
of the interaction, i.e., the part which cannot be described in terms of partons and their
interactions, may be introduced in a phenomenological way and its contribution is found
to be the 15-20% of the total at RHIC and around the 5% at LHC. With these methods I
analyzed the RHIC data on charged multiplicities in Au-Au collisions at a nucleon-nucleon
center of mass energy of 130 GeV finding a good agreement with experimental data. This
allowed me to make prediction on multiplicities at 200 GeV which have been recently
verified by the PHOBOS collaboration in the case of central collisions.

In Chapter 4 this saturation model is, moreover, compared with an “initial state” sat-
uration model [60,61] and a “final state” saturation model [33,35]. Moreover, I slightly
modified the latter by introducing the concept of “nuclear interaction area”, i.e. the av-
erage area in the transverse plane where interactions among the constituents of the nuclei
take place. For some observables I obtained a qualitatively different result with respect to
the original model, and a better agreement with experimental data. Predictions are made
for some observables at LHC energies, and the possibility to distinguish experimentally
which of the three models is more correct is discussed.

Transverse momentum spectrum of minijets

Semihard parton rescatterings also have a large effect on the transverse momentum dis-
tribution of the minijets [Chapter 5 and Appendix A]. I studied this observable by an
expansion in the number of interactions suffered by a projectile parton in its interac-
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tion with the target nucleus. This expansion is valid at high transverse momenta and
generalizes the results known in literature, which consider terms up to two scatterings.
I developed numerical methods to compute each term of the expansion, and I studied
them numerically up to the three-scattering term. Moreover, I show that it is possible
to compute numerically the transverse spectrum resummed to all orders in the number
of scatterings. In this way it is possible to study it completely up to zero transverse
momentum. I applied these methods to the study of the deformation of the transverse
spectrum with respect to what one expects from a simple superposition of proton-nucleon
collisions (Cronin effect).

The case of proton-nucleus collisions (considered in the numerical computations) is
especially interesting since it allows an accurate test of the dynamics proposed. Indeed,
this is a situation where one does not expect the formation of the QGP, which could
further modify the spectrum. A thorough quantitative understanding of proton-nucleus
collisions is then a very important baseline for the detection and the study of the QGP
in nucleus-nucleus collisions.

Conclusions

In this thesis I show that at RHIC energies it is very important, and at LHC energies it
is essential, to include parton semihard rescatterings in the perturbative computations of
the initial conditions of the minijet plasma and of global characteristics of the minijets,
like their transverse momentum spectrum.

After introducing the rescatterings, the interaction is unitarized, and a number of
observables may be computed much more reliably in perturbative QCD because of the
softening of their infrared divergences. The initial conditions for the minijet plasma
evolution may be computed by introducing a saturation criterion to fix the infrared cutoff.
The resulting model needs no phenomenological parameters, and is rather stable against
variations of the few theoretical choices which have to be made, namely, the choice of the
k factor which simulates next-to-leading order corrections, and the choice of the parton
distribution functions. The model has been tested against the first RHIC data on charged
multiplicities and is in good agreement with experimental observations.

Further tests of the model are needed to verify the correctness of the multiple semihard
scattering dynamics it describes. In particular, this can be done by studying hadron or
minijet transverse momentum spectra in proton-nucleus collisions. This is an intermediate
step to relate the dynamics of nucleon-nucleon collisions to the dynamics of heavy-ion
collisions, in a setting where the formation of hot and dense matter is not expected. The
minijet transverse spectrum has been computed at all orders in the number of semihard
parton rescatterings, and shows some interesting features which might be accurately tested
experimentally. More work has to be done to use these results in the computation of
hadron spectra. It would also be interesting to include inelastic processes, like gluon
bremsstrahlung, in this multiparton scattering model.

Further applications of the formalism are under investigation, in particular the study
of two-particle azimuthal correlations induced by semihard scatterings. These studies
might be important since they give a further test of the multi-scattering parton dynamics.
Moreover, these semi-hard correlations might be a large source of background for global
observables like the elliptic flow.






Chapter 1

Nucleus-nucleus collisions and the
quark-gluon plasma

A nucleus is a composite system of many nucleons, so that hadron-nucleon (hA) collisions
and nucleus-nucleus (AA) collisions depend on the dynamics of the colliding nucleons'.
An important question is how nucleon-nucleon collisions add up to give a nuclear collision,
e.g., to what extent the latter may be thought as a simple superposition of the former.
In particular, the energy dissipated in the collision of two heavy nuclei, with a release
into other degrees of freedom, is expected to be rather high, being the result of many
nucleon-nucleon collisions. Is the energy density so created high enough to allow the
formation of the quark-gluon plasma? What are the experimental signatures of such a
state of the matter? A necessary step to answer these questions is to understand what it
is to be expected in nuclear collisions from an extrapolation of the known nucleon-nucleon
dynamics to hA collisions and finally to AA collisions.

In this chapter, after a brief introduction to the relevant kinematic variables (Sec. 1.1),
we will summarize some aspects of nucleon-nucleon collisions (Sec. 1.2) and will discuss the
Glauber model of nuclear interactions, in which nucleon-nucleon collisions are added up in
a way that summarizes the basic geometrical and dynamical aspects of nuclear collisions
(Sec. 1.3). We will then discuss the possibility of the formation of the Quark-Gluon Plasma
(QGP) and describe the Bjorken’s picture of its space-time evolution(Sec. 1.4). Finally we
will discuss the global observables which allow to constrain the initial matter and energy
density conditions for the formation of the QGP and some of its experimental signatures
(Sec. 1.5). The emphasis will be on recent data from RHIC and on the observables which
will be discussed in the following chapters. Many of the discussions of this chapter have
been inspired by Refs. [45,73,94], to which we refer for an introduction to the subject.

1.1 Useful variables

Consider a collision of two “particles” @ and b (they may be hadrons or nuclei) in the cen-
ter of mass frame, see Fig. 1.1. Here we assume that the colliding particles are energetic

'We denote by h a generic hadron, and will use the symbol of a specific hadron when needed, e.g., p
for a proton. By the generic name of nucleons we will call both protons and neutrons inside a nucleus
and other hadrons. The capitol letter A stands both for a generic nucleus and for a given nucleus atomic
number.
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b a
% - Figure 1.1: A collision of two “par-
.. e o ticles” a and b in the center of mass
o © frame. The two particles are strongly
° o %o Lorentz contracted and just passed
- o —— > 2 through one another. In the collision a
° o : L particle ¢ and a “remnant” X made of
° .° other particles are produced (the pro-
e o0 duced particles are represented by little
o © .
° ° black disks).
small p
large p large p

enough to pass through one another and produce hadrons in the middle. This is an ex-
perimental fact: at high energies the degrees of freedom which carry the particle quantum
numbers lose only a small fraction of their longitudinal momentum in the collision. In
many high-energy collisions of this kind it is useful to use kinematic variables with simple
transformation properties with respect to boosts along the beam axis. In this section we
consider a reaction a + b—c + X in which a particle ¢ is detected in the final state and
discuss some of these variables. We call z azis the beam axis, and call transverse plane
the plane transverse to the beam (the zy-plane). We use natural units, where the speed
of light is ¢ = 1 and the Minkowsky space metric has signature (+ — ——). For simplicity
of notation when referring to a given particle a we will use the same letter to represent
also its four momentum. By convention we will consider a to be the projectile or beam
particle and b to be the target particle.

1.1.1 Light-cone variables

Given the four-momentum of a particle, p = (po, pr, p,), two special combinations of its
components, called forward (backward) light-cone momentum, have simple transforma-
tions with respect to longitudinal boosts; we define

pE=poEp.,

so that the four-momentum may be represented by (p™, pr,p~). Note that the invariant
dot product becomes

p-q=p'p —pr-qr
and when the particle is on the mass-shell
p*pT = (B® = p2) = (p7 + m®) = my ; (1.1.1)

here m is the rest mass of the particle, p*> = m?, and the last equality defines the transverse
mass mr.

For a high-energy particle moving in the positive z axis direction (a in Fig. 1.1) the
forward light-cone momentum is large and the backward light-cone momentum is small;
the opposite is true for a particle moving toward the negative z axis direction (b in
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Fig. 1.1). Given a longitudinal boost of velocity ( in the positive z direction, the forward
light-cone momentum in the new frame, p’* is related to p™ by

pPr=y1-08)p",

where v = 1/4/1 — 2. Sometimes the particle ¢ may be thought to originate from, say,
a. In this case it is useful to introduce the light-cone variable z* as
+
c
+ -
= (1.1.2)
This is the boost-invariant generalization of the Feynman’s x, xp = %/ cz‘max, defined as
the fraction of the actual longitudinal momentum of ¢ in the center of mass frame to its
maximum momentum (starred symbols refer to the center of mass frame). Therefore, z*
is also called light-cone momentum fraction. Similarly we can define 2= = = At high
center of mass energy /s we have xp ~ x* for positive (negative) longitudinal momentum
c;. The light-cone momentum fraction is invariant under longitudinal boosts:

In some problems (e.g., in deep inelastic scattering or high-energy hadron and nuclear
collisions) the beam particle, a, may be considered as a composite system of a constituent
particle ¢ and other parts X. In this case ¢ is not a free particle, does not satisfy the
mass-shell condition ¢ = m?2, and it is in interaction with the remaining constituents X.
It is nonetheless useful to describe it by its light-cone momentum fraction z* with respect
to its parent particle. In this case one usually writes 2+ = z and calls it Bjorken’s .

1.1.2 Rapidity

Another useful variable which transforms simply under longitudinal boosts and gives a
relativistic generalization of the velocity of a particle is the rapidity variable. The rapidity

is defined by
L (p" p*
=_In|Z ) =In[| X 1.1.
=3 (i) () 119

where the last equality holds for on-shell particles. The rapidity ¥ may be either positive
or negative, and describes a particle moving in the positive or negative z direction, respec-
tively. From Eq. (1.1.3) we have e*¥ = /p*/p¥F, and by using Eq. (1.1.1) it is immediate
to see that

po = my coshy (1.1.4)

p, = mp sinhy .

In the nonrelativistic limit the modulus of the rapidity coincides with the particle
velocity v measured in units of the speed of the light:

ly| ﬁiov—l—O(vz) : (1.1.6)
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Under a boost of velocity § the particle’s rapidity in the new reference frame is

v'=y—uys, (1.1.7)

1 ! 1+ 75
wear (m) '

yg may be conveniently called the rapidity of the moving frame since yz is the rapidity
that a particle at rest in a frame moving at velocity 5 would have in the old frame. Under
a reversal of the z axis, z— — z, it changes sign: y' = —y. The simple additive laws (1.1.6)
and Eq. (1.1.7) are analogous to the velocity transformation laws in the nonrelativistic
limit and justify considering the rapidity as the relativistic generalization of the velocity
of a particle.

Consider the collision of a beam particle a against a target particle b, which have
@r = by = 0. From the Eqs. (1.1.3) and (1.1.5) the particle rapidities are:

where

Yo = In(a*/mgr) = sinh '(a,/m,)
yy = In(b* /myp) = sinh™'(b,/m,) .
In the case that m, = m, the rapidity of the center of mass frame is

— ya+yb

Yem 5

and in the center of mass frame the rapidities are

y; = (ya — yb)/2
Ys = (U —Ya)/2 .

Therefore, the greater the collision energy the greater the distance in rapidity between
the beam and the target particle, Ay = y, — y,. The region about midway the projectile
and target rapidity is called central rapidity region and is where most of the particles
produced in the collisions lie.

While the light-cone variables 2+ describe a daughter-parent relationship between two
particles and is frame independent, the rapidity is a kinematic variable related to a single
particle in a given reference system. From the definitions (1.1.3) and (1.1.2) we obtain a
relationship between these two variables:

mer o
rt = ey~
myp
_ mer _
x = —elY,
My,

1.1.3 Pseudorapidity

To obtain the rapidity of a particle one needs to measure two independent variables,
say, its energy and its longitudinal momentum. However not in all experiments this is
possible, while it is rather easy to measure the angle # between the particle trajectory
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0.032 ‘ ‘ ‘ Figure 1.2: Transformation from ra-
= pidity to pseudorapidity distributions
go_og of pions (viz., dashed and solid line) in
= the center of mass frame. For illustra-
o

tion purposes it is assumed that the ra-
pidity distribution is flat in the whole
rapidity interval, so that the role of the

0.028f

0.026/ Jacobian in Eq. (1.1.10) is shown. At

Pions mid-rapidity the suppression factor is

0.024 ‘ ‘ ‘ around 0.9. Figure taken from Ref. [63].
=4 -2 0 2 4

and the beam axis. This angle is related to the particle momentum, cos # = p,/|p], where
|p] = \/P3 + p2. Then we define the pseudorapidity variable as

n = %m [tan(0/2)] = - Iu <|ﬁ1 “’Z) | (1.1.8)

_5 |ﬁ|_pz

Note that this variable requires, to be measured, only a good tracking capability of the
detector and is independent on its particle identification capability. From definition (1.1.8)
it is easy to see that

|p] = pr coshnp
pz = pr coshn .

Let’s study the relation between pseudorapidity and rapidity. From definitions (1.1.8)
and (1.1.3) it follows that for massless particles n = y. This suggests also that at large
momentum, |vecp| > m the two variables should be approximately the same. Indeed,

1 \/mQT cosh® y — m?2 + mysinhy
n=-In ~ Y. (1.1.9)

2 \/ 9 2 . 27102 40
m?2. cosh” y — m2 — my sinh m* [pp—
T y T Y or Y= Ymaz)

Since in some experiments only the pseudorapidity may be measured, it is useful to have
the transformation law from pseudorapidity to rapidity distributions. From Eq. (1.1.9) it
is straightforward to compute the Jacobian of the transformation from (n, pr) to (y, pr),
and

N 2 N
AN o m AV (1.1.10)
dn d?pp m2. cosh” y dy d*pr

We can see that, in general, pseudorapidity distribution are smaller than rapidity distri-
butions. The suppression is larger the smaller pr, the larger m, and around the peak of
the distribution, i.e., around mid-rapidity. At high pr and large y the two distributions
approach one another. In the center of mass frame the suppression factor is maximum at
y ~ n = 0 and is roughly [1 —m?/(m2)]"/2. As an example, we may take (m2.) ~ 300MeV
at /s = 30.6 GeV for basically all kinds of particles, see Eq. (1.2.2). This gives for pions,
the most abundantly produced particles whose mass is m, = 140 MeV, a suppression
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Figure 1.3: Total and elastic cross sections for pp and pp collisions as a function of the
laboratory beam momentum and total center-of-mass energy. Figure taken from Ref. [121].

factor of ~ 0.9 at central rapidities. This value decreases with increasing n and at large
pseudorapidities it is nearly one. Since experimentally particles are distributed uniformly
in rapidity we e expect to see a dip around central pseudorapidity, see Fig. 1.2. Con-
versely, in the laboratory frame the peak of the distribution is located at n ~ /2 and
the maximum suppression factor is roughly [1 — m?/({m2) cosh®15)]'/? ~ 1. Therefore in
fixed target experiments the two distribution roughly coincide.

1.2 Nucleon-nucleon collisions

The nucleon nucleon total cross-section in the energy range 3 GeV < /s < 100 GeV
is roughly constant and has a value of about 40 mb, see Fig. 1.3. It includes elastic
scattering processes in which the colliding nucleons do not lose any energy, and inelastic
scattering processes in which they lose varying amounts of energy and a varying amount
of particles are produced. The inelastic nucleon-nucleon cross section oy, = 0;,(1/s) may
be estimated as the difference of the total and elastic pp cross-section, see Fig. 1.4. Using
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Figure 1.4: Left: Inelastic cross section o;, computed as the difference of total and elastic
cross section in pp scattering. Data are taken from Ref. [121]. Right: Total multiplicity
of particles produced in pp (leftmost points) and pp collisions (six rightmost points) as a
function of the center of mass energy. Figure taken from Ref. [73].

data on pp interactions would not change significantly the result. At SPS and RHIC
energies, /s = 17...200, it has a value 0;, = 34...42 mb. However, there are no
experimental data for /s > 1.8 TeV, and at LHC energies we estimate o;, ~ 70 mb.
Among the inelastic processes there are also diffractive processes, where one nucleon may
be considered as an absorber and a diffractive pattern appears in the very forward or very
backward rapidity region due to interference between scattering amplitudes. In these
events one nucleon becomes excited and a small number of particles are produced at large
rapidities, but the energy loss is small. Since we are interested in mid-rapidity or near-
mid-rapidity production processes at ultrarelativistic energies, we will neglect altogether
these diffractive processes.

Experimental data reveal that about 90% of the produced particles are pions, and
the rest consists of mostly kaons, around 1% of protons and very small fractions of other
hadrons. The total number of particles produced in a collision is called the multiplicity of
the collision. Charged particles are easier to detect since they ionize easily a medium. In
this case one speaks of the charged multiplicity of the collision. In Fig. 1.4 the multiplicity
of produced particles in pp and pp collisions is plotted. The last six points correspond to
the multiplicity in pp, the lower three being the same as the upper three but with zero
energy multiplicity subtracted. After subtraction all the points fall on the same curve,
which means that whatever is the particle production mechanism it may be the same both
in pp and in pp collisions. The charged multiplicity in nucleon-nucleon collisions increases
with y/s in an approximately logarithmic way. To have a quantitative feeling, we quote
the CDF fit to the pseudorapidity density of charged particles produced at n = 0 in pp
collision as a function of the center of mass energy /s [97]:

nys(s) = 2.5 — 0.251og(s) + 0.023log?(s) . (1.2.1)

In the center of mass frame particles are always produced in the rapidity range
—y <y < g, where § = In(p}..;/Mproj); Piroj and mpro; are, respectively, the forward
light-cone momentum and the mass of the projectile, in our case a nucleon. The for-
ward (backward) rapidity region y < ¢ (y 2 —7) are called the fragmentation regions of
the right-moving and left-moving particles, respectively. In the respective fragmentation



18 Nucleus-nucleus collisions and the quark-gluon plasma

dl

dy
Figure 1.5: Rapidity distribution of
particles produced in a nucleon-nucleon
collisions. The lower curve is the lead-
ing particle distribution and the upper
curve the meson distribution. Figure
taken from Ref. [73].

“Yproj Yproj

regions there is a high probability to find particles that closely resemble the incident parti-
cles. They carry a large fraction of /s and are among the fastest particles in those regions.
They are called leading particles and their rapidity distribution is shown schematically
by the lower curve of Fig. 1.5. In the same figure the upper curve shows the typical dis-
tribution of produced mesons. At low energies, say /s = 13.8 GeV, the pseudorapidity
distribution has the form of a bell-shaped curve, while at higher energies a plateau at
mid-rapidity appears, see Fig. 1.6. A remarkable feature of these distribution, known as
Feynman scaling, is that if we plot them as a function of the distance in rapidity from the
fragmentation region the distributions are to a good approximation independent of the
energy. The exception is the height of the plateau, which is constant at low energies but
becomes an increasing function of /s at higher energies.

The average transverse momentum of the produced pions is about 350 MeV and in-
creases for heavier particles and with increasing /s. We shall call dN/d*p, = dN/(2mp,dp;)
the transverse momentum distribution, which is found experimentally to have a roughly
exponential shape at low p; and an inverse power shape at p, larger than a few GeV, where
perturbative computations begin to be valid. We will refer to particles with a transverse
momentum smaller than 1 GeV as soft particles and to such low p; region as the soft
region of transverse momenta. When the p; 2 1 GeV we will use the names hard particles
and hard region, respectively. Hard particle production is understood in pQCD as due
to parton-parton scatterings and successive hadronization of the partons. It turns out
that the transverse particle spectrum is nearly independent of the particle species if it is
plotted as a function of the transverse mass my = /p% + m? and that

dN dN e~mr/T
FE = ~A— 1.2.2
dp, d?p,  dyd?p, (mr/GeV)A '’ ( )

where at /s = 30.6 GeV we have T' = 0.290 GeV, A = 13.9 mb/GeV? and \ = 1.5 [41].
Notice that 1" is an approximately universal parameter for all particle species, see Fig. 1.6.
This approximately universal behaviour is known as mq¢ scaling.

The last feature of nucleon-nucleon collision we want to mark out is the nucleon rapidity
loss. The baryon number must be conserved in any reaction, therefore there must be at
least two baryons among the produced particles. Baryons found in the projectile and
target fragmentation regions are called leading baryons. If we consider the leading baryon
related to the colliding nucleons, we can view a nucleon-nucleon collision as a process
in which the two energetic nucleon suffer a degradation of their momenta and emerge
as leading baryons. It is therefore natural to ask how much momentum they lost, or
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Figure 1.6: Left: pseudorapidity distribution of charged particles at various energies from
Refs. [120,131]. Pseudorapidity is measured either in the center of mass frame (ncar) or in the
laboratory frame (7;45) and suitably shifted for comparison of the results. Right: invariant cross
section for the production of different particles in pp reactions at /s = 30.6 GeV as a function of
the particle transverse mass mp from Ref. [108]. Both figures taken from Ref. [94].

better how much rapidity they lost, the higher the rapidity loss the higher the degree of
inelasticity of the collision. In Fig. 1.7 the inelastic cross section do/dx™ is shown for pp
reactions at /s = 13.8 and 18.2 GeV [117]. Except for the diffractive dissociation region
xt ~ 1 it is a nearly constant function of 21, therefore the average value of the light-cone
variable is

Consider a leading proton in the projectile fragmentation region. It is found that at both
energies its average transverse momentum is (py) & 0.460 GeV. The rapidity distribution
is
do _ do dy, _ domur .,
dy, dx* dx  dx m,

Y

where m; is the transverse mass of the leading proton and y; its rapidity, while m, and
y, refer to the colliding proton. Since do/dzx™ is almost constant in the fragmentation
region, the average rapidity of the leading proton is

do g

=Lt

dy, YY1
Therefore, on the average an incident proton loses one unit of rapidity in a nucleon-nucleon
collision.

1.3 Nucleon-nucleus and nucleus-nucleus collisions

In this section we will review the Glauber model of pA and AA collisions, which describes
the underlying multiple nucleon-nucleon collision in an elementary but rather precise way,
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and encodes the geometrical features of the nuclear collision. We will then review the
wounded nucleon model of particle production. Based on these results, we will introduce
a way to compute the interaction area, i.e., the area in the plane transverse to the beam
where the nucleon-nucleon interactions take place. Finally, we will review the concept of
self-shadowing of the hard nucleon nucleon interactions, which allows one to compute the
hard part of the inelastic pA or AA cross-section without the need of knowing also the
soft part.

1.3.1 Glauber model

Multiple nucleon-nucleon interactions occurring in a AA collision may be described in the
Glauber model of nuclear interactions, which provides a quantitative description of the
geometrical configuration of the system. It is based on the assumption that the inelastic
collision of two nuclei can be described as an incoherent superposition of the collisions
of each individual nucleon, and has proved to be useful in estimating global observables
like inelastic cross-sections, multiplicities, dispersions and their dependence on nuclear
parameters. Although a baryon of one nucleus may become excited in the interaction and
may, in principle, have a different cross-section when passing through the other nucleus,
we can understand the basic features of the nuclear collision by taking the nucleon-nucleon
cross-section to be the same throughout the entire path of a nucleon through the target
nucleus. Since our basic assumption is that nucleon-nucleon collisions are incoherent, we
may describe the nuclear collision by using probability calculus.
We start by defining the nucleon spatial density of a nucleon of atomic number A,

dN(r, z)

d*rdz
where r is the coordinate in the (two dimensional) plane transverse to the beam, z is the
coordinate along the beam and dN(r, z) is the average number of nucleons contained in
the volume element dV = d?r dz located at 7 = (r,z). By definition p, is normalized to

A:

pA(ra Z) =

/d27“ dzpa(r,z) = A . (1.3.1)

The probability density of finding a nucleon at a given point 7 is, therefore, pa(r, 2)/A.
A useful quantity is the nuclear thickness function

Ta(r) = /dsz(r,z) ,
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which represents the nuclear density projected on a plane transverse to the beam, or in
other words the thickness of the nucleus at a given point r in the transverse plane. We
will discuss later the explicit form of the nuclear densities and thickness functions.

Next, we have to discuss nucleon-nucleon collisions. Given two nucleons situated at
an impact parameter b relative to one another, we define t,,(b)d?b as the probability
for having a nucleon-nucleon collision within an area element d?b. By definition ¢ is
normalized to 1:

/d%t,,,,(b) =1. (1.3.2)

Given a nucleon at impact parameter b relative to another nucleon, the probability of a
nucleon-nucleon inelastic collision is thus t,,(b)oj,.

The above definitions allow to write allow to write the probability distribution P for
the occurrence of nucleon-nucleon collisions when the nuclei have an impact parameter b
and the two nucleons sit at (r4,24) and (rg, zg), respectively. It is given by the product
of (i) the probability of finding a nucleon in the A nucleus at (74, z4), (i) the probability
of finding a nucleon in the B nucleus at (rp,zp) and (iii) the probability that the two
collide:

1 1
P(b;ra, 24,10, 2p) = ZPA(TAaZA) X EPB(TBaZB) X tpp(b— 14— TB)0i .

By integrating over the nucleon coordinates we obtain the total probability, ﬁTA B(b)oin,
for the occurrence of a nucleon-nucleon collision in a nuclear collision with impact param-
eter b:

1 1

AB(b)Uzn AB

1B / d’radzs d*rp dzp pa(ra, 24) pe(re, 28) typ(b — T4 — T8) 0 -

This equation defines the overlap function for the collision of the A nucleus with the B
nucleus, which can be expressed in terms of the thickness functions by integration over
z4 and zp:

Tap(b) = /d27"A d*rp7a(ra) T8(re) tyy(b—ra — 1) . (1.3.3)

From Egs. (1.3.1) and (1.3.2) it is easy to see that the overlap function is normalized to
AB:

/deTAB(b) = AB.

We are now in the position to write the basic expression for all the following computations,
i.e., the probability of n inelastic nucleon-nucleon collisions at nuclear impact parameter

b:
P(n,b) = (AnB> {Tjéb) a]n {1 - Tjéb) a} | (1.3.4)

The above expression is obtained by multiplying the probability that n nucleon-nucleon
interactions occur by the probability that the remaining AB — n pairs of nucleon do not
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interact. By summing over n we obtain the probability that at least one inelastic nucleon-
nucleon collision occurs in the nuclear collision, or in other words the transverse plane
differential inelastic cross section:

do\B Tap(b) 17"
= Y Pmb)=1- [1— am] .
d?b s AB

By integrating over b we obtain, finally, the nuclear inelastic cross section

oAB _ /d2b {1 - [1 - T%gb)am} AB} . (1.3.5)

Starting from Eq. (1.3.4) we may compute the average number of nucleon-nucleon
collisions N, at fixed impact parameter b:

Neu(b) = Y nP(n,b)

n=1,AB

B d AB n Tag(b) "
= {x% Z ( N ) [x0n] [1 ~~—4g Vi
n=0,AB e=Tap5(b)/AB

d Tu(b) A8
LU% |:1 - AB Oin + TOip )
x=Tap(b)/AB

and finally

Ncoll(b) == TAB(b) Oin | - (136)

A useful approximation of the probability of having n collisions [Eq. (1.3.4)] valid at
large AB is

P~ L0l w0,
—00 n.

b

which shows that at fixed b nucleon-nucleon collisions follow approximately a Poisson
distribution with average number Ny (b).
Thickness functions and analytical examples

The basic probability density for a nucleon-nucleon collision may be well approximated
by a Gaussian function with standard deviation A,, = 0.86 fm:

1 2 2
(1) = gz e P
pp

Light nuclei may be well approximated by Gaussian thickness functions, as well, with a
standard deviation proportional to their radius:

A 2 2
) =g (1.3.7)
A
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!
where Ay = T—O?)Al/3 and ry = 1.05 fm, [94]. In this case the overlap function Tsp
[Eq. (1.3.3)] is a Gaussian with standard deviation A? = A% + A% + A2:

A
TAB (b) _ Weflﬂ/QA%
A

Y

and the total inelastic cross section may be computed analytically [94]:
1—(1-f)
A
I St Ly
n=1,AB

where f is a dimensionless quantity,

Oin

TN ;

f

when f is small, i.e., when the two nuclei are large enough, the cross section reduces to
AB ~ ABo:
Oin =~ Oin-

When one nucleus is much larger than the other we may approximate them with
the so-called hard-sphere distribution, corresponding to a sphere of given radius R with
uniform spatial density p(r, z) = (3A/47R%)0(R% —r?—2?); then the hard-sphere thickness
function is

™he(r) = R — 2 O(R% —1?) (1.3.8)

where the nuclear radius is
Ra=1myA? : ry=1.12fm.

In this case the overlap function T4 g may be well approximated by a hard-sphere thickness
function, as well, with radius

R=Rs+ Rp,
and the total inelastic cross section may be computed analytically:

B R2{1+ 2 |:1_ (1 _F)AB+2 1— (1_F)AB+1:|}
Oip =T 9

7 ~ ABoy, ,

F—0

AB +2 AB+1
where F'is a dimensionless quantity,

o 30’m
C oTR?

Heavy nuclei are better approximated by the Woods-Sazon distribution,

4T R%
+ ellFl=Ra)/ao

)

1
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where |[F] = v/r2+ 22 and N is such that [d"dzp"{*(r,z) = A. The nuclear radius is
Ry =1oA'3 —0.86A4'3, and ay = 0.523 controls how fast p'{' goes to zero at the nuclear
periphery. In this case the thickness function

5 (r,2) = /dZPZVS(T, z) (1.3.9)

has no analytic expression and must be computed numerically.

The different thickness functions described above are compared in the upper three
panels of Fig. 1.8. We will use in general the Woods-Saxon thickness function (1.3.9), and
since we are interested in ultrarelativistic energies we will approximate t,,(r) =~ 6@ (r).

A special case is represented by pA interactions. In the formalism for multiple semihard
interactions which we will describe in Chapter 2 we cannot approximate also 7, with a
delta function, as it is usually done, because we need to exponentiate it. Then we might
exchange the role of 7, and t,,, so that 7, & 5—e 77?4k, and take t,,(r) ~ 6@ (r) as
above. A different choice, used in Chapter 5, is to consider also the proton a hard-sphere
and use the thickness function in Eq. (1.3.8).

1.3.2 The wounded nucleon model

We want to discuss multiplicity distributions of particles produced in heavy-ion collisions
in the framework of the Glauber model probabilistic picture of the interaction. Our
discussion will follow closely Ref. [11].

In hadron-nucleus collisions a fundamental role is played by the number v of collisions
suffered by the incident hadron. Indeed, the average particle multiplicities in a high-energy
hA collision follow approximately the formula

g = %(Nw” + 1) | (1.3.10)

where N4 is the average multiplicity in a collision of a hadron with a nucleus of atomic
number A, 7, is the average multiplicity in a hadron-hadron collision and N.,; = 7 is
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the average number of hadron-nucleon collisions (see Eq. (1.3.6)). This formula may be
rewritten in an equivalent way by introducing the number w of wounded nucleons, i.e.,
of nucleons that underwent at least one inelastic scattering. Note that we call “nucleon”
also the incident hadron. It is immediately clear that for a hA collision w = v + 1. Then
if we define N,,,+ = W to be the average number of participants, i.e. the average number
of wounded nucleons, the following relation holds:

Npart = Ncoll +1.

The formula (1.3.10) may then be rewritten as

1 1
na = §(Ncoll + 1)ﬁh - Npart X §ﬁh )

which suggests that the contribution of the incident hadron to the final particle multi-
1

plicity is the same as that of each hit nucleon and is equal on average to 5n,. It seems
that there is no difference in the produced multiplicity if a nucleon is hit once or several
times, which justifies the relevance of w as a good variable to describe the process.

The generalization to AA collisions is not unique because in this case there is no unique
relation between v and w, and a choice between the two has to be made. The wounded
nucleon model is the assumption that the relevant variable to describe particle multiplicity
distributions is w, the number of wounded nucleons, rather than v, the number of nucleon-
nucleon collisions. This is equivalent to assume that inelastic collisions of a projectile
nucleon after the first one are effective in wounding the hit nucleon, but do not contribute
to particle production. This assumption has been proved to be phenomenologically correct
up to SPS energies (y/s = 17 GeV), but begins to break down at RHIC energies (y/s =
130...200 GeV) due to hard scattering processes (see, e.g., Ref. [124]). While the “hard”
multiplicities naturally scale as N, there is also a “soft” contribution proportional to
Neou whose importance rises with the collision energy [21]. The wounded nucleon model
implies that in the collisions of a nucleus of atomic number A with a nucleus of atomic

number B the multiplicity scales as

1
AB =
, X =N,

ﬁAB:N 2

par
where by definition the number of participants in the AB collision is given by the sum of
the number of participants of the A and of the B nucleus:

+ NB

part *

NAB — NA

part part

Our next task is then to compute N;}m. From our assumption of incoherence of the
nucleon-nucleon interactions we can write in analogy with Eq. (1.3.4) the probability that
a nucleon from the A nucleus sitting at a given transverse coordinate r undergo at least

one inelastic interaction when scattering on the B nucleus:

Puouna(b) = ZB (f) [Th’; (b) U} " {1 - Tusl® U] S {1 _ () 0] 2
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where T,5(b) = Tap(b)|a=1 is the overlap function for a hadron-nucleus collision. By
approximating the basic thickness function by a delta function, we obtain

The number of participants is then obtained by multiplying the average number of A
nucleons at r (i.e., 74(b — r)) by the above probability and by integrating over r:

NAL(B) = /d2m(b—r) {1 - {1 - TBlgb)am]B} | (131

~ /d2r Talb—r){1— e_TB(b)"i"}

B—oo

The number of participants from the B nucleus is obtained by interchanging A and B
in the formula above. This formula is very important because it gives a way to obtain
the impact parameter of the nuclear collision event-by-event by measuring the number of
participants. This is obtained experimentally by measuring the number Ny, of spectators,
i.e., the nucleon that did not have an inelastic collision and continue to flow along the
beam axis. Their energy Ejy.. may be measured by a zero degree calorimeter (ZDC) and
is proportional to their number:

Egpec(b) = € Nypee(b) = € (A + B — Npart(b)) ,

where € is the energy per initial state nucleon (e.g., in the center of mass frame € =
VSas/(A+ B), where \/sap is the center of mass energy of the two nuclei).

1.3.3 The nuclear interaction area

When considering nucleus-nucleus collisions an interesting quantity, which will be exten-
sively used in Chapter 4, is the value of the nuclear interaction area Ar(b), where b is
the nuclear impact parameter. The interaction area is defined as the average value of the
area in the transverse plane where nucleon-nucleon collisions took place. Heuristically, if
we imagine the nuclei to be hard-spheres with a given radius, we may assume that the
interaction area is simply given by the geometric overlap area A% of two discs of radius
equal to the nuclear radius. When the two nuclei are equal the geometric overlap area
may be computed analytically:

2 b2

b b
2 — ] — = —— | . 1.3.1
R?, arccos (23,4) 5 R 4] (1.3.13)

However this is true only for hard-sphere nuclei and in the very high energy limit, where
the probability for an incident nucleon to scatter on the target nucleus is one if its impact
parameter is smaller than the nuclear radius and zero otherwise. For realistic nuclei we
should relate the definition of the transverse area to the dynamics of the nuclear collision.
To do this we start from the Glauber model formula for the wounded A-nucleons, namely,
the nucleons from the A nucleus which had an interaction with the B nucleus:

NAL(b) = / Prra(b— 1) Py(r) (1.3.14)

A%@Om(b) — 2
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where

Ppr)=1— |1 - 2004 (r) Yo e (1.3.15)
B B—o0

is the probability that a nucleon at a given transverse coordinate r relative to the center
of the B nucleus has at least one inelastic interaction with the target nucleus. In Fig. 1.8
we plotted the three thickness functions discussed previously in the upper panels and
the corresponding interaction probability (1.3.15) in the lower panels. Loosely speaking,
Pgp(r) may be thought as the profile of the B nucleus as “seen” by the projectile nucleons.
When using the hard-sphere thickness function the B nucleus has well-defined and sharp
edges, while with Woods-Saxon and Gaussian thickness functions the borders are less
and less sharp. These considerations suggest to define the average interaction area, by
multiplying each area element in the transverse plane by the probability that at least one
nucleon from A and one from B interacted inside it:

Ar(b) = /dQSPA(b — 5)Pg(s) = /d28 (1 — e minmaltms)) (1 — e onms) | (1.3.16)

The transverse area in Au-Au collisions at /s = 200 GeV per nucleon pair is plotted in
Fig. 1.9 and compared to the geometrical area (1.3.13). As anticipated, when using hard-
sphere functions at such ultra-relativistic energies Ar(b) = A" (b). This Glauber model
inspired computation of the transverse area has the advantage of being parameter-free and
to be uniquely defined by the choice of the thickness function.

A different way of computing the transverse area in the case that A = B, used for
example in [92], is to compute the number of participants at impact parameter b. Then,
one may take as interaction area at impact parameter b, the overlap area of two nuclei of
atomic number A.¢r = NP%* /2 undergoing a central collision. In other words, the overlap
area is the transverse area of a nucleus of radius A.y:

err(0) =R, . (1.3.17)

We call AeTf s the effective interaction area. However, this computation gives a transverse
area which is much less steep than the geometric and Glauber-type ones and in all cases
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overestimates the transverse area at large impact parameter, see Fig. 1.9. The difference in
the slope has big consequences, e.g., when computing global observables like the charged
particle multiplicity per participant pair, see Sec. 4.2.

1.3.4 Self-shadowing

Let’s consider the inelastic hadron-nucleus cross section (0y,)4, whose expression may be
expanded, in the Glauber approach, as a binomial probability distribution of inelastic
nucleon-nucleon collisions (see Eqgs. (1.3.5) and (1.3.11)):

o = [ o[1—(1- )Y
N /de; <;3> ("mmjb)Y(l — Oin TAf(lb))An (1.3.18)

In Eq. (1.3.18) 74(b) is the nuclear thickness function, which depends on the impact
parameter b and is normalized to one, A is the atomic mass number and o;, is the
inelastic hadron-nucleon cross section. One may classify all events according to a given
selection criterion, which we call C, while we call A/ the events that are not of kind C [15].
We assume that in a hadron-nucleon collision all events of kind C contribute to oc, all
other events contribute to o, so that the inelastic hadron-nucleon cross section may be
written as

Oin = 0¢c + 0N .

One may then ask for the expression for the cross section (o¢) 4 to produce events of kind
C in a collision of a hadron against a nuclear target. Then, to obtain (o¢)4, one may
express (0;,)" in Eq. (1.3.18) as a binomial sum of “elementary” events of kind C and of

kind NV:
op = (oc+on)" =) (Z) obat k. (1.3.19)
k=0

An interesting case to consider is when the events of kind C are such that any superposition
of elementary events of kind C, both with events of kind C and of kind N, always gives
an event of kind C. In this case, all the terms of the sum in Eq. (1.3.19), with the only
exception of the term with & = 0, contribute to (o¢)a, which is therefore given by:

(0c)a = /denzA:l (ﬁ) Lz: <Z> 0’50}\1/'“] (Mf(f))n(l — ammf(lb)y_n .

By using the relation
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one obtains:

[035 (2) ™42 (o221 - 20
B /de[(U. =0 +1- TA(b)>A - (UNTA_(b) 1 UmTA(b)>A]

A A A A

i (1)

- /denzA; <‘:> [UCTAf(lb)]n [1 _ e TAéb)]A_n . (1.3.20)

Note that, in spite of the fact that we included superpositions of elementary events of kind
C with events both of kind C and of kind A, the nuclear cross section (o¢) 4 is obtained
by summing all possible multiple hadron-nucleon interactions of kind C alone with a
binomial probability distribution, precisely as (0;,) 4 is obtained by a binomial distribution
of hadron-nucleon inelastic interactions. This relation states the self shadowing property
of the events of kind C: all unitarity corrections, namely the term [1—oc74(b)/A] % in the
third line of Eq. (1.3.20), are expressed by means of the cross section oc only. However,
this does not mean that (o¢)4 doesn’t contain events of kind A, but rather that they
are irrelevant to obtain (o¢)4. The property that an event of kind C remains of kind C
even after any number of events of kind V' translates into the disappearance of o, in the
nuclear cross section (o¢) 4.

Given the discussion above, the only part of the nuclear interaction that still misses is
the cross section for elementary events of kind A alone. It can be obtained by considering
the following difference

TAT@]A [1_(UC+UN TA(b) !

]A x {1 - } (1.3.21)
[

- [1—ac“ﬁ>rxz<2>(ﬂ;z ) )

k=1

d?b d?b
= [1 — O¢ TA(b)

d(oin)a _ d(oc)a [1 —oc

UNTA
1-— O'cTA

1—

which is therefore bounded by [1 — UCTA(b)/A]A (second line of 1.3.21), namely by the
probability of not having any interaction of kind C at a given impact parameter b. The
ratio [on7a(b)/A]/[1 —ocTa(b)/A] is in fact a quantity smaller than one, since 0;,74(b)/A,
which is equal to oc+0a)74(b)/A, is a probability. It may be understood as the probability
of an hadron-nucleon interaction at a given impact parameter, under the condition that no
event of kind C takes place. Hence the last line of Eq. (1.3.21) shows that after removing
all events of kind C the interaction is expressed by a binomial distribution of events of
kind N

Finally, we observe that if we compute the average number of hadron-nucleon collisions
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of kind C, (n)(o¢) 4, rather than the cross section (o¢)a, the result is:

moea = [ dbzn@) Py g 20

— /d%i Z <f;1> (¢ TAIL(lb) )"(1 = o0 TAjb))A_n

=1

Note that the average number of interactions of kind C is expressed by the single-scattering
term, without any unitarity correction.

1.4 The quark-gluon plasma

In AA collisions a nucleon suffers many nucleon-nucleon collisions, losing about one unit
of rapidity in each collision, and consequently losing a great amount of energy. If the
number of collisions it undergoes is large enough, its final rapidity may be close to zero
(in the center of mass frame) so that the nucleon might be “stopped” by the target nucleus.
Moreover, the loss of the incident nucleons energy is accompanied by an abundant particle
production, mostly pions, in the vicinity of the center of mass of the colliding nuclei. In
Sec. 1.3.1 we showed that the number of collisions increases with the thickness of the target
nucleus. Therefore the larger the atomic number of the colliding nuclei, the larger the
energy lost by each nucleus and the higher the multiplicity of produced particles. Then,
in a heavy-ion collision at high energy there is the possibility to create a sufficiently high
baryon and energy density region to cause a transition of the produced system to the
QGP phase.

1.4.1 Baryon stopping and the QGP

Much of the evidence for the occurrence of multiple nucleon-nucleon collision comes from
experiments. They suggests that after an incident nucleon suffers a collision, the baryon-
like object that emerges in the fragmentation region — we called it the leading baryon
in Sec. 1.2 — will continue to collide with other nucleons from the target nucleus, each
time loosing some fraction of its energy. This may be inferred, e.g., from the data shown
in Fig. 1.10a on p + A—p' + X reaction in the projectile fragmentation region at a
laboratory momentum of 100 GeV, corresponding to /s = 13.8 GeV. In the figure the
inelastic cross section do/(dzd?*p;) at p, = 0.3 GeV is shown as a function of . While
the cross section for pp collisions is nearly flat, it becomes a decreasing function of z+
in pA collisions, the steeper the higher the atomic number A of the nuclear target. As a
consequence the average value (x™) of the light-cone variable is shifted from (z*) = 1/2in
pp collisions toward smaller and smaller values as A increases. This means that the total
average energy (and rapidity) loss of the incident proton is larger in pA collisions than in
pp collisions, suggesting the occurrence of more than one nucleon-nucleon collision. The
degree of slowing down of the incident proton is also called baryon stopping power.
Indirect evidence for baryon stopping in heavy-ion collisions also comes, e.g., from
data on collisions of 'O on various nuclear targets shown in Fig. 1.10 (left panel). In
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Figure 1.10: Left: The differential cross section do/(dx*d*pr) for the reaction p + A—p' + X
at different laboratory energies and for different targets as a function of the proton forward light-
cone variable z = z*. Data taken from Refs. [117] and [115]. Left: The differential cross section
do/dE;pc as a function of the energy deposited in the zero-degree calorimeter for the collision of
a '%0 nucleus on various targets at a laboratory energy of 60 AGeV. Data from Ref. [130]. Both
figures taken from Ref. [94].

these measurements one collects all the particles emitted within 0.3 degrees from the
beam axis (n > 6) and measures their zero-degree enerqy Ezpc in a so-called zero-degree
calorimeter (ZDC). Ezpc represents therefore the energy of the particles that emerge in
the very forward direction after the collision. If the stopping of incident nucleons is not
effective, the probability that they will be deflected from the beam direction is small. As a
consequence the probability for the projectile nucleus to loose a large fraction of its energy
is small, so that E;pe will be on average large. Conversely, if the target is thick enough
we expect a higher probability to have more than one nucleon-nucleon collisions for each
incident nucleon (see Sec. 1.3.1), and we expect a higher energy loss and a lower average
Ezpc. The discussed effect is evident in Fig. 1.10 (right panel). The cross section for O-C
collisions is peaked around Ezpc = 750 GeV and decreases with decreasing zero-degree
energy. At higher atomic numbers of the target a plateau at Ezpc = 200 — 800 GeV
develops, and a second peak at a very small energy appears. In summary the average
zero-degree energy decreases with increasing target atomic mass, pointing to an increasing
stopping power of the target.

The degree of baryon stopping reveals whether the produced energy or baryon densities
are high enough for the QGP to be formed. As we saw in Sec. 1.2, a nucleon loses on
average about one unit of rapidity in a nucleon-nucleon collision. When a nucleon collides
on a nuclear target, its average rapidity loss may be estimated [94] to be 1+ (n—1)/3 <
Ay < n, where n is the number of collisions suffered by the incident nucleon. The upper
bound corresponds to assuming the leading baryons emerging after the first collision to
behave exactly as the father nucleon, while the lower bound correspond to assuming a
diminished baryon stopping of the leading baryons relative to the original nucleon. For
example a nucleon hitting a Au nucleus at a distance r = 0 from its center undergoes on
average n =~ 6 collisions. If we average over the nucleon-nucleus impact parameter r we
have n =~ 4. Then the average rapidity loss is about 2 < Ay < 4.



32 Nucleus-nucleus collisions and the quark-gluon plasma

Figure 1.11: A computer simulation of a Au-Au collision at /s = 200AGeV. In the first image
the two nuclei, which are traveling from the left and right sides of the picture toward the center,
approach one another. They appear flat, instead of spherical, due to Lorentz contraction. their
height is approximately 14 fm and their width approximately 1 fm. In the second image, the two
ions collide, smashing into one another and then passing through one another (third and fourth
image). Some of the energy is converted into hadrons. (Figure taken from RHIC home page, at
http://www.bnl.gov/rhic/heavy_ion.htm).

In a heavy-ion collision at a center of mass energy of a few GeV per nucleon the
separation between the beam rapidity and the target rapidity is about 3-4 units. Since
this is of the same order of the average rapidity loss, in these collisions the incoming
nucleons are very likely to be stopped in the center of mass frame. Moreover the Lorentz
contraction pile up the nucleons in a narrow spatial region before the collisions. As a
consequence the baryon density created in the collision mat be very high [16], and the
matter created in the collision may enter the QGP phase. We call this few GeV energy
region the baryon-rich QGP region. In nuclear collision at /s = 100 GeV the difference
between the beam and target rapidities is similar or greater than 10 units, which is large
enough for the central rapidity region to be low in net baryon content, still having a high
energy density. We call the energy region /s 2 100 the baryon-free QGP region or pure
()GP region. This is the region we are interested in and which will be studied in this
thesis.

1.4.2 Bjorken’s picture of the QGP

Consider for simplicity an equal nuclei collision at ultrarelativistic energy, see Fig. 1.11.
The nuclei are strongly Lorentz contracted in the beam direction, and at these energies
we may neglect their longitudinal thickness and take the longitudinal coordinates of the
nucleons belonging to the same nucleus to be approximately equal. The projectile nucleus
A and the target nucleus B approach one another from z = +00 and —oo, respectively.
They travel nearly at the speed of light and meet at z = 0. The evolution of the system
of particles produced in the collisions may be followed on the space-time diagram of
Fig. 1.12. The trajectories of the two nuclei are represented by thick lines, and the
hyperboles represent equal proper time surfaces, where the proper time is defined as

T=Vt+2— 22,

e Formation stage. During the collision the nucleons experience many collisions each
and lose a large fraction of their energy. A large amount of energy is then deposited
in a small region around z = 0 in a short time 77 after the beginning of the collisions,
at which we set the proper time to zero. The matter created in this region has a
very high energy density but a rather small net baryon content. The matter and
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Figure 1.12: Space-time picture of the evolution of the minijet plasma.

energy density produced in this stage are commonly called initial conditions. It
is yet an unresolved question under what form the quanta produced in these first
instants appear, whether quarks and gluons, or hadrons, or “strings”, or in other
nonperturbative forms. It is commonly believed that at RHIC and LHC energies
a large fraction of the matter is created under the form of quarks and gluons, and
that perturbative QCD may be used to describe it. This dense system of partons is
also called minijet plasma.

e Fquilibration stage. At 7 = 7p the minijet plasma is likely not to be in thermal
equilibrium, but interactions between partons may drive it to thermal equilibrium
at a proper time 7y called equilibration time (see, e.g., [10]). From perturbative
computations of the initial conditions it appears that the minijet plasma could be
locally equilibrated already after the formation stage [33].

e Hydrodynamic stage. The energy density of the minijet plasma at the equilibration
time may be high enough for a transition of the system to the QGP phase. Due
also to the very high quark and gluon density of the system, further evolution of
the QGP may be described by hydrodynamic laws. The plasma expands and cools
down.

e Hadronization stage. As the QGP expands the temperature drops down and hadron-
ization of the plasma takes place at a proper time 7, called hadronization time.

e Freeze-out stage. The formed hadrons continues to interact with each other. As the
system further expands the average distance between the hadrons becomes smaller
than their mean free path: the hadrons stop interacting and “freeze out”. They
continue to stream freely and are finally detected by the experimental apparatus.

This space-time scenario of the formation and evolution of the QGP was proposed
by Bjorken in Ref. [12], where a simplified 1+1 dimensional hydrodynamic model for the
evolution of the plasma was studied. The initial conditions are not directly observable,
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but may be traced back from the observed particle distribution. In particular, to estimate
the initial energy density ¢y we need to find out the amount of energy deposited in the
collision region and the relevant volume V. The volume may be estimated as the product
of the interaction area Ar (see the discussion in Sec. 1.3.1) and the formation time 7p,
which gives an estimate of the maximum distance traveled by the produced particles. It
is possible to reconstruct their initial spatial distribution by relating their space-time co-
ordinates to their rapidity variable, and using the information provided by their observed
rapidity distribution dN/dy. The resulting estimate is [12, 94]

(mT) dN
€Fr = &/ — )
ATTO dy y=0

where (mr) is the average transverse mass of the produced particles. Various estimates
give for the formation time a value of 0.4 fm < 77 < 1.2 fm. The recently measured value
of dN/dy in central collision at v/s = 200 GeV per nucleon [113] is dN/dy = 975+52 (here
we assumed that the total multiplicity is nearly 3/2 of the charged multiplicity actually
measured). Estimating the interaction area as the geometrical transverse area of a Au
nucleus, A7 ~ 7R% = 133 fm?, and using (mr) =~ 0.38 GeV we obtain

2 GeV < ep <7 GeV .

Assuming that the initially produced system of particles is made predominantly by glu-
ons, and treating them as an ideal relativistic boson gas [33], we may convert e to the
initial minijet plasma temperature Tr ~ 30¢r/(167%). The resulting value of the initial
temperature is

0.8 GeV < Tp < 1.1 GeV

which is well above the critical temperature 7T, ~ 0.150 GeV for the QGP phase transi-
tion at nearly zero baryon density. However, during the thermalization stage the system
expands quickly, hence thermalization will be reached at a temperature Ty < Tr. De-
pending on the duration of the thermalization stage the system may reach the equilibrium
with an energy density which is still above the critical temperature or not. Therefore a
quantitative precise understanding of the formation and of the thermalization stage is of
vital importance.

When the system has reached thermal equilibrium, and possibly entered the QGP
phase, we may describe its successive evolution by hydrodynamics and ask how the energy
density and other thermodynamic variables evolve with time. Since particle production is
characterized by a plateau in the pseudorapidity distribution dN/dy at central rapidities,
we may assume the QGP to be invariant under longitudinal Lorentz boosts. This allows
to idealize the QGP as a continuum with longitudinal translational invariance, so that the
energy density and all other variables are invariant, as well. Moreover, the longitudinal
expansion proceeds much more rapidly than the transverse expansion. It is therefore useful
to study the hydrodynamic evolution in a two-dimensional space time with coordinates
(t,z). The assumed Lorentz invariance implies that all the quantities which describe the
system depend only on the proper time 7 = V/#? — 22. We can choose as independent
thermodynamic variables the energy density € and the pressure p. Bjorken showed that
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under these assumptions € and p satisfy the following differential equation:

de €+
+ 2P

— 0. 1.4.1
dr T ( )

If we assume that the QGP is an ideal relativistic gas of quarks and gluons the temperature
T is related to the pressure by p oc T* and the following equation of state holds:

Pzg-

With this equation of state Eq. (1.4.1) may be solved, obtaining the proper time evolution

of the system:
e(r) (T 4/3
€o A\ 0

p(7) _ (1) e
Po To
T(r)y (7 13
Ty - \7 0 .
As we can see the pressure and the energy density drop rather quickly, while the temper-

ature decreases in time more slowly. Given an initial temperature Ty above the critical
temperature, the system will remain in the QGP phase up to a proper time 7, given by

T 3
Th = <T0> To (1.4.2)

after which the transition to hadronic matter will take place. From our previous esti-
mates, and taking 7y to be about 1 fm (slightly larger than 7) and T, about 0.5 fm
(slightly smaller than T%), we obtain 7, ~ 35 fm. Note that the estimate (1.4.2) for the
hadronization time is very sensitive to little changes in Ty or T%. In conclusion, given the
several assumptions made, we may state that the system is likely to remain in the QGP
phase for a rather long time, of the order of the tens of fm.

1.5 Global observables and signatures of the QGP

“At a special seminar on 10 February 2000, spokespersons from the experiments on
CERN’s Heavy lon program presented compelling evidence for the existence of a
new state of matter in which quarks, instead of being bound up into more complex
particles such as protons and neutrons, are liberated to roam freely. [...] The data
from any one experiment is not enough to give the full picture but the combined
results from all experiments agree and fit. Whereas all attempts to explain them
using established particle interactions have failed, many of the observations are
consistent with the predicted signatures of a quark-gluon plasma”.

From 10*" February 2000 CERN press release
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Figure 1.13: Tlustration of the basic geometrical features and of some of the global ob-
servables of a heavy-ion collision. Figure taken from Ref. [45].

dN,/dn

The real challenge in QGP physics is to find, study and combine many different ob-
servables that carry information on a state of the matter which is short-lived and not at
all directly observable. We may classify these observables into two large groups, which
in part overlap one another: (i) the global observables, which help in determining the
geometry of the collision, the initial conditions and some general feature of the produced
system such as its shape and spatial evolution, and (i7) the signatures of the QGP, i.e.,
observables which have a different behaviour whether the plasma is formed or not. All
these observable must be then globally analyzed to understand what happened during the
collision. As U. Heinz and M. Jacob say in Ref. [46]:

“A common assessment of the collected data leads us to conclude that we now have
compelling evidence that a new state of matter has indeed been created, at energy
densities which had never been reached over appreciable volumes in laboratory ex-
periments before and which exceed by more than a factor 20 that of normal nuclear
matter. The new state of matter found in heavy ion collisions at the SPS features
many of the characteristics of the theoretically predicted quark-gluon plasma.”

The goal of this section is to provide a quick overview especially of the first kind of
observables. Moreover we will concentrate on the results of the first RHIC run at /s = 130
A GeV and on the first results at /s = 200 A GeV. For a review of results at CERN
SPS at /s = 17 AGeV and a discussion about the “compelling evidence” of the QGP
formation see Refs. [46,47]. For reviews on RHIC observables, see Ref. [14,45,48,78].
General overviews on various aspects of the physics of ultrarelativistic heavy-ion collisions,
including LHC physics, may be found in Refs. [8,32]. See also the book by Wong [94],
and the proceedings of the “Quark Matter 2001” conference [1].

The basic experimental features of heavy-ion collisions and some of the observables
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Figure 1.14: Left: Measured pseudorapidity density of charged particles produced in Au-Au
collisions as a function of the center of mass energy. The three black points are RHIC results
from Refs. [110,113]. The charged multiplicity has been normalized to the number of participant
pairs, which allows a comparison with data from pp collisions at CERN SPS. Right: Normalized
pseudorapidity density at 7 = 0 as a function of the number of participants (data from PHOBOS
[111] and PHENIX [99]; see also the data from BRAHMS [116] not shown in figure. Predictions
based on HIJING model and on the EKRT model are shown.

that allow to constrain the geometry and the dynamics of the collisions are summarized
in Fig. 1.13. The two nuclei come from the left and from the right toward one another
at an impact parameter b. After the collision the nucleons which were not inside the
interaction area proceed almost undisturbed along their direction of motion and their
energy is measured by the zero-degree calorimeters (ZDC) placed along the beam at a
certain distance from the interaction region. The ZDC measures the energy of hadrons
with 7 > 6, corresponding to a cone of angular opening of 0.3 degrees with vertex in
the interaction region and axis along the beam. Since the energy of each nucleon is
known with good accuracy [it is simply /s/(2A4) in an equal nuclei collision] the number
of spectator nucleons, and as a consequence the number N, of participants nucleons,
may be derived. N, may be related to the impact parameter b both by theoretical
computations, like Eq. (1.3.12), and by using Monte Carlo simulations (for a comparison
of the two methods see Ref. [111]). A complementary information on the impact parameter
comes from the minimum bias charged multiplicity distribution measured by the beam-
beam counters, which collect particles with n ~ 3. Indeed it is found experimentally
that this observable is a monotonic function of the impact parameter. Many detectors
are dedicated to measurements in the central rapidity region. As explained in Sec. 1.4
this region is of special interest, and it is a region where it is possible to achieve a good
particle identification and the most accurate measurements. Specially interesting global
observables in this rapidity region are the charged particle multiplicity and transverse
energy.

1.5.1 RHIC: the new energy frontier

The Relativistic Heavy Ion Collider (RHIC), located at the Brookhaven National Labo-
ratories (BNL), is the first collider specifically designed to study heavy ion collisions and
the possible formation and characteristics of the QGP. It has currently four approved
experiments, BRAHMS, PHENIX, PHOBOS, and STAR, and two empty halls. The first
Au-Au collision took place in June 2000, and many results have been presented for colli-
sions at /s = 56 AGeV and /s = 130 AGeV (see, e.g., Ref. [128,132]). On 18 July 2001
the first Au-Au collision at the full energy of \/s = 200 AGeV occurred, and the first data
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have been presented in [113]. This is the highest collision energy ever reached in heavy
ion collisions.

Initial conditions

In Fig. 1.14 (right panel) the charged multiplicity pseudorapidity density at n = 0, nor-
malized to the number of participant nucleon pairs, is plotted as a function of the collision
energy both for Au-Au and pp collisions. As it is clearly visible, produced particle multi-
plicity is 50% larger in nuclear collisions than in pp collisions. This shows that some extra
mechanism is at work in AA collisions. Many models describe correctly the RHIC points,
among them the HIJING model [87] and the EKRT model [35], which include parton-
parton hard scatterings in the dynamics of the collision in different ways . To distinguish
between them it is useful to study the centrality dependence of the normalized charged
multiplicity, as proposed in [92]. RHIC results on the centrality dependence of dN°"/dn
are shown in the right panel of Fig. 1.14. The observed increase of the normalized multi-
plicity with energy relative to pp collisions and its increase with the number of participants
supports the prediction of a copious minijet production at RHIC. We will discuss these
observables and some of the theoretical models at length in Chapter 4. Moreover, the
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Figure 1.17: Left: Charged particle transverse energy density dE7/dn|,—o normalized to the
number of participant pairs as a function of Ny, at /s = 130 AGeV (PHENIX [100]) and
Vs = 17 AGeV (WA98 [106]). The solid lines represent the best fits to Ny,,,. Right: Transverse
energy per charged particle as a function of the number of participants. Both figures taken from
Ref. [124].

slope of dN"/dn as a function of N, depends on the rapidity at which one makes the
measurement, as shown in Fig. 1.15. A complementary observable is the pseudorapidity
dependence of the charged multiplicity, see Fig. 1.16

Another important observable is the average transverse energy per charged particle,
since it gives a measure of the internal pressure in the hot and dense system created by the
collision. The PHENIX data are shown in Fig. 1.17, and it is compared to data from the
CERN WAQ98 experiment. While the normalized charged particle transverse energy has
increased relative to pp collisions and to AA collisions at SPS energy, the transverse energy
per particle Er/Nch ~ 0.8 is almost independent, on centrality and on /s. Expectations
from HIJING and transport models would be an increase with energy. The plasma seems
not to do enough thermodynamic work: it is “as lazy as at SPS” [45].

Jet quenching and Cronin effect

One of the predicted observable effects of the formation of a hot and dense medium is the
suppression of jet transverse momentum spectrum and of the high-pr hadrons resulting
from their hadronization. This suppression, also called jet quenching is due to energy
loss of the minijets in the medium caused by gluon bremsstrahlung radiation [9,93]. The
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Figure 1.18: Left: the nuclear modification factor Raa = d44/(Neonuoyp) for hadrons produced
in Pb-Pb collisions at /s = 17 GeV. Data from Refs. [104,105,109]. The solid line is a pQCD
computation from Ref. [86]. Right: the nuclear modification factor for hadrons in Au-Au collisions
at /s = 130 GeV. Figure taken from [78].
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quenching factor should also be sensitive to the type of dense matter formed, whether it
is a QGP or just a hadronic system. In AA collisions, on the other hand, there exists
also a competing mechanism, the Cronin effect that enhances the py spectra relative
to a simple extrapolation from pp data. The Cronin effect is due to multiple elastic
collisions of partons in their way through the target nucleus, which induces at low pr
or low /s a random-walk in the transverse momentum. As a consequence the average
transverse momentum squared is enhanced: (p2.) = (p2.),,+0 AY/3 6p2., where (p2.),,, is the
average transverse momentum squared in pp collisions. At SPS the Cronin enhancement
is clearly observed and consistent with pQCD [86], and no quenching has been observed,
see Fig. 1.18 (left panel). Conversely, both PHENIX and STAR reported a suppression
factor of two or more for hadrons at pr > 2 GeV [101, 102], see Fig. 1.18 (right panel).
Moreover, the suppression is observed in central collisions, but not in peripheral collisions
see Fig. 1.19. These observations may be explained by jet quenching [45,69]. All these
observations are a good hint that something new happens in AA collisions at /s = 130
GeV, possibly the formation of a dense matter system. To assess such a hypothesis we
need also to understand better what happens in pA collisions at the same nucleon-nucleon
center of mas energy, to really extract from the data any signal of new physics. This topic
will be studied in the framework of pQCD in Chapter 5.

Other observables

There are many other interesting observables which can give a lot of information on the
evolution of the system created in the collisions. Here we simply list a couple of them,
and we refer to the reviews cited at the beginning of this section for a more complete
discussion.

e FElliptic flow. In non central collisions the overlap area in the transverse plane
is anisotrpic, see the lower right picture in Fig. 1.13. If the system thermalizes
quickly, pressure is generated inside, and the transverse space anisotropy translates
in anisotropic pressure gradients. This generates a stronger collective flow in the
shorter direction than in the longer direction (viz., horizontally and vertically in
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Figure 1.20: Left: Saturation of elliptic flow as measured by STAR [129]. Curves are extrap-
olation from the hydrodynamic computations of Ref. [64] to high pr. Right: Anomalous J/¢
suppression as a function of the initial energy density from CERN NA50 experiment [98].

Fig. 1.13. As a consequence also the py distribution of produced particles will reflect
this anisotropy. Conversely, if there is no thermalization no pressure gradients form
up and the hadron py spectra will be isotropic. This effect is commonly characterized
by the so-called elliptic flow coefficient vy = (cos(2¢)), where ¢ is the azimuthal
angle between the observed hadron and the reaction plane defined by the beam axis
and the shorter direction. At RHIC the elliptic flow is well described, for particles
with pr < 2 GeV, by hydrodynamic models and increases is an increasing function
of pr, while at higher momenta it tends to saturate, see Fig. 1.20.

e J/v anomalous suppression. The J/i particle is a bound state of a ¢ and a ¢
quark. In a deconfined medium the gluon density is so high that it can Debye-screen
the colour interaction between the ¢ and ¢ quarks, either melting a bound pair or
preventing the formation of a bound state. The result should be the suppression
of the production of the J/v¢ or other charmonium states (x., ¢') with respect to
pp and pA interactions. Note that in the latter case a “normal” J/v suppression
has been already observed. Any deviation from the normal suppression, called
therefore anomalous suppression, is usually thought to be a signal of the formation
of the QGP, though alternative explanations exist. Anomalous suppression has been
observed by CERN NA50 experiment at /s = 17 GeV, see Fig. 1.20.

1.5.2 LHC: the future

The CERN Large Hadron Collider (LHC) is the highest energy hadronic collider which
will be built in the near future. It will produce pp collisions at /s = 14 TeV and Pb-Pb
collisions at /s = 6 TeV. There is currently an increasing interest in the theorist and
experimenters community also for a pA collisions program, which has not yet been sched-
uled. Heavy-ion physics will be studied by A Large Ion Collider Experiment (ALICE),
which is a detector entirely dedicated to heavy ion collision (see, e.g., [123]), and by the
Compact Muon Solenoid (CMS), a detector oriented to pp physics, with some capability
to study heavy ion collisions [122]. The first Pb-Pb collisions at LHC are scheduled for
year 2007.
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The gains in increasing the center of mass energy of AA collisions are that the system
will be initially bigger, denser and hotter, it forms faster, its lifetime grows and it develops
collectively for a longer time. Also, hard probes are produced more abundantly and
perturbative QCD becomes applicable to explain a larger and larger fraction of the events.
In particular, the computation of the initial conditions might be reliably calculated in
pQCD.

As SPS may have produced for the first time a QGP in the laboratory, RHIC is ex-
pected to study accurately the phase transition from normal matter to deconfined matter,
since it may produce energy densities which are close to the critical one. Finally, LHC
will study the QGP phase well above the critical point.



Chapter 2

Semihard parton rescatterings

In this chapter we will discuss the main ideas and tools which lead to the introduction
of semihard many-parton interactions in the dynamics of nuclear collisions at very high
energies. In the next chapters we will apply them to the study of the initial minijet-plasma
conditions, whose control is of the greatest importance for the detection and study of the
quark-gluon plasma.

Given the rapid growth of the hard cross section in hadronic and nuclear collisions [27,
40, 107], the typical inelastic event will be dominated by the perturbative regime at very
high energies so that, at the LHC, one may expect to be able to derive global features of the
inelastic interaction by perturbative methods. Such a capability, unavoidably limited to a
restricted number of physical observables, implies however a few non trivial improvements
in the understanding of the mechanisms operating in the interaction process. To be
estimated in a sensible way, different physical quantities may in fact need a different
degree of understanding of the interaction dynamics, since many details of the process
may be of little relevance for some observables, while they may be essential for other
quantities. Identifying and evaluating such physical observables represents a non trivial
improvement in our capability of using perturbative QCD to describe physical processes.

An obvious problem will appear when trying to elaborate along these lines. A per-
turbative calculation does not introduce any scale in the dynamics, so that in this case
the kinematic variables are the quantities which give the dimensionality to the related
physical observables. On the other hand the dimensional factor which characterizes the
global features of the typical inelastic event is, rather, the hadron or nuclear scale. When
the perturbative regime dominates a physical observable which represents global features
of the inelastic interaction, the hadron or nuclear scale should therefore appear also in
the corresponding perturbative calculation, presumably introduced through the nonper-
turbative input. The structure functions, namely the nonperturbative input of basically
all perturbative calculations, are on the other hand dimensionless quantities. This im-
plies that the structure functions, in their present form, will no longer be an adequate
nonperturbative input when trying to accomplish the program outlined above.

A related aspect is the complexity of the interacting states. The canonical perturbative
QCD approach considers only perturbative processes initiated by a pair of partons. The
approach is appropriate in the case of very dilute interacting systems, while it becomes
obviously inadequate in a regime with very large parton densities, which we call black disk
regime or black disk limit. In the case of a partonic interaction in the black disk regime,
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the initial configuration is in fact isotropic in transverse space, differently from the final
state produced by an interaction initiated by two partons (namely, at the leading order in
ag, two jets back-to-back in p;), where a direction in the transverse plane is singled out.
A natural way to recover the black disk symmetry in the final state, is to include in the
interaction perturbative processes initiated by more than two partons (namely, semihard
parton rescatterings), whose relevant property is to produce many large-p; jets also at the
lowest, order in ag. Multiple partonic interactions may be divided in two classes:

1. disconnected collisions: different parton pairs interact at different points in the plane

transverse to the beam — each parton interacts at most once;

2. parton rescatterings: a given parton may experience more than one scattering against
the target partons — we neglect rescatterings on the same parton.
Note that the term “disconnected collisions” refers in general to different groups of partons
interacting with other partons of the same group but not with partons from another
group, see Fig. 2.1. However, when used in opposition to the term “rescatterings” it has
the special meaning that the different groups are made of a pair of partons each.

To deal with processes initiated by more than two partons one needs to introduce, as
a nonperturbative input, the many-body structure functions, which contain independent
informations on the hadron (or nuclear) structure with respect to the one-body structure
functions needed to deal with processes initiated by two partons. A basic difference
is that the n-body structure functions are dimensional quantities, in such a way that
when n is larger than one the many-parton initiated processes introduce nonperturbative
scale factors in the dynamics of the interaction in a natural way, allowing one to deal
with the problem of dimensionality previously mentioned. By introducing interactions
initiated by many partons one may therefore gain the capability of describing, by means
of perturbative QCD, at least a few general properties of the typical interaction at very
high energy. To pursue such a program one should then i) evaluate in perturbative
QCD processes involving many partons in the initial state, i) face the problem of the
unknown non perturbative input and develop a strategy in that respect, and #ii) study
the infrared problem by finding observable quantities which are infrared stable. This last
step represents the final achievement of the whole program.

An explicit approach to semihard interactions in heavy ion collisions at collider ener-
gies on the lines previously described, has been pursued with the help of a few simplify-
ing hypotheses in [17-20], and various physical quantities have been evaluated in [3-6].
In this approach one faces the problem of unitarity corrections to the computation of
various global observables of a hadron-nucleus or nucleus-nucleus collision by using the
self-shadowing property of the hard component of the interaction, which was discussed in
Sec. 1.3.4. There we treated the case of a Glauber type computation of the hadron-nucleus
cross section, in which the interaction is viewed as a suitable superposition of nucleon-
nucleon interactions. However, the goal is to represent the semihard hadron-nucleus cross
section in a way analogous to (1.3.20), but considering as elementary objects the par-
tons instead of the nucleons. Indeed, the hard component of the interaction satisfies the
requirements of self-shadowing if one assumes that a parton which has undergone inter-
actions with large momentum exchange may be recognized in principle in the final state.
Obviously the unavoidable restriction of all considerations done by perturbative means
is that they are limited to partonic final states, whose properties will hopefully survive
hadronization.
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In Sec. 2.1 we briefly recall the canonical approach to semihard interactions in heavy-
ion collisions, which takes into account only the disconnected collisions. In the rest of the
chapter we discuss how to introduce also the parton rescatterings in the dynamics of the
process. The relevance of this kind of multiple scattering is discussed in Sec. 2.2, where
the key-concept of wounded parton is introduced. To represent the interaction between
hadrons and nuclei in terms of multiple semihard partonic interactions we need to write
the cross section for a given nonperturbative input, namely for a definite partonic con-
figuration of the two interacting objects. In Sec. 2.3 we introduce a functional formalism
to deal with these multiparton distributions. Then, as a perturbative input, we need the
probability of having at least one semihard interactions between the two configurations of
partons. In Sec. 2.4 we discuss the simplest case of rescattering, namely a three-parton in-
teraction, and generalize the result to an arbitrary number of rescattering. In Sec. 2.5 we
combine the perturbative and the nonperturbative inputs to obtain the hA and AA cross
sections. Finally, in Sec. 2.6 we compute a number of observables whose phenomenological
relevance will be studied in the following chapters.

2.1 Minijet cross section in Eikonal approximation

2.1.1 Minijets

In hadronic and nuclear interactions at high energies an increasing fraction of the cross
section is made of events which present on or more clusters of hadrons in the final state
[103,107,114]. These clusters are characterized by a large total transverse energy Er,
defined as the sum of the transverse energies of all the particles in the cluster. The
particles in a cluster are interpreted as the result of the hadronization of a parton
which had a hard scattering. Therefore they stream along the parton’s direction of motion
and. Large transverse energy clusters are typically observed experimentally by select-
ing groups of particles contained in a pseudorapidity and azimuthal angle region of size
AR = \/An? + A¢? ~ 0.7 around the most energetic particle of the group, and by requir-
ing their total transverse energy, Fr, to be larger than a given value, EJ'. When EJ is
large, E%et 2 10 GeV, the clusters are called jets. For smaller transverse energies, E%et 2
4 GeV the term minijet is preferred because of the small transverse energy and number of
particles of the cluster. At still lower values of EJT“ one reaches a regime where it becomes
difficult to interpret the data in terms of clusters and jets. This is due to several reasons:

1. soft events with high multiplicity and Er fluctuations may occasionally produce a
large- E'p cluster not related to a hard-scattered parton;

2. an increasing relative contribution to Ep from gluon radiation as the momentum
transfer in the hard scattering decreases;

3. multiple parton-parton interactions.

Minijets with E%et 2 5GeV have been observed in hadron-hadron collision at /s =
27 — 900 GeV [107,118,125], and with EJ > 3GeV at [118,125]. Even if at very low
E%et minijets can no more be distinguished from the background we can still study the
production of partons in the semihard region Agecp < po S 4 GeV, where py is the
minimum transverse momentum of the parton. Note that the lower bound of the semihard
region cannot be defined in a precise way, but is rather a matter of definition, since
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the subdivision into hard and soft interaction is a theoretical artifice [127]. Partons in
the semihard region are still expected to hadronize giving small jets of particles along
their direction of motion. These particles, therefore, have strong correlations both in the
azimuthal angle and in rapidity, while particles from the background are produced in an
isotropically way in the phase space. Therefore, one could study minijets in the semihard
region by measuring two-particle correlations between hadrons in the final state, see e.g.
[88]. The simplest observable of this kind is the distribution of charged particle pairs with
respect to their relative azimuthal angle. The most probable result of a semihard parton-
parton scattering is the production in the final state of two jets of particles superposed
on an isotropic background. If no rescattering or gluon radiation occurs, the two jets are
back-to-back in the plane transverse to the beam. Hence, the expected signature of the
minijets is the presence of two peaks in the particle pair angular distribution, one at 180
degrees from the other, the width of the peak being a measure of the angular width of the
minijets. Rescatterings or hard gluon radiation may be revealed as a broadening of the
width of the peaks. Some preliminary results on such an observables in Pb-Pb collisions
at /s = 17 GeV have been reported in Ref. [126].

2.1.2 The Eikonal model of minijet production

In nuclear collisions minijets are not thought of as actually observable physical entities.
Indeed the very large hadron multiplicities produced in a typical collision do not allow
jet reconstruction unless for large transverse jet energies. Rather, they are thought to
give the initial conditions for the evolution of the produced system of particles, whose
properties may be observed in the final state [13,43,55]. The description of the semihard
component of a nucleus-nucleus interaction, adopted by the majority of the papers on the
subject, follows the approach of Refs. [27,55]: the semihard component of the inelastic
cross section in a collision of two nuclei with atomic mass numbers A and B, also called
minijet cross section, is written as:

gAA /de (1_ e—aHTAB(b))

mj

_ i/deMe_UHTAB(b) , (2.1.1)
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Tap(h) = / Pr7a(r)r(r — ) . (2.1.2)

Here 74(r — b) and 75(b) are the thickness functions of the two interacting nuclei, nor-
malized to A and B, respectively, and depending on the transverse coordinates of the
interacting partons, r — b and r, where b is the impact parameter of the nuclear collision,
see Fig. 2.1. oy is the single scattering jet cross section in pp collisions, expressed as a
convolution of the nucleon parton distributions G/ (x), Gg (') and of the partonic cross
section o/f" = [ d*p,do’!’ /d. The indices f and f’ label the different kinds of interacting
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b)

Figure 2.1: a) An example of parton disconnected collisions in a collision with nuclear impact
parameter b. The origin of the transverse coordinates, r;, is the center of the B nucleus. b)
An example of parton rescatterings: the upper A nucleus parton has two scatterings against two
different B nucleus partons. The lower A nucleus parton has a single scattering, not connected
with the upper three-parton scattering (note that they may be nevertheless connected by the
multiparton distributions of the two nuclei.

partons and the momentum fractions z, =’ are defined with respect to the single nucleon
momentum. At the lowest order in pQCD and in the high-energy limit the gluon-gluon
cross section is

5 1

4 2
o9 (za') = gﬂasp—% (1 — Epzos) O(zz's — 4p)0(1 — 2)0(1 — 2) , (2.1.3)

and we may account for different flavours by using effective parton distribution functions
G =G9+4/9%,GY, so that o = [ deda' G (2)0%9 (va’)G/I (2'). Note that in the
expression of the gluon-gluon cross section we included all kinematic limits and an infrared
cutoff py on the transverse momentum to prevent integration over the singularity of the
pQCD differential cross section. Both the parton distribution functions and the strong
coupling constant, a;, depend on a scale (), which will be understood in the following.
The minijet cross section is a smooth function of py for small values of the cut-off: its
limiting value of is indeed the geometrical limit af,‘l;‘ ~ m(Rs + Rp)? R, and Rp being
the two nuclear radii. The corrections to the naive minijet cross section a,f,‘l‘;‘
introduced by the Eikonal model have therefore led to its unitarization.

In the Eikonal model of nucleus-nucleus interactions Eq. (2.1.1) is the hard compo-
nent of the nucleus-nucleus inelastic cross section, o4, which is obtained by writing the
inelastic nucleon-nucleon cross section as a sum of a soft and a hard part, o}, = og+op.
Then the nuclear inelastic cross section may be as well decomposed into a soft and a hard

AA _ _AA AA
part, oj.e = Oj.0 + 0,5, where

= Tupoy

Ufo?t _ /d2b (1 _ e—USTAB(b)) e—USTAB(b) ) (2.1.4)

The factors exp[—osTap(b)] and exp[—oyTap(b)] are interpreted, respectively, as the
probability of no soft interactions and of no semihard interactions at fixed impact pa-
rameter b. Then the minijet cross section (2.1.1) represents the contribution to the total
inelastic cross section of all events with at least one semihard partonic interaction, and
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the soft cross section (2.1.4) the contribution of all events with no semihard interactions
and at least one semihard partonic interaction. Note that as the semihard partonic cross
section oy grows, the probability of a hard interaction increases and the soft nuclear
cross section decreases, and the minijet cross section tends to saturate o/4. Therefore
we expect that at high energies and large atomic numbers minijet production will be
the dominant component of an heavy-ion collision. Note also that, as long as we are
concerned with the semihard part of the nuclear cross section we do not have to make
any commitment on the soft pp cross section, which in general has to be modeled in a
phenomenological way.

The physical picture corresponding to Eq.(2.1.1) is that of a distribution of multiple
independent two-parton collisions localized in different points in transverse space and
with the average number depending on the nuclear impact parameter, see Fig. 2.1a. The

average number of parton-parton interactions at fixed b is
<Ncoll(b)> — UHTAB(b) .

Hence, if og is at the lowest order in ag the average multiplicity of partons, i.e., of
minijets, produced in a given nuclear collision, i.e., at fixed b, is just twice the average
number of collisions:

<Nm](b)> = 2<Ncoll(b)> = 20HTAB(b) . (2.1.5)

The inclusive cross section for producing minijets in a nuclear collision is therefore given by
ond =2 [[d®b{N(b)). This shows that the description of the process given by Eq.(2.1.1) is
consistent with the AGK cancellation [2] (all unitarity corrections cancel in the inclusive).
The cancellation property obviously holds for all averages, that are therefore equal to the
result obtained by means of the single scattering expression, so that the transverse energy

produced by minijets is given by

<Et(b)> = QTAB(b)/ ptZ;‘—H d2pt . (2.1.6)

Pt>Po t

While the semihard cross section 0,7 is a smooth function of the cutoff, (N (b)) and
(E;(b)) are singular at small pg and their behaviour may be roughly estimated on dimen-
sional grounds to be (N (b)) ~ 1/p3 and (E;(b)) ~ 1/py. The singular behavior at low
po can be used to set the limits of validity of the picture. Indeed, for the picture of the
interaction to be valid one should take a relatively large value of the cut-off py; in this way
the whole semihard interaction takes place in a relatively dilute system and the overall
number of interactions will be relatively small. To deal with a regime where the num-
ber of parton interactions and the density of the interacting partons are large, the main
modification adopted by the majority of papers is to include shadowing corrections in the
nuclear parton distributions [28,29]. In this way one obtains a substantial reduction of
the number of projectile and target partons at low x and the picture can be extended to
sizably lower values of the cutoff py. Even so, when pq is further reduced, one reaches
the condition of a highly dense interacting system where the whole picture ceases to be
valid, which sets the lower limit for a sensible choice of the cutoff pg [33,43,55]. The
overall features of the Eikonal picture of semihard interactions are that the minimum p,
at which the picture is still valid is different when varying the atomic mass number of
the interacting nuclei and their energy, and that the distribution in the number of hard
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collisions at a fixed value of the impact parameter b is a Poissonian in the whole semihard
regime so that all average quantities are computed, as above, with the single scattering
expression.

e Discuss the average number of minijet pairs, if correlations will be discussed in the
thesis

2.1.3 The fate of the minijets

In heavy-ion interactions the number of minijets may become very large. Indeed, by using

hard-sphere thickness functions we have for a central AA collision Th4(0) = 525 A3,
0

where 7y = 1.12 fm is the proton radius. Since the perturbative minijet cross section is
proportional to the inverse square of the regulator py, we get

) A4/3
(N7 (0)) o N (V5) o
ToPo
where 7 is the proton radius. A is the number of partons participating in the interaction,
which is an increasing function of /s, due to the small-z increase of the parton distribution
functions. For the same reasons, also oy is growing with /s, which means that the
minijet cross section is saturating the nuclear inelastic cross section, as explained above.
Therefore, minijets will play an important role in high-energy heavy-ion collisions, their
multiplicity growing with A and \/(s) What happens of them, after their production?
Minijets at RHIC and LHC energies are mainly made of gluons. Therefore we can model
them as a gluon gas, which is produced in a very short time after the two nuclei collided.
The formation time may be estimated by uncertainty principle to be 77 &~ 1/py = 2(1)
fm at RHIC (LHC). In a gluon gas at a temperature 7'~ 200M eV the parton mean free
path is [49]

N a1
Jree ™= 2T In(6py/T)

For py = 1..2 GeV, we get Ap. of the order of some hundredth of a fm. Therefore,
minijets are likely to rescatter many times and thus thermalize, possibly entering in the
QGP phase.

2.2 Rescatterings, wounded partons and minijets

The clean physical interpretation of the approach described in the last section, which
incorporates the geometrical features of the nuclear process, unitarity, the factorization
of the hard component of the interaction and the AGK cancellation rules, justifies its the
great success. Still there are a few delicate points which deserve further investigation and
where the description of the process might be improved, first of all how to deal with the
black disk regime and if it is possible to do that in pQCD. Indeed, at very high energies the
target parton densities experienced by projectile partons are so high that the probability
for them to have more than one semihard scattering may become non negligible. At such
regimes the perturbative computation obtained by eikonalization of the minijet cross
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section may become inadequate since it takes into account only disconnected two-parton
semihard interactions.

When rescatterings are taken into account there is no more a simple relation between
the average number of parton-parton collisions and the average number of minijets. If
only disconnected collisions are taken into account the minijet multiplicity is simply twice
the number of collisions, see Fig. 2.1a. On the other hand if rescatterings are included,
we have only (N™ (b)) < 2(Ne(b)). As an example in Fig. 2.1b we have 3 parton-
parton semihard scatterings but only 5 minijets because the upper A nucleus parton had
1 rescattering before leaving the nucleus. It is then clear that the minijet counting requires
a detailed knowledge of the actual multiple scatterings in a given process, which becomes
rapidly very complicated when the incoming parton flux and the target parton density
increase. To simplify the task we define a wounded parton as a parton that had at least one
semihard scattering against the target partons. It is then clear that the number of minijets
coincides with the number of wounded partons and that the (transverse) energy produced
by semihard interactions is the (transverse) energy of the wounded partons. As it will
become clear in the remaining of the chapter this definition and some suitable simplifying
hypotheses will make treatable the problem of the inclusion of parton rescatterings in the
interaction dynamics and of the computation of global observables, like the minijet cross
section and the average minijet multiplicity and (transverse) energy.

To have a quantitative feeling for the relevance of rescatterings we need to evaluate the
average number of semihard collisions per incoming parton, (N***) which can be obtained
by studying the average number of produced minijets, Eq. (2.1.5). For later convenience
we define the nuclear distribution functions, I" 5, of a nucleus of atomic number A as the
product of the nuclear thickness function, 74, and the parton distribution function, G-

Ca(z,r) =14(r)G(2) . (2.2.1)

With this notation we rewrite the average number of minijets in the Eikonal approxima-
tion, Eq. (2.1.5), as follows:

(Nons(B)) = 2 / @ dz dz' Ta(z,7 — b) o(w2) T, 7) (2.2.9)
= /d2r doTa(z, 7 — b) (n% (2, 7)) + /d27“ dz' T(a',r) (n5"(«',r — b)),

where

(g (z,r)) = /dx'a(xx') Cp(z',r), (2.2.3)

and analogously for (n’*"). Eq. (2.2.2) may, therefore, be interpreted as the average

number, I"4, of incoming partons from the A nucleus multiplied by the average number,
(nsset) - of collisions against the partons of nucleus B (plus the analogous term with A
and B interchanged). We point out that although Eq. (2.2.3) has been derived in the
Eikonal approximation it is valid also when rescatterings are introduced in the collision
dynamics, see Sec. 2.6.2.

In Fig. 2.2 we plot (ng), the average number of scatterings suffered by a gluon in a
collision against a gold nucleus, as a function of the projectile parton fractional momentum
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Figure 2.2: Average number (n$®) of semihard scatterings suffered by a gluon scattering on a
gold nucleus at /s = 200 GeV per nucleon pair (leftmost panels) and /s = 6 TeV per nucleon pair
(rightmost panels). The scale is Q = po, the k factor is k£ = 2. Woods-Saxon thickness functions
have been used. Top panels: (ng) is plotted as a function of the projectile parton fractional
momentum z in the case of a central parton-nucleus collision. The three curves refer to different
cutoff values (see legend) and the shaded area corresponds to the central pseudorapidity region
In| < 1, where n = log(z1/(s)/po). The dotted line marks the transition value of 1 scattering
per parton. Bottom panels: {(ng) is plotted as a function of the impact parameter for a parton
emerging with pseudorapidity n = 0.

x and of its impact parameter, r, on the target nucleus. At RHIC energy and at a cut-off
po = 1 GeV a gluon in the central rapidity region experiences on average 1 to 2 scatterings
over the whole target transverse area except the very peripheral regions. At LHC and
po = 2 GeV the average number of scatterings raises to 2-3. At higher cut-off values the
number of scatterings decreases. As a result, semihard rescatterings should be negligible
down to py ~ 2 GeV at RHIC and down to pyg ~ 3 GeV at LHC, where their effects
begin to show up. At py = 1(2) GeV they may have a large effect and should not be
neglected. These conclusions will be confirmed by the numerical computations discussed
in Chapter 3.

Note that we chose different cutoff values as a reference value to discuss the regime
where parton rescatterings become important at RHIC and LHC. The reason is that, as
discussed in the introduction, the saturation scale, (), at which nonperturbative effects
due to high parton densities are expected to show up is a function of the collision energy.
As we would like to push perturbative computations as far as possible, in this discussion
we took the estimated values Qs ~ 1(2) GeV at RHIC (LHC) as the approximate limits for
po in the two cases. A detailed discussion of saturation in perturbative and semi-classical
QCD can be found in Chapter 4.

The dependence on /s of the average number of scatterings per incoming parton is
shown in Fig. 2.3 for r = 0 and different pseudorapidities n ~ log(x\/s/py. We can see
that semihard rescatterings in nuclear collisions are negligible in the backward pseudora-
pidity region at all energies. At central and forward rapidities they should affect global



52 Semihard parton rescatterings

n = -4 n =20 n =4
g\\mm‘ \\HHH‘ \\HHH‘ T \\HHH‘ \\HHH‘ \\HHH‘ T \\HHH‘ \\HHH‘ \\HHH‘ \E
ol &P /,; Figure 2.3: Average number (ng) of semihard
AN - e scatterings suffered by a gluon scattering on a
%::m L A o ST = proton (upper three panels) apd on a gold nu-
v - E cleus (lower three panels) at impact parameter
0.1 & p _

r = 0. The result for backward, central and for-
ward gluon rapidities are shown (we used the ap-

proximate relation 1 = log(z+/s/po)). The solid,
/ long-dashed and short-dashed lines refer to a cut-
~

—
o
T

?;A Praiite off value of py = 1, 2,3 GeV, respectively. For the
dm 1 T proton we used Gaussian thickness function and
v o1 L - 1eev | for the gold nucleus the Woods-Saxon one.
° — — 2GevV 3
/) --- 3Gev 7
10 102 10% 10*  10® 10° 10*  10% 10% 10t

Vs (Gev)

observables at /s 2 100 GeV, i.e. from RHIC energies on. Effects of rescatterings on
more exclusive observables like the two-jet angular correlations in A A collisions have been
reported in Refs. [118] and [125].

The cases of a hadron and a nuclear target should be compared with care. Indeed,
in hadronic collisions it is at best very difficult to control the centrality of the event.
Therefore the values average number of scatterings shown in Fig. 2.3 for a gluon-proton
collision are the peak values that can be reached when the gluon hits centrally the proton.
Actual observable depend rather on the average of (nj**(b)) over the transverse plane,
which results in a lowering of the values plotted in the figure by a factor two, approx-
imately. Moreover, in pp collisions the saturation scale is very low, Qs 2 Agcp, hence
there is no more a natural scale where to stop perturbative computations and the choice
of a reference value for py becomes a matter of definition of what is hard and what is soft
[127], and will depend also on the actual choice of the observable. Indeed, minijets may be
identified in the final state as clusters of particles flowing along the direction of motion of
a parton whose hadronization originated them. Unambiguous identification of a cluster
as a minijet instead of a background fluctuation is possible down to cluster transverse
energies Er 2> 5 GeV, corresponding to py 2 3 — 4 GeV [107]. Therefore, we expect that
rescatterings could play a role in minijet physics in hadronic collisions only at forward
rapidities and energy higher than some TeV. For observables like many particle correla-
tions, or hadron transverse spectra, the reference value is po = 1GeV and rescattering
may play an important role already at /s 2 300 GeV, say at Tevatron energies.

2.3 Nonperturbative input: multiparton distributions

In this section we discuss the nonperturbative input to the computation of multiple par-
tonic interactions, namely the multiparton distributions. To approach the problem in
the most general form we use the functional formalism introduced in [19]. At a given
resolution, provided by the regulator py, one may find the nuclear (or hadronic) system in
various partonic configurations. We call P(™(u; ...u,) the probability of a configuration
with n partons (the ezclusive n-parton distribution) where u; = (b;, x;) represents the
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transverse coordinate of the ith parton, b;, and its longitudinal fractional momentum, ;.
The distributions are symmetric in the variables u;, and can be obtained from a generating
functional defined with the help of auxiliary functions J(u) as follows:

2] = Z%/J(ul) T )Py, un)dus . duy,

In the above formula all infrared divergences are regularized by the cutoff py, which is
implicit in all equations. Probability conservation yields the normalization condition

Z[1]=1. (2.3.1)

Then, the exclusive n-parton distributions can be obtained by differentiating the gener-
ating functional Z with respect to the auxiliary functions:

) )
= 57w 57 )

P (uy, ... up) ly=o -

A useful representation of Z may be found by introducing its logarithm, F, with normal-
ization F[1] = 0, so that

Z[J] = &V, (2.3.2)

and by studying the inclusive n-parton distribution, D™ . They can be obtained as func-
tional derivatives of Z or of F. Indeed

1
DW(u) =T(u) = PV (u) + /P(Q) (u, u")du" + 3 /P(3) (u, ', u")du'du" + . ..

0Z OF
- - , 2.3.3
T | 50 (239
D@ (uy, us) = PP (uy, ug) + / P® (uy, ug, u)du' + % / PW (uy, ug, v’ u"Ydu'du" + . ..
622 62 4 )
__ ez | ®F | 0F 0F | oy
5J(u1)5J(u2) J=1 5J(u1)5J(u2) J=1 6J(u1) (SJ(’LLQ) J=1

and so on for higher multiparton distributions. We use I'(v) = D™ (u) for consistency
with the notation used in [3-6, 17, 18]. These relations show that the correlated part, C™,
of the inclusive n-parton distribution (also called n-parton correlation) is simply given by
differentiation of the generating functional F:

s 5
0T (uy) T 0T (uy)

C™ (uy, ..., uy) FUT o

so that the expansion of F near J = 1 reads:
FlJ) = /F(u)[J(u) — 1]du (2.3.5)

+ 2_:2 %/C(”)(ul oun) [T(wr) = 1] [ () — 1] dur . duy . (2.3.6)
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In this way we have obtained a convenient representation of the generating functional Z =
exp[F] in terms of the single parton distribution, I, and of the multiparton correlations,
cm,

In the simplest case where we neglect all the correlations between the partons, namely
C(22) = (, the generating functional is given by

Z[J] = el T (2.3.7)

and the the many-parton distribution is Poissonian:

1
n!

PO (uy, .. up) = D™ (uy, . uy) = =T (uy) ... T(up)ed @@ (2.3.8)
It is then easy to see that the multiparton inclusive distributions are factorized in terms
of the single-parton ones:

D™ (uy, ... up) = T(ug) - T(uy) -

The deviations from a Poissonian distribution may have two different origins:

1. the many-parton distributions are still factorized in terms of the single-parton dis-
tribution, I', but are not Poissonian, namely the exclusive and inclusive n-parton
distributions have different coefficients. In this case C'™ is factorized, as well;

2. genuine two- and many-body correlations, in which case C™ does not factorize.

For more details, we refer to [19].

2.4 Perturbative input: semihard rescatterings

A very general approach to nuclear interactions at high-energy is through the reggeon
diagram technique, which describes the interaction at high energy where as an exchange
of many pomerons, including both independent exchanges between different nucleons and
multi-pomeron interactions, which represent the collision of a given projectile nucleon
with several different target nucleons in a given interaction process. Each partonic colli-
sion corresponds to a fluctuation with a large transverse momentum inside the structure
of an exchanged pomeron. While the simplest case is that with a single partonic loop with
large p;, whose discontinuity corresponds to a 2 — 2 partonic collision, one might imagine
more complicated fluctuations, with several connected parton lines, all with large p;, in
the structure of a multi-pomeron interaction. The simplest case of this kind is illustrated
in Fig.2.4, where the Pomerons are represented by parton ladders. Discontinuities of such
fluctuations originate configurations, where the compensation of transverse momenta in
the final state involves several large p; partons, while the whole large p, configuration is
generated by partons belonging to different chains, representing Pomerons attached to
different nucleon lines. In the picture of the semihard interaction just recalled those con-
figurations contribute to the shadowing corrections of the nuclear parton distributions.
Their discontinuities, on the contrary, are not included in the semihard interaction dy-
namics. On the other hand, when approaching the black disk limit, the initial and final
partonic states become locally isotropic in transverse space, so that both initial and final
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Figure 2.4: a) A triple pomeron interaction between 3 nucleons. b) Parton ladders with the
topology of Fig.2.4a). The thick lines are fluctuations with high p; and the dashed line is a
possible cut. ¢) Partonic view of the cut of Fig.2.4b): P is a projectile parton interacting with two
target partons T; and the final state is given by the three large-p; jets J;.

state configurations need to be built up with lots of partons. A proper discussion of semi-
hard dynamics in the black disk limit requires therefore taking into account fluctuations
with many large p; parton lines, which are to be included not only in the virtual correc-
tions but also in the production process. Hence one needs to consider partonic interactions
where several partons, with low virtuality and p, and sizable longitudinal components (so
that, in the nucleus-nucleus c.m. frame, each one may be ascribed to a definite nucleus)
interact producing large p; jets.

The simplest multiparton interaction of the kind described above was discussed in
Ref.[20] (see also [84]), where the forward amplitude of the process and all the cuts
were derived in the case of a point-like projectile against two point-like targets, in the
limit of an infinite number of colors and for /s — 0. The result is that the leading
contributions to the various cut of the 3 — 3 forward amplitude are all proportional
one to another and the proportionality factors are exactly the AGK weights [2]. Even
more, the leading contribution comes from a configuration where the intermediate parton
between two successive collisions is on shell. A consequence of this analysis is that in the
limit considered we may express the three-body cross section as a product of two two-
body cross sections. Therefore we can interpret the process in terms of two successive
scatterings of the projectile parton against two different target partons, as depicted in
Fig. 2.5.

The results obtained in the simple case of a three-parton scattering may indicate
a convenient approximation of the many-parton interaction probability. One can in fact
argue that the many-parton interaction process may be approximated by a product of two-
parton interactions, so that one can call the process reinteraction or rescattering. The
whole interaction is therefore expressed in terms of two-body interaction probabilities,

Figure 2.5: Three parton interaction as
~Z two successive scatterings of a projectile
Us—0 parton, P, on two target partons, T;.
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precisely as the interaction between two nuclei is expressed in terms of nucleon-nucleon
collisions. Hence, given a configuration with n partons of the projectile and [ partons of
the target, we introduce the probability, P, ;, of having at least one partonic collision, in
a way analogous to the expression of the inelastic nucleus-nucleus cross section [11]:

Pos=[1- TT TT (16w

i=1,n k=1,

(2.4.1)

where 0, is the probability of interaction of a given pair of partons ¢ and k. Since the
distance over which the hard interactions are localized is much smaller than the soft inter-
action scale, one may approximate &(z;zy; b — by) = o(z;21)0? (b; — by,), where z; and
are the momentum fractions of the colliding partons, b; and by, their transverse coordinates
and o(x;xy) is the partonic semihard cross section, whose infrared divergence is cured by
introducing a regulator py. For example, py may be the lower cutoff on the momentum
exchange in each partonic collision, see Eq. (2.1.3), or a small mass introduced in the
transverse propagator to prevent the divergence of the cross section at zero momentum
exchange. The expression of P, is the analogue of Eq. (1.3.20) and represents the explicit
implementation of self-shadowing for the interaction of two partonic configurations, see
Ref. [84]. Note that because of self-shadowing all unitarity corrections to the semihard
cross section will be therefore expressed by means of the semihard partonic cross section
only, so that we don’t need to make any commitment on the soft component when only the
semihard part of the interaction is of interest. Self-shadowing allows moreover to control
also the soft component of the interaction by perturbative means, since that contribution
is limited to a fraction of the cross section proportional to the probability of not having
any hard interaction at all [see Eq. 1.3.21)].

2.5 Minijet cross section

In this section we want to compute the semihard inelastic cross section for the interaction
of two colliding nuclei with atomic numbers A and B! at fixed impact parameter b. The
minijet inelastic cross section daf,‘l? /d?b is obtained by folding the interaction probability,

'In the case of a hadron-nucleon collision, we will denote the hadron with the subscript h in general,
p for the proton and so on.
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Eq. (2.4.1), with the multiparton exclusive distributions of the two colliding nuclei:

doAP
TS :/Z P x PY x P,
n=1,00
I=1,00
= /Z ’ ZalJ]
o n!oJ( ul—b) 0J(u, — b) /=0
[=1,00

1§ 5
- 2yl
“Tsrn sra 2 =0

X{I—H[l—a g, up) } H duZHduk, (2.5.1)

i=1,n i=1,n k=1,
k=1,

where b is the impact parameter of the collisions. We used the shorthand u = (x,r) and
u—b = (x,r—b) to represent the parton fractional momentum, x, and the transverse coor-
dinate, r and r — b, respectively. In other words, the semihard cross section is constructed
by summing over all possible projectile and target parton configurations, and for each
given configuration by summing over all possible multiparton interactions. The latter is
obtained by considering the probability P, ;, Eq. (2.4.1), that at least one pair of partons,
one from A and the other from B, have a semihard scattering. The expansion of P, ; gives
all possible multiparton interactions. The % and + ;i are due to the indistiguishability of
the partons (remember that we are considering only the gluons). All the consideration
here can be generalized to include also the quarks [17].

To simplify the notation we introduce the following operators:

d , , 0

Note that these operators commute with each other. We also write the two-parton interac-
tion probability as 6, = 6(u;, u},), and will not understand the summation over repeated
indices. As an example,

I A o ! 0 0 ~ '
00,0k = /duzduk 5T (=) 6J’(u§c)a(u“ uy,)

= /dujdu; L a(u;)6 (us, up,)Tp(uy) + correlation terms.

Moreover, a generic index will be indicated with a star symbol, e.g., 0,0 = [ dul
[6/6J (ul)]o(u;,ul). When in a product of many items one is missing we will bar it:
for example,

TR VR

is the product of the operator ¢;, with 7 ranging from 1 to n, ezcept 6. When there is no
need to mark out any particular parton index we will omit them, e.g.

2%51---@; 2—6” :

n=0,00 n=0,00
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When the ¢ operators or the scattering probability & have no indices, they are understood
to refer to the variables v and «' as in the following example:

' o _
—6 fdu 5JI( l) ( )
oc /du&](u—b)e '

Given two functions f = f(u) and g = g(u), the following identity holds:
T Z[T+gl=Z[T+g+f]. (2.5.2)

In other words, the exponential of the operator ¢ acts on the generating functional Z by
shifting its argument by the amount f.
With this notation we can rewrite Eq. (2.5.1) as follows:

doy? 1 1 ) X ,

S = > SRR 1'5 0 91— = 6] ¢ ZalJ)1Z6[T] ermo| (25:3)
n=1,00 i=1,n
I=1,00 k=1,

This equation is the starting point for the computation of many observables. In this
section we will examine the AA and the hA cross sections. The first one may be computed
explicitly under the assumption that the partons do not suffer any rescatterings and by
taking some definite assumption on their correlations. In the case of no correlations we
shall recover the result obtained in the Eikonal approximation, Eq. (2.1.1). In the case
of hA interactions we shall be able to relax the approximations. The computations are
done with some detail to get acquainted with the formalism.

2.5.1 Nucleus-nucleus scattering with no parton rescatterings

In nucleus-nucleus interactions at high energy the largest contributions to the cross section
comes from semihard disconnected collisions. Therefore we may neglect completely parton
rescatterings, in which case the probability of no semihard interaction probability may be

written as
Pui=1- H 1 — 0,k Z Gike — 2’2 Z GikOpq + (2.5.4)

i=1,n i=1,n i=1,n p=1,n
k=1, k=1,l k=1, q=1,
pF#L; qFk

When substituting it in (2.5.3) we may do explicitly the sum over n and m. Indeed, by
exploiting the fact that the § and ¢’ operators commute with one another we get:

1 , / ' I A !
dzb Z Z —51 ++0n ﬁél---&c---él (0:04i) ZalJ1Z5[]] |7=71=0
n=1,00 i= ln
l:l,OO kil,l

1 1 1

n=2,00 i=1,n p=1n
I=2,00 k=1,0 q¢=1,l

k#i; j# x (5i5;c&ik) (517‘5(/1&1"1) ZA[J]ZB[JI] |7=77=0 LEER
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Next, we observe that §,6;;0; = 6,010 = 30’5, so that

domj _ ssi 1 Lo i s
= (056) Y by Wby 0 B8 Zal|Z6LT] ),
n=1,00
[=1,00
1,
— 5 (0 &)Y n(n—1)I(1 - 1) VW
n=2,00
m=2,00 X 6’ }g% \év 5[ ZA ZB[J] |J Ji= +
(2.5.5)
If we redefine the summation indices n and m, we obtain :
dUéB i !
d%y — {(55/ ) — = (55 ] 20: '51 OnZalJ] u5 028" |y
n=0,00 [=0,00
— [1 - 6_6&6,] e Z,[J] € Z5[J] l7=r=o
(2.5.6)

Finally, by using the identity (2.5.2) we get the general expression for the semihard
nucleus-nucleus cross section when parton rescatterings are neglected:

dO—AB 1~ St
d;rlbyj = [1 _ e 90 ms] ZalJ +1]Z2[J + 1] =iz | (2.5.7)

This expression is too complicated to be worked out explicitly due to the multiparton
correlations present in Z4[.J + 1] and Zg[J' +1]. If we further assume the partons in both
nuclei to be uncorrelated, we can use Eq. (2.3.7) in (2.5.7) and get the semihard cross
section in the Eikonal approximation discussed in Sec. 2.1:

AB
dg;nbj _ 1 - e~ Jdudu'T 4(u)6(u,u")T p(u ),

where we used the normalization condition (2.3.1). For a discussion of the case of two-
parton correlations we refer to Ref. [19].

2.5.2 Hadron-nucleus scattering

In the case of hadron-nucleus interactions? one may neglect the rescatterings of the partons
of the target nucleus. Indeed, even at very high center of mass energies the average number
of scattering suffered by the nuclear partons scattering on the hadron is smaller than than
one except in the very forward rapidity region, see Sec. 2.2. With this assumption the
number of collisions be equal to the number of wounded target partons and the interaction

2By convention, we consider the hadron to be the projectile and the nucleus to be the target.
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probability may be simplified as follows:

Py = {1 ~TIn —av,-k]}

i=1,n
k=1,l
) (2.5.8)
i Z Z 6-113 - 5 Z Z é'iké-pq Z Z Uzko'pqo-rs
i=1,n k=1,l L,p=1n K g=1, Lp,r=1n kgs=1,m

k#q k#q#s

where by k # g # s we actually mean that all three indices must be different. After
inserting Eq. (2.5.8) with the differentiation operators in Eq. (2.5.3) we can perform the
sums over the target indices, and after redefining them as when going from Eq. (2.5.5) to
Eq. (2.5.6) one obtains

dO—ZZA 1 A 1 1A 1A
d2b] = Z m(sl (5 Z 1’51 ( Z ((5 O'i*) — 5 Z (5*0i*)(5*0p*)
n=1,00 [=0,00 i=1,n i,p=1,n
1 : A N(Af A , (2.5.9)
+ 3! Z (030ix) (5,0px) (0,074) + .- -)Zh[J]ZA[J] |7=77=0
) i,p,r:l,n

= AZ,[J|Zp]]] | 7=0=0

The last equality defines the operator A. Given a number n of projectile partons and a
number ¢ of collisions, we have the following identity:

Z ( ;&il*)( ;&Zé*) o i&iq*) = [( ;&il*) + ( ;6—1'2*) + ot ( :ﬁiq*)}n .

01582 5eig =11

Therefore the operator A in Eq. (2.5.9) becomes:

A=Y %5"2(_2“ [ana;a-i*]q: 3 %5“ {1—exp(—zn:5;-6i*>]
n=1,00 >1 i=1 n=1,00 i=1
_ [Zoo %5_2 L (50°) ] s {1—exp[<s (-5’&—1>]}66+6'

Finally, by inserting A in Eq. (2.5.9) and by using the identity (2.5.2) we obtain the
general expression of the hadron-nucleus semihard cross section:

da%‘- _ {1 —exp [5' (675'& _ 1)] }Zh[J + 1Z4[J +1] FaNE (2.5.10)

d?b

This result includes all possible parton correlations of both the projectile and the target:
the only assumption made is that target partons do not suffer any semihard rescattering.
A meaningful approximation (see Ref.[19]) is to consider the nuclear partons uncorrelated,

("22) — . Then, by using Eq. (2.3.7) the cross section reduces to:

d2b Z Z < ) AL =16) 20T +1] |, =

nloo lOn

namely C’

=1- 2, [e—fﬂ"“’)“(“’)‘iu’] . (2.5.11)
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If we neglect also the correlations between the partons of the projectile, we get a further
simplification:

dO'hA- A ’ " lay!
1 exp{— / dul'y(u — b) [1 — = Jo(uu)Pa(w)du ] } . (2.5.12)
Both in Eq. (2.5.11) and in Eq. (2.5.12) the cross section is a function of
No(u,b) = Dy(u—b) [1 e &(“7“”“(“’)‘1“’] (2.5.13)
=Tp(u—0)Pa(u), (2.5.14)

which represents the number of projectile partons that have interacted with the target,
i.e., the projectile wounded partons. As we discussed in Sec. 2.2 we identify them with
the minijets even if they did not yet hadronize. The square parentheses is interpreted as
the probability that a projectile parton with given u = (x,b) has at least one semihard
interaction with the target, hence the cross section is obtained by summing all events
with at least one semihard interaction. Note that in the limit of large cutoff py the
interaction probability ¢, which is proportional to the gluon-gluon perturbative cross
section, become very small and so does the probability of having more than one scattering.
As a consequence the cross section recovers the Eikonal result, Eq. (2.5.7), obtained in
Sec. 2.5.1.

Of course, the projectile parton correlations appear explicitly in the total hadron-
nucleus cross section. In the simplest case of two-parton correlations one would obtain:

doh4

=1 exp{— [ A=)+ g [ PO b - b>7’A(“'>} |
(2.5.15)

The effect of correlations on daﬁf} /d?b is however small, both when unitarity corrections
are small (i.e., when the semihard parton-parton cross section is small, so that P4 and
N, are both of order 0%‘) and when they are large (i.e., when Uﬁfj‘- is large, P4 ~ 1 and
Ny, is large). If, on the other hand, one is looking for correlations, the simplest quantity
which depends linearly on C’f(bz) is the double-jet inclusive cross section [23].

2.6 Global average quantities

The semihard cross section, Eq. (2.5.3), though difficult to calculate itself, is the starting
point for the analytical computation of a number of average quantities, whose physical
relevance will be studied in detail in the next chapters. In this section we will compute
global observables like the average number of wounded partons and their transverse en-
ergy. We will also study the corresponding differential observables, like the transverse
momentum distribution of wounded partons and the double differential distribution of
pairs of wounded partons. The phenomenological applications will be discussed in the
next chapters. N

Given [ “target” partons in the B nucleus, the probability, P;; that the ith “projectile
parton” from the A nucleus has at least one semihard interaction with them is obtained
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analogously to Eq. (2.4.1):

Piy = [1 - [Ja- 6;;;)] : (2.6.1)

k=1,

Then, we can write the average number of A nucleus wounded partons at fixed impact pa-
rameter by looking at two given parton configuration of the projectile and target nucleus,
summing over each projectile nucleus multiplied by the probability P that it becomes
wounded and finally summing over all the possible partonic configurations:

_ 1 1 ~
Nai(b) = Z - Z FIRR A — 01 -0, Piy Za[J|Z]J"] |70 (2.6.2)

This is the starting point for the computation of the average quantities we discuss in the
next subsections.

2.6.1 Average number of wounded partons

Since the d operators commute, we can perform the sum over s explicitly and rewrite this
equation as follows:

_ 1
Nab) = Y n—oy: 4,

1, 1., . ,
LA PIFUED DI ]| AT EZe) P
56l [65; _ ea;u—fm)] ZA[J)Zs]J] =<0

= 0ePZA[T] |,y x (1= e " e 2l

Finally we get the average number of A nucleus wounded partons:

Na(b) = 02417 +1] |,y % [1 —zZ[1-4]] . (2.6.3)

The result is obtained under the only assumption that all the target partons are uncor-
related. Therefore, [ dbNa(b) represents the integrated inclusive cross section to detect
all scattered projectile partons, and takes into account the correlations of the projectile
partons at all orders. From the explicit form for the generating functional Z, Eqs. (2.3.2)
and (2.3.6), and by the definition of the single-parton exclusive distribution function I'(u),
Eq. (2.3.3), we have

51652A[J] |J:0 = 512A[J—|— 1] |J:0 = /dUFA(U — b) s (2.6.4)

where the last term has to be read as an integral operator acting on the second term in
Eq. (2.6.2). Note that multiparton correlations have dropped out of Eq. (2.6.4). It is then
easy to obtain an explicit expression for the wounded partons:

NA(b) — /dUFA(’LL _ b)effdu’a(u,u')FB(u')+% fdu’ldu’za(u,u’l)cg)(u’l,u’z)(r(u,u'z)+... ‘ (265)
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We can interpret the average number of A nucleus wounded partons, Eq. (2.6.5), as
the integral over u of the average number of partons in the A nucleus, I'4, times the
probability, P; g, that it a parton with coordinate u has at least one semihard scattering
against the target nucleus:

N4(b) = /duFA(u — ))Pis(u) , (2.6.6)
where
Pip(u) =1- Zpl] +1-06] |, _, (2.6.7)

It is interesting to interpret Eq. (2.6.7) in terms of multiple scattering probabilities. By
using the identity

, .
1 :ZB[JI+1] |J’:0 :€6Z[Jl] |J’:0 = Z %(SI Z[Jl] |J’:0 ,

m=1,00

we can expand Zg[J' + 1 — ] around J' = 0, obtaining

Pis(w) = > l—l!a” [1—(1-06)]Z2[]] =

[=1,00
1 "n vV .y ~\l—v !
= S @ (D)oo, 268)
[=1,00 v=1,l
1 PS4 1 / ~Nl—v /
== —10'6]" x > S 0= 2L |, -
v=1,00 I=v,00

In the above equation we used the fact that all the partons are of the same flavour to group
together all the pairs that had a scattering and all those that did not. The technique to
deal with an arbitrary number of flavours is discussed in Appendix 1 of Ref. [17]. The
second line of Eq. (2.6.8) shows the expansion of the scattering probability P in the
number, v, of semihard scatterings suffered by the projectile parton scattering on the B
nucleus. Note also that probability conservation is explicitly taken into account for each
given number m > v of partons in the target. Indeed in the first term in the last line
of Eq. (2.6.8) is the probability of having v scatterings against v target partons and the
second one is the probability of no scattering against the remaining [ — v partons of the
target. Loosely speaking, we will refer to this probability conservation as the unitarization
of the average number of wounded partons, though it is actually a weaker result. Finally,
we perform the sum over [ explicitly and find the general expression for the probability
of at least one semihard scattering, expanded in the number of scatterings, v:

-~ 1 1AV —8'6 1
Pip(u) = Y —[0'5]"e " ZLT 4+ 1] (2.6.9)
v=1l,00

|7=0

The term e~%7, which we will call absorption term, represents therefore the probability

that the projectile parton does not have any rescattering after the vth one, with no
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restrictions on the total number of target partons. The above expression for the scattering
probability P;p could have been derived directly by expanding the exponential in the
square brackets in the identity 1 — Z[1 — 6] = [1 — e 171 ] Zp[J + 1] s However,
in the former derivation the role of the absorption term in implementing probability
conservation is fully explicit. An equivalent proof of Eq. (2.6.2) may be obtained by
working out directly from Eq. (2.5.3) the average number of projectile partons which
have undergone hard interactions [17,19].

2.6.2 Average number of parton-parton collisions and of scat-
terings per parton

The average number of semihard parton-parton collisions is equal to the number of scatter-
ings suffered by the wounded partons of one of the two colliding systems, the A nucleus in
the following. Indeed, all the A nucleus wounded partons had at least one semihard scat-
tering, and all semihard parton-parton scatterings involve one A nucleus parton, which
therefore becomes wounded. Then, to count the average number of collisions we have
to use Eq. (2.6.9) in Eq. (2.6.2) to obtain the expansion of the latter in the number of
semihard scatterings, Eq. (2.6.9):

1 1 ~ v —§é6
Na(b) = Z o Z 01+ 0g - 0p X Z ;[5;‘75*] e % ZalNNZpl) + 1] |7=17=0
n=1l,00  s=1,n v=1,00

1 v 46 /
= 0Za[J +1] ), % > —10'6)"e "0 ZplJ +1]

v=1,00

=0 (2.6.10)

To obtain the average umber of collisions we have to compute the average (v) by using
the above probability measure:

(New) (0) = 5207 +1] |,y ¥ 3 v 991 e 7 200"+ 1

V! |7=0

v=1,00

= (5ZA[J—|— 1] |J:0 X 0 X (SIZB[J, + 1] |J,:0

Finally, by using the identity (2.6.4) we get the general expression of the average number
of parton-parton collisions:

(Nooth(B) = / dudu'T 4 (u — )6 (u, u')T (1) | (2.6.11)

To obtain this result we did not have to make any restrictive assumption, hence Eq. (2.6.11)
includes any possible multiparton correlations. The same result can be obtained by work-
ing with Eq. (2.5.3) instead of Eq. (2.6.2) [82]. Note that Eq. (2.6.11) expression multiplied
by two coincides with the formula for the average number of minijets in the Eikonal ap-
proximation, Eq. (2.1.5). This is a correct statement when the transverse area occupied
by the target partons is small, namely, when the parton-parton cross section is small (i.e.,
at large values of the cutoff) or at small and negative rapidities, where the flux of target
partons is small. Indeed in these cases the incoming partons suffer at most one semihard
scattering, and two minijets are produced in each collision: ij ~ 2(Neou). However, we
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want to stress that when multiple parton scatterings are taken into account the correct
interpretation of Eq. (2.6.11) is the average number of parton-parton collisions.

Finally, we compute the average number of semihard scatterings per A nucleus parton
at fixed u. It can be obtained by dropping the integration over u in Eq. (2.6.11) and by
dividing the result by the number of incoming A nucleus partons, I'4(u — b):

(Nowa}(B) = / ' (u, 1) T (1) | (2.6.12)

We could have obtained this result also by working directly with the scattering probability
Pig, Eq. (2.6.9). In Fig. 2.2 and 2.3 we plotted (Ngey) as a function of the fractional
momentum z, of the centrality of the collision and of the center of mass energy. In the
case of a parton scattering against a nucleus the probability of having some rescatterings
against a nucleus is sizeable both at RHIC and LHC.

2.6.3 Transverse spectrum of wounded partons

The average number of wounded partons is not the only observable which is modified by
the introduction of semihard rescatterings in the dynamics. Indeed, also the transverse
momentum distribution of minijets is affected in a non-trivial way [18]. The average num-
ber of wounded partons from the A nucleus is obtained by integrating the average number
of incoming A partons multiplied by the probability of having at least one semihard scat-
tering, see Eq. (2.6.6). To compute their transverse spectrum we have therefore to multiply
the average number of incoming partons by the differential probability d731 B/d?p; of hav-
ing at least one semihard scattering and emerging from the target nucleus with a given
transverse momentum p;:

Na(b) = / dul 4(u — b) dZ}B (u) .

The differential probability may be obtained by introducing a constraint in the transverse
momentum integrals that give the scattering probabilities, &, in the expansion of P;g in
the number of scatterings, Eq. (2.6.9):

dP 1, dé 61, 5,
PIB (U,l) — / Z _’ 6, 011 . 5/ 01 675*0—1*2[1], _|_ 1] (2613)
V.

d?p, a2k, Y d2k,

|7 =0
v=1,00

x 0@ (k) + - +k, —py) ki ... d%k, dr .. .da!, . (2.6.14)

A convenient way to perform explicitly the sum over v is to introduce the Fourier transform
of the parton-parton scattering probability:

B Qv A0

o(v) = | dPke™v— .

)= [ ere

and of the differential scattering probability:

= p, . . dP
Punvin) = [ e )
t
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Note that 7(0) = dand that due to the azimuthal symmetry of do/d?k, its Fourier trans-
form depends only on the modulus, v, of v. Since all the convolutions in Eq. (2.6.14) turn
into products after the Fourier transform we get:

%1B(v;u) = Z L

vl

[5'3(1})] ’ 6_6,(3(U)_&)ZB[JI +1] | 7=0
v=1

Finally we get the Fourier transformed differential scattering probability

Piplv;u) = [egf(éw)—&) - enm] Za[7 +1] || (2.6.15)

Then, the transverse spectrum of the A nucleus wounded partonsis obtained by performing
the Fourier transform back to p; space and by folding the scattering probability with the
average number of incoming projectile parton:

dp v o
d2119f(u1) = /duFA(u—b)/(Q—WT;Qezpt "Pip(v;u)|. (2.6.16)

Note that since é(v) depends only on the modulus of v, the transverse spectrum depends
only on the modulus of transverse momentum p;. As a final remark, Eq. (2.6.16) is correct
also when we integrate over a given interval of u in the hypotheses that the interval limits
do not depend on p;. The way of dealing with a p;-dependent interval on the u integration
is briefly discussed in Appendix A.3.

2.6.4 Average transverse energy

If we neglect the parton masses, the transverse energy carried by the A nucleus wounded
partons is obtained by integrating the average number of incoming partons, I'4(u), mul-
tiplied by the average transverse momentum of a wounded parton, (p;)p(u), where

dP v w3
R e R Kl =

The way to proceed would be to exchange the two integrations, but to do this we need to

introduce a regularized average transverse momentum depending on a positive parameter

A (p)pia(u) = (e7*tpy) p(u) |, so that (pt)BM(u)ﬁ(pQB(u). Let’s exchange the integrals
—

in the regularized average transverse momentum and exploiting the azimuthal symmetry
of the integrand with respect to both u and p;:

(Pe) BA :/ dUU/ nftydptprg(ptv)ﬁlB(v) ,
0 0

where .J; is the Bessel function of order 0, and we omitted the dependence on the variable
u for ease of notation. Since

o0 1d v?
2 — -
/0 dpip Jo(pw) = — = <(U2 +)\2)3/2>
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we obtain
* d v? = ® v? d =
s = [0 5 (o) Poto) = [0 (~ ) o)
(2.6.17)

By Eq. (2.6.15) we have that

d = 12! & (3(1})—6) 1

%’PlB('U) =d0o (’U)€ ZB[J + 1] |]’:0 R (2618)
where

S d -~ > do

5 () = L 5(0) = o /0 R (ho) (2.6.19)

Note that él(v) is proportional to v because of the argument of the .J; Bessel function.
Therefore the integrand in Eq. (2.6.18) is an integrable function of v also in the limit
A — 0. This would have not been the case if we did not introduce the regulator exp(—Ap;.
Finally, after taking the limit A — 0 in Eq. (2.6.17) we obtain the average transverse
momentum of a wounded parton:

v

(p)p(u) = /000 dv (_@> e? ((0)=0) Zp 1) 1] o (2.6.20)

and the wounded parton average transverse energy:

Tr(b) = / du T a(u — b) (p) s (1) |

The same caveat about the integration limits on u discussed at the end of the last sub-
section is valid.






Chapter 3

Initial conditions in heavy-ion
collisions

Semihard physics is one of the most important issues in the interaction of heavy ions
at ultra-relativistic energies. Given the total energy involved and the large number of
participants, the component of the inelastic interaction which can be described within a
perturbative approach is in fact rather substantial at RHIC and might dominate at LHC
[54,89]. The result is the production of a large number of minijets in the typical inelastic
event.

The usual perturbative approach takes into account only partonic disconnected col-
lisions, namely independent parton-parton scatterings in different points in the plane
transverse to the beam. As discussed in Sec. 2.2, at very high energies the partonic densi-
ties of the two interacting nuclei may become so large that also rescatterings of the same
parton on different target partons may become non negligible. An attempt to introduce
such more elaborate semihard dynamics, including explicitly semihard parton rescatter-
ings in the interaction, was discussed in Chapter 2. Both the average number of minijets
and the average transverse energy are modified by semihard rescatterings, and an inter-
esting feature is that both quantities develop a less singular dependence on the cutoff, in
such a way that the choice of py becomes less critical when semihard parton rescatter-
ings are taken into account. The average number of minijets and the transverse energy
produced in heavy ion collisions have been recently discussed in several papers, with the
purpose to determine the initial conditions for the further evolution and thermalization
of the system (see e.g. [28,31,79]). We think that it might be interesting to have an
indication of the effects of rescatterings on these quantities at LHC and RHIC, and we’ll
discuss this topic in the present chapter. In the next section, we will recall how to include
rescatterings in the picture of the interaction and we will make an heuristic derivation
of the average number of minijets and of their transverse energy. Then, we’ll give some
quantitative indication on the effect and comment the qualitative features induced by the
more structured interaction dynamics.
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3.1 Parton rescatterings: average number and trans-
verse energy of minijets

The average number of minijets and their average transverse energy have been discussed in
Sec. 2.6 in a very general framework, which includes parton correlations in the nuclei at all
orders. As an illustration we will repeat those computations here in a more heuristic way.
Moreover, we will neglect parton correlations to allow a more transparent interpretation
of the results.

After neglecting parton correlations we are left, for each nucleus, with a Poisson multi-
parton distribution [Eq. (2.3.8)], which corresponds to the case where the information on
the initial state is minimal, since the whole distribution is expressed in terms of its own
average value only. The hard part is written in terms of two-body collisions by introducing
the probability of having at least one interaction between the two configuration (Sec. 2.4).
The process is therefore represented as the sum of all possible interactions between all
configurations with a definite number of partons of the two nuclei, see Sec. 2.5. Referring
to Eq. (2.5.3), the semihard component of the inelastic nucleus-nucleus cross section may;,
therefore, be written as

=1 _ 2 _
og = /Z EFA(xl,b—rl)...FA(xn,b—rn) e J dwd®r Ta(w,b—r) .
n=1

>0 ST, ) Talalrl) e Jda'd* (', r) (3.1.1)
=1

l
. [1 ~TITI0- a—ik)] dovd?ry . . . depd?rodad?r, . dald?r!

1=1 k=1

3

where
Ca(z,b) = 74(0)G(x) .

To keep the notation as simple as possible, the indices labeling the different kinds of
partons have been suppressed and the dependence on the cutoff py is implicit. The two
Poissonian distributions, with average numbers I 4(x,b — r) and I'g(2’,0'), represent the
multiparton distributions of the two interacting nuclei. The probability to have at least
one partonic interaction, given a configuration with n and [ partons in the two nuclei,
is represented by the square parenthesis in Eq. (3.1.1) and is constructed by means of
the probability ;. of interaction of a given pair of partons ¢ and k, see Sec. 2.4. The
interaction probability is a function of the cutoff py, so that only the interactions with
momentum exchange larger than py are taken into account in (3.1.1). The majority of
interactions takes place with a momentum exchange close to the cutoff value, hence we
evaluate the parton distributions at the scale of the cutoff. Since the distance over which
the hard interactions are localized is much smaller than the typical nuclear radius, the
probability of interaction can be approximated by

&(xixk, b; — bk) = U(fvz'ka; Q2)5(2)(bi - bk) )
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where o is the pQCD gluon-gluon cross section at leading order in the high energy limit:

2
o(zz;Q*) =k g7rcv3(622)i2 (1 — ﬂ) O(za's — 4p3)0(1 — 2)0(1 — 2') . (3.1.2)
2 Dj ra's

In the above expression we included all the kinematic limits and pgy is the cut-off that
discriminates between soft and semihard interactions. We also included explicitly the k
factor, k, to take into account higher order corrections. Both the cross section and the
parton distributions depend on a scale (), which we take proportional to the cutoff, and
will understand in the following. The most important features of Eq. (3.1.1) are that
all possible interactions between the two partonic configurations are included, and that
probability conservation is explicitly taken into account by the term in square parentheses.
The Eikonal cross section discusses in Sec. 2.1, which corresponds to the inclusion of
disconnected collisions only, may be obtained by neglecting all rescatterings in Eq. (3.1.1),
in such a way that each parton is allowed to interact at most once (Sec. 2.5.1):

O_AA — /d2b <1 - e—fd2rd:vd:v’ FA(x,b—r)a(:v:v’)FB(:v’,r)>

_ i/d% ([ d*rdzda’' T a(z,b — r)o(za")Tp(a', 7))

n

~ (3.1.3)

w e~ J d'dedd' T a(w,b — r)o(za’)Cp(a’,r)

If, on the contrary, we keep rescatterings into account we cannot write a closed expression
for 0. However, it is possible to obtain simple expressions from Eq. (3.1.1) for many
relevant quantities, as shown in Sec. 2.6.

If we work out from Eq. (3.1.1) the average number of parton collisions (/N (b)) we obtains,
as in the traditional approach, the single scattering expression (N(b)) = 0;T45(b), see
Sec. 2.6.2. So, the overall average number of parton collisions satisfies the AGK cancella-
tion and is not affected by any unitarity correction; however it is not a simple quantity to
observe. A more directly observable quantity, or at least one which can be more directly
related to observable quantities, is the average number of produced minijets. An impor-
tant effect of including rescatterings is that the number of produced minijets is no more
proportional to the number of collisions, because now each projectile parton is allowed to
interact more than once with the target. As a consequence, while unitarity corrections do
not change the average number of collisions, they affect the average number of minijets
produced in the nuclear collision.

The correction term can be derived in a straightforward way from Eq. (3.1.1) (Sec. 2.6.1),
but we may use also a more heuristic argument. One may in fact obtain the usual semi-
hard cross section, Eq. (3.1.4), by starting from the single scattering cross section to
produce large-p; jets. In the perturbative QCD-parton model this cross section is written
as:

oy :/ d*bd*r dv da' T g(z,b — r) o(za’) T(2’,r) = /de (N(b)) . (3.1.4)
zx’s>4po

The expression needs however to be unitarized also when the cutoff p, has a rather large
value, since o is proportional to the large factor A x B. The Eikonal minijet cross
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section (3.1.4) is obtained by performing the s-channel unitarization of o;. It may also be
obtained by noticing that in Eq. (3.1.4) (N (b)) is dimensionless and may be understood
as the average number of parton interactions at a given impact parameter b. The s-
channel unitarized cross section og is the result of replacing this average number with
the interaction probability, which, if the distribution in the number of interactions is a
Poissonian, is just 1 — exp(—(/N(b))). Hence the unitarized cross section oy represents
the contribution to the total cross section of all events with at least one couple of partons
interacting with a transverse momentum exchange above py, as it is clear from the second
line of Eq. (3.1.4). On the other hand o, that includes also the multiplicity of the
interactions, represents rather the integrated inclusive cross section (apart from the factor
representing the average multiplicity of jets produced in a single collision).

When the cutoff is moved toward low values and rescatterings need to be taken into
account, the average number of jets produced is no more proportional to the average
number of collisions. In this case one may proceed by applying to (N (b)) an argument
analogous to that previously used to unitarize o;. By looking at Eq. (3.1.4) one can
identify

(np(z,b)) E/ dr' Tp(x',b) o(zx') (3.1.5)

2
xx's>4pg

as the average number of collisions of each interacting A-parton at fixed x and b. Then
one can write the average number of produced minijets at fixed impact parameter as

2(N (b)) = / » d*rdaT 4(x,b — ) (np(z,b)) +/ d*bdx'Tg(z',r) (na(2',b—1)) ,

z's>4p3

that represents the average number of incoming partons from the nucleus A multiplied
by the average number of collisions against the partons of nucleus B, plus the analogous
term with A and B interchanged. Then, if one replaces in Eq. (3.1.6) the average number
of scatterings of each parton with its interaction probability, viz. 1 —exp({ng(z,r))) and
1 — exp({na(z,b — r))), one obtains the average number of “wounded partons” of the
two nuclei, which can be identified with the average number of minijets N7 (z,r) and
Nz’ (x',b — 1), as discussed in Sec. 2.6.1. These ones are the partons of the two nuclei
that had at least one hard interaction. The expression for the average number of wounded
partons of nucleus A (with transverse coordinate r and momentum fraction x, in an event

with nuclear impact parameter b) is therefore
N (2,7, b) = Ta(a,b— 1) [1 — e~ (mB@ )] (3.1.7)

Every wounded parton obtained in this way produces a minijet in the final state and the
transverse energy produced by semihard interactions is the transverse energy carried by
the wounded partons. As a consequence both the average number of minijets and their
average transverse energy are quantities affected by the presence of rescatterings and the
corresponding correction term is more and more important when the average number of
scatterings (ng) becomes larger and larger, namely at low values of the cutoff py and (or)
for large atomic mass numbers. The overall number of produced minijets, i.e. the sum
of the wounded partons of nucleus A with those of nucleus B, obviously coincides with
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the usual result 2(N (b)), when the average number of rescatterings is small. When the
number of rescatterings is large the two quantities are however different and, while the
average number of collisions (N (b)) may be divergent in the saturation limit, the average
number of wounded partons is on the contrary well defined. In fact one obtains that the
square parenthesis in Eq. (3.1.7) has 1 as a limiting value and, in this limit, the average
number of wounded partons is just the sum of the average number of partons of the two
interacting nuclei.

To have a quantitative feeling for the regime of interest at RHIC and LHC energies
we may look at Fig. 2.2, where we plotted (ng), the average number of scatterings per
parton from the A-nucleus, as a function of the projectile parton fractional momentum
x and impact parameter b. As one can see, at a cut-off py = 2 GeV a parton in the
central region experiences on average 1 to 3 scatterings over the whole target transverse
area except the very peripheral regions. As discussed above, at higher cut-off values the
number of scatterings decreases. As a result, semihard rescatterings should be negligible
down to pg >~ 3 GeV where their effects begin to show up, and already at py = 2 GeV they
should have a large effect and should not be neglected. At RHIC energies rescatterings
begin to play a role at py < 2 GeV and should have large effects at py < 1 GeV, at the edge
of the applicability of perturbative computations. These conclusions will be confirmed by
the numerical computations discussed in section 3.2.

The average number of minijets is not the only quantity modified by this more elab-
orate interaction dynamics, which in fact has a non-trivial effect also on the transverse
energy carried by the minijets [18]. The wounded partons of nucleus A at a given x
and b and in a nuclear interaction with impact parameter b, Eq. (3.1.7) are obtained by
multiplying the average number of partons of A (with given = and b) by the correspond-
ing interaction probability, which is a Poisson probability distribution in the number of
scatterings, with average (np(z,b)) = [ da'Tg(2',b)o(za'):

N (2,7, b) = Da(a, b — 1) i <nBE/:c!,r)> o—(np(z,r)) (3.1.8)

We may therefore obtain the differential distribution in the transverse momentum p; of
the wounded A partons by introducing a constraint in the transverse momentum integrals
which give the total cross sections in the above expression:
AN
d?py

=1 ' ' '
= Ta(z,r—1)) ;/FB(x'l,r)...FB(xL,r)e_fdxFB(xaT)U(fm) .
v=1 "

(x,r,b) =

do do

2 2 2
g 00k = D) Ay de L da (3.1.9)

v

The limits of integration on z; and 2’ are respectively zals > 4k? and za's > 4p3, and
all the distribution functions are evaluated for simplicity at a fixed scale. To obtain
the corresponding average transverse energy (p;(x,r, b)) one has to integrate Eq. (3.1.9)
with an additional factor p;. This computation has been carried out on general grounds
in Sec. 2.6.4. When considering Poissonian multiparton nuclear distributions the result,
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Eq. (2.6.20), reads:

%(b) _ /d%/ooo dvTa(z,b—1) </dx'MFB($,,T)>

% e ] dx'Tp(@,r)o(v;za’) — 5(0; 22")] : (3.1.10)
where p
o (v; za') :/deeik"’dQ—a(xx') ;. 0(0;z2") = o(xx') (3.1.11)
Dt

is the Fourier transform of the differential parton-parton cross section do(zz')/d*k =
9/2a2 1/k*0(k* — p3)0(xa's — 4k?)0(1 — 2)0(1 — 2'), and

&' (vyza') = —27T/ k2J1(kv)d—U(xx') dk , (3.1.12)

0 d?k
which is proportional to v because of the argument of the J; Bessel function. The average
transverse energy in an event with a given impact parameter b is the result of integrating
Eq. (3.1.10) on b and z and of summing the two contributions of the wounded partons
of the nuclei A and B. Note that the expression in Eq. (3.1.10) is much less dependent
on the choice of the cutoff py than the usual average energy evaluated with the single
scattering expression for the perturbative QCD parton model: the Rutherford singularity
of the parton-parton cross section is in fact smoothed in Eq. (3.1.12) by the Bessel function
Ji(ku), in such a way that the dependence on the cutoff py is only logarithmic. The same
logarithmic dependence on the cutoff is present in the argument of the exponential

5(u) — 5(0) = 27 / [Jo(ku) - 1] % k dk (3.1.13)
as a consequence of the behavior of [Jo(ku) — 1] for k — 0.

In summary, the effect of rescatterings on the average number of the produced mini-
jets is to reduce the number obtained by means of the single scattering expression, not
differently, qualitatively, from the result of including shadowing corrections in the nu-
clear parton distribution. On the other hand the overall distribution in the number of
minijets produced is modified. In the traditional approach there is a strong correlation
in the distribution of the number of minijets, since each minijet has a recoiling compan-
ion; when the average number of rescatterings increases this correlation gets weaker and
weaker, so that in the high density limit no correlation is left and the minijet distribution
tends to a Poissonian [17]. A further important difference is that, since W, and Wp are
well defined in this limit, after including rescatterings the average number of minijets
becomes much less dependent on the choice of the cutoff at low py. Moreover, we may ob-
tain without further approximations a closed analytical form also for the minijet average
transverse energy, whose dependence on p, for small values of the cutoff is smoothened
by the rescatterings.

3.2 Numerical results and discussion

Many papers have been recently devoted to the production of minijets in heavy ion colli-
sions [28, 33,54, 79,92] (see also the introduction to Chapter 4). A rather general feature
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of the perturbative approaches is that, because of the singular behavior of the elementary
parton interaction at low momentum transfer, many relevant quantities depend rather
strongly (typically like an inverse power) on the value of the cutoff which distinguishes
soft and hard parton interactions (see Ref. [26] for an approach where this problem is
absent). This feature is unpleasant since although one might find physical arguments to
determine a meaningful value of the cutoff [30,33,43,79], it is rather difficult to fix it in
a very precise way. We have therefore tried, in this chapter, to face this issue by studying
the effect of a more elaborate interaction dynamics on the average number of minijets pro-
duced in a nuclear collision and on the corresponding average transverse energy. While
in the traditional picture of the semihard processes each parton is allowed to interact
with large momentum transfer only once, we have included semihard parton rescatterings
in the dynamics of the interaction. Semihard rescatterings, that are negligible when the
threshold between hard and soft processes is high, become more and more important
when the threshold is lowered and the target approaches the black disk limit. Naively one
would expect that the inclusion of rescatterings in the picture of the interaction might
worsen the divergent behavior at low transverse momenta; on the contrary a more careful
analysis, that takes probability conservation consistently into account, shows that the
result is just the opposite. Following Refs. [17] and [18] we have in fact represented the
semihard nuclear cross section with Eq. (3.1.1), where all possible multiparton collisions,
including rescatterings, are taken into account and the conservation of probability is ex-
plicitly implemented. The average number of minijets and the corresponding transverse
energy, at fixed x, b and impact parameter b, are then expressed in a closed analytical
form by (3.1.7) and (3.1.10), whose behavior with the cutoff is much less singular in com-
parison with the analogous averages obtained without taking rescatterings into account.
The reason of this smoother behavior is that rescatterings introduce (through I'y and ')
a new dimensional quantity in (3.1.7) and (3.1.10), the nuclear radius, which gives the
dimensionality to the two average quantities at small py. When rescatterings are neglected
the dimensionality at small pg is provided by the cutoff itself, and the result is that the
two quantities behave as an inverse power of the cutoff for py — 0.

Apart from the approximation of writing all connected multiparton processes as prod-
ucts of 2 — 2 partonic collisions, our approach states on the assumption of neglecting
production processes at the partonic level (namely 2 — 3 etc. parton processes) and of
using forward kinematics in the nucleon-nucleon c.m. frame. To have a feeling on the
validity of such approximations at LHC energy, we have evaluated the average energy of
a partonic interaction in the parton-parton center of mass frame, and the average value
of momentum fraction x of a projectile parton:

(Eem)oy = /da:dx'\/m:’sZGQ(x)aff,(xx')Gg(x')

fr

(x)o, = /dxdx'xzGQ(m)aff’(xx')Gg(x') (3.2.1)
fr

When the whole rapidity range is considered typical values are (E.,, ) ~ 25 GeV, (z) ~
3 x 1072 (corresponding to a momentum of &~ 45 GeV, if the nucleon-nucleon c.m. energy
is 6TeV) with py = 2 GeV. The average (x) becomes substantially smaller when averaging
in a narrow window in the central rapidity region. The relatively low value of (E.,, ),
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Figure 3.1: Average number N of minijets, a) b), and average transverse energy Er, ¢) d), in a Pb-Pb
central collision in two different rapidity windows, |y| < 4 and |y| < .9, as a function of the cutoff, a) and
¢), and of the k factor, b) and d). The dashed curves are computed without including rescatterings, the
continuous curves after including rescatterings.

as compared with the cutoff, indicates that the inclusion of 2 — 3, or of higher order
partonic processes, should not spoil the whole approach, that could therefore represent
a reasonable lowest order approximation. The relatively large value of the momentum
boost to go from the nucleon-nucleon c.m. frame to the partonic c.m. frame shows, on
the other hand, that forward kinematics is reasonable in the former frame of reference.
The effect of semihard parton rescatterings on the average number of minijets and on
the average transverse energy produced in a central Pb-Pb collision at LHC energies is
summarized in Fig.3.1. We plotted the average number of minijets and their transverse
energy in the case of a very central rapidity window, |y| < .9, corresponding to the
ALICE detector, and in a larger rapidity interval, |y| < 4, that will be covered by the
CMS detector. Figure 3.1a) shows, in the two cases, the dependence of the average
number of produced minijets on the choice of the cutoff py. The dashed curves are the
results obtained by the single scattering expression, Eq. (3.1.4), while the continuous
curves are the result of the inclusion of semihard parton rescatterings, Eq. (3.1.7) plus
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Figure 3.2: Left: average number of minijets at RHIC and LHC energies. Right: transverse
energy per minijet.

the analogous term for the B partons. These expressions have been computed with the
GRVI8LO distribution functions [135] with no shadowing corrections included, and by
representing the elementary partonic interaction at the lowest order in QCD; to account
for higher order corrections the result of the elementary interaction has been multiplied
by a factor k£ = 2.5. Both the k factor and the scale () = py/2 where chosen in order
to reproduce the value of the pp mini-jet cross section at /s = 900 GeV [107]'. The
sensitivity to the value of the k factor is shown in Fig. 3.1b), where the curves have the
same meaning as in Fig. 3.1a), and the cutoff has been fixed to the value py = 2 GeV.
Analogous curves for the average transverse energy carried by the produced minijets are
shown in Fig. 3.1¢) and 3.1d). The average transverse energy without rescatterings has
been computed by using Eq. (2.1.6) (dashed curves) and with rescatterings (continuous
curves) by using Eq. (3.1.10), after integrating on b and on z (inside the corresponding
rapidity windows) and adding the analogous contribution of the B partons.

The inclusion of rescatterings in the interaction dynamics results in a large reduction
of the minijet multiplicity and transverse energy at low cutoff compared to the predictions
of the Eikonal approach, which neglects rescatterings. At low cutoff both quantities show
a plateau at py < 2 GeV and a greatly reduced dependence on the k factor. The effects of
rescatterings at RHIC and LHC energies are compared in the left panel of Fig. 3.2, where
we plotted the minijet multiplicity as a function of the cutoff note the different choice of )
and k. The same qualitative behaviour is found at the different energies, the plateau at a
slightly smaller cutoff, py < 1 GeV, at RHIC. In the right panel of Fig. 3.2 we plotted the
transverse energy per minijet ¢ = Ep/N. The usual perturbative expectations, based on
the Eikonal model results, Eqs. (2.1.5) and (2.1.6), would predict 7 o< pg. Conversely,
rescatterings cause e to stabilize at low cutoff around ey = 3 GeV at LHC and e = 2
GeV at RHIC. This effect takes place in the same cutoff range where the plateau in the
minijet multiplicity develops.

LAn alternative choice is Q = pg and k = 2. This one is to be preferred at RHIC energies, where the
typical pp may be estimated to be around 1 GeV
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Figure 3.3: Production of
P T P minijets in the transverse mo-
mentum plane. a) The pro-
jectile parton (P) is allowed to
T T interact only once with a tar-
get parton (T), so that the two
produced minijets are back-to-
back. b) The projectile can scat-

T T T .
ter against more than one target
T and minijets are produced with a
star-shape.
a) b)

3.3 Conclusions

In this chapter we have discussed the production of minijets in heavy ion collisions at
the LHC, by including explicitly semihard parton rescatterings in the dynamics of the
interaction. The regime of interest is, in fact, the regime where the nuclear target reaches
the black disk limit for a projectile parton interacting with momentum exchange above the
cutoff py (which defines the lower limit in p; for minijet production). In the mechanism of
production of minijets usually considered (a projectile parton interacts with only a single
target parton) the elementary interaction generates a state with a preferred direction in
transverse space (the direction of the two minijets) which is not consistent with local
symmetry in the transverse directions implied by the black disk limit. The star-like shape
in transverse space of the state produced by the multiple interactions of a projectile with
different target partons (scattered projectile + recoils) recovers, on the other hand, the
symmetry property of the interaction in the black disk limit, see Fig.3.3.

The basic element in our estimate is to recognize that the usual expression that gives
the average number (N (b)) of parton collisions at a fixed value of the nuclear impact
parameter, Eq. (3.1.4), is obtained by convoluting the average number of partons of the
projectile with the average number (ng(z, b)) of interactions of each projectile parton with
the target nucleus, Eq. (3.1.5). Note that the evaluation of (npg(z,b)) and its dependence
on the momentum fraction is, in this way, determined in a unique way by the parton
distributions. Our results are therefore parameter free. Given the expression for the
semihard cross section, Eq. (3.1.1), the average number of produced minijets W (z,r,b),
Eq. (3.1.7), and the corresponding average transverse energy (p;(x,r,b)), Eq. (3.1.10),
are computed without further approximations, so that our result for N and Er, plotted
in the figures, are exact consequences of the nuclear cross section (3.1.1). An approx-
imation that is done when writing the nuclear cross section (3.1.1), is to evaluate the
parton distributions at the scale of the cutoff, so that in Eq. (3.1.9) the only dependence
on the transverse momenta is in the elementary partonic cross sections, which basically
corresponds to neglecting the logarithmic dependence of the distributions in comparison
with the inverse power dependence of the cross section. However, our formalism can be
extended to take into account a general scale dependence.

The main features of the numerical evaluation are that semihard rescatterings have a
sizable effect on the average number of minijets and on the transverse energy produced
in heavy ion collisions at the LHC, so that they affect also global characteristics of the
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typical inelastic event. The induced correction increases with the value of the k factor,
which represents higher orders in the elementary parton collision, and with the size of
the rapidity window, since rescatterings are more frequent for partons with a larger mo-
mentum fraction. By looking at the dependence on the cutoff, both the average number
of minijets and the corresponding average transverse energy are more regular at low py,
showing a tendency to saturate below p, ~ 3 GeV at LHC and below py ~ 2 GeV at
RHIC. In this way rescatterings make the choice of the cutoff less critical and suggests a
way to fix it to a physically meaningful value, as we will discuss in Chapter 4.






Chapter 4

Parton saturation

In heavy-ion collisions the partonic degrees of freedom of the two interacting nuclei become
more and more important as the center of mass energy of the collision increases. At
some point the main particle production mechanism in the initial stage becomes the
liberation from the nuclear wave functions of a great number of partons, also called
minijet plasma. At ultra-relativistic energies the partonic density of the two nuclei is
so high that perturbative methods on one hand [13,33, 35, 36, 38,43, 55, 77,92] and semi-
classical nonperturbative methods on the other [60,61,73,74,76] become applicable to
the computation of the initial conditions of the minijet plasma. It’s successive evolution
will possibly lead to thermalization of the system and to the transition to the quark-
gluon plasma phase, whose formation and characteristics depend crucially on such initial
conditions. Though the latter are not directly accessible experimentally, they can be
related to final state observables, like the charged particle multiplicity and transverse
energy, allowing a test of the proposed theoretical models.

We can divide in general the models in five classes: (i) “two-component models” [60,
92], in which particle production is assumed to be decomposable into the sum of a soft and
a hard part according to some cutoff py; (4i) “saturation models” [13, 33, 35, 36, 38, 60, 61],
which exploit the high parton densities involved in the process; (iii) “Monte Carlo models”
[51,53], in which the whole nuclear collision is simulated at the computer; iv) various
kinds of “string models” [24]; v) “hydrodynamic models” [62]. To distinguish between
them, it has been proposed in [92] to study the centrality dependence of the charged
particle multiplicity, since this allows to disentangle to some degree the dynamical and
the geometrical effects. The study of this observable should be moreover supplemented by
a combined study of the energy and rapidity dependence of the charged multiplicity. A
review of the results of the above models on the charged multiplicity and of experimental
results may be found in [37, 45].

In Sec. 4.1-4.2 we provide a brief introduction to saturation models. In Sec. 4.3 we
propose a new one based on the introduction of rescatterings in the collision dynamics
and on the results on initial conditions obtained in Chapter 3. In Sec. 4.4 we compare
the results of the various models and in Sec. 4.5 we draw our conclusions.
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Figure 4.1: a) A hard probe interacting with a nuclear target resolves the transverse area pro-
portional to 1/Q? and in the target rest frame a longitudinal distance proportional to 1/mx. b)
Transverse view of the target. As the energy of the collision increases, the typical z probed by
the interaction decreases as © ~ 2@Q/+/s, hence the parton density increases. Figures taken from
Refs. [61, 73]

4.1 Initial state saturation

The idea of initial state parton saturation [13,43,77] states that in some regimes the
partons in the initial state hadron or nuclear wave function become so numerous that
they begin to interact with each other and a further growth of their density is unlikely.

Consider an external probe interacting with a target nucleus of atomic number A [58].
For definiteness we can think of a virtual photon in a deep inelastic scattering on a nucleus
(see Fig. 4.1a), or to a projectile parton in a proton-nucleus scattering. When the probe
interacts with nuclear partons of a given Bjorken x, in the target rest frame the interaction
develops, by uncertainty principle, over longitudinal distances z ~ 1/(Mz), where M is
the mass of a nucleon. At small x values z becomes comparable to the nuclear size and the
probe cannot distinguish between nucleons on the front side of the nucleus and those on
the back side. Therefore it interacts coherently with all the partons located in a transverse
area ~ 1/Q?, where @ is the momentum transfer squared. At this point an increase in
the parton density does not affect the interaction of the probe since the coherence means
that the probe sees all the partons as one. In the infinite momentum frame, where the
partons are well defined physical objects, the picture changes. The typical x at a probe
rapidity y = 0 is x =~ 2Q)/+/s; since the parton distributions increase for decreasing x, the
target looks denser to the probe as the energy of the collision increases or as the scale of
the interaction decreases, see Fig. 4.1b.

Let’s estimate the highest parton density at which the probe can resolve the par-
tons individually. The probe interacts with a cross section o o< ay(Q?)/Q? [43], which
determines its transverse area. The parton density in the transverse plane is given by

. dNA ~ .I‘GA(ZC,Q2)
Cdyd*r T TRY

PA X A1/3 )
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where R4 ~ (1.12fm)A'Y? is the nuclear radius, Ga(z, Q?) = [ d®r Ca(x,r, Q%) = AG(z,Q?),
and T"4 is the nuclear parton distribution function defined in Eq. (2.2.1). Therefore, de-
pending on the momentum transfer, the atomic number and the value of Bjorken z, we
may have two regimes:
e 0py < 1: this is the “dilute” regime of incoherent interactions where pQCD meth-
ods apply;
e opy > 1: in this regime the probe sees a high parton density. The usual pQCD
description in terms of “leading twist”, but also the expansion in higher twists,
becomes inadequate. Non linear QCD effects become important.

The border between the two regimes is given by ops & 1. This condition determines the
critical value of the momentum transfer at which the partons in the target begin to look
dense to the probe. We call this momentum transfer the saturation scale:

IL'GA(J:, Qz)

A3 4.1.1
TR% x ( )

Q5 ~ as(Q7)

At the saturation scale the number of gluons is therefore

as(Q3)

Note that the saturation scale increases with energy (because of the small-z increase of
the parton distribution function ) and the atomic number of the target. Moreover, the
number of gluons is proportional to the inverse of «. Various estimates give Qs ~ 1 — 2
GeV at RHIC energies and a slightly higher value at LHC. Hence in heavy-ion collision we
may reach a saturation regime characterized by weak coupling and high parton densities.
We may thus treat this regime in terms of parton saturation with suitably generalized
perturbative methods or in terms of colour fields in semi-classical QCD, as we will discuss
in the following.

The partons in the initial state wave functions are then freed in a high energy collision
mainly by parton-parton scatterings in the small-z and small ) region. Therefore, if
these values are inside the saturation region, the saturated multiplicity N, determines the
multiplicity of produced gluons.

N = 2G 4(7, Q?) =~ Q’R% o« A .

4.1.1 Semi-classical QCD

Equation (4.1.1) may be obtained heuristically in a way that justifies the use of semi-
classical QCD in the high-density regime [58]. The first step is to take the QCD La-
grangian density £ = —1/4Gy, G}, +> ;4 (i —my)q}. Then we rescale the vector fields
and the field strength as follows: A2 = gA%, and G%, = ¢G¢, = 9, A% — 9, A% + fobe Ab Ac
In terms of the new field, the only dependence of the action on g is in the pure Yang-Mills
term,

S o /iégyégy : (4.1.2)

Now, we consider a classical configuration of gluon fields, which we think to be associated
to a nucleus having a high-energy interaction. Then, by definition, G, is independent
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of g and the action is large, S > k. The number of quanta (i.e. of gluons) in such a
configuration is given by

S 1
N, ~ — x —p4Vy 4.1.3
I H > PaVa ( )
where p, is the average action density and Vj the space-time volume in which the quanta
are contained. Non-linear effects will come into play when the field is such that 9,4, =~
A, A,. Solving this equality in momentum space and using it in Eq. (4.1.2) we get:

QPr~ A= (G)* = \/p1 - (4.1.4)

Next, we need an estimate of the space-time volume occupied by the gluons. Their
transverse area they occupy is mR%. By uncertainty principle, gluons interacting at a
scale (; are extended in the longitudinal and proper time directions by ~ 1/Q);. Then,
the space-time volume occupied by the gluons which are participating in the interaction
is Vj &~ mR%/Q?. Thus, by combining Eqgs. (4.1.3) and (4.1.4) we get

N,
4 ~ 9 ~ -2 2
Qs Np4 Na574 Na,snng )

where n, = WNTQZ is the gluon density in the transverse plane. If we identify N, =
1G 4(z, Q%) the above equation coincides with the saturation condition Eq. (4.1.1).

The above heuristic derivation says that the physics of the high-density regime may be
potentially understood in terms of classical gluon fields. This observation is at the core
of the semi-classical McLerran-Venugopalan model [73,74]. By the more sophisticated
methods described in those papers it is possible to derive also the proportionality factor

[76] (see [75] for a shorter discussion):

87N,
2 c
QS_NCQ_I

s (Q)ng(z, 7 Qy) (4.1.5)

where ng(z,r;Qs) = [a(z,7;Q5) is the transverse plane density of gluons at a given x
and r is the transverse coordinate. Note that in general Q; = Q4(x, 7).

4.1.2 Perturbative QCD

Given the relatively high value for the saturation scale (Q* ~ 1 GeV at RHIC and Q% > 2
GeV at LHC), we expect that the high parton density regime may be described also by
perturbative methods. A hard scattering with momentum transfer () probes the nucleus
at a distance of order @ '. At very small scales a nucleus is made predominantly of
gluons. As one goes to still smaller scales the gluon density increases because a gluon
may be actually made of two gluons of a smaller size. This process is described in pQCD in
terms of parton splitting processes and leads to the Dokshitzer-Gribov-Lipatov-Altarelli-
Parisi (DGLAP) equation for the evolution in  of the parton distribution functions [25].
As the gluon density increases we may expect that also the opposite process, parton
recombination, will take place. Parton recombination is a process in which two gluons
combine to form a single one, which lowers the gluon multiplicity. Its rate is proportional
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to the parton density, indeed the higher the density the larger the probability for two
partons to be close enough in phase space to fuse. Hence, we expect that when lowering
the scale an equilibrium between splitting and recombination will be reached, after which
the parton density stops increasing. We call saturation scale the scale at which this
equilibrium is reached.

In pQCD the interplay of parton splitting and recombination is described by a higher
twist modification of the DGLAP equation [77]:

o0 3

1 /
Q* angxFA(va;Q = Qs / —xFAx b; Q%) — %QQ/ d—xszg)(w',r;x',T; ?)
(4.1.6)

where @, = a,(Q*)N,/7 and N, is the number of colours. Here, we consider only gluons,
as they dominate parton production in ultra-relativistic collisions. The first term on the
right hand side is the gluon splitting term, which is proportional to T's(z, r; p?), the one-
gluon inclusive distribution at a given fractional momentum z, transverse coordinate r
and scale Q* = p?. The gluon recombination term comes with an opposite sign and is
proportional to the inclusive distribution of two gluons, Dg), computed at the same z, b
and @? for both gluons. If we neglect parton correlations inside the nucleus we have

22D (x, 72,7, Q%) = [aTa(z,m; QY] , (4.1.7)

as discussed in Sec. 2.3. Following Ref. [13], we expect that gluon recombination will
become comparable to gluon splitting when gluons begin to overlap in the transverse
plane, i.e. when the scale is such that zT" 4(x, Q?) ~ const‘times@Q*R?. In other words
the saturation scale is determined by:

QZTQfUFA(x’T;QZ) =2l (z,7m;Q%) . (4.1.8)
At lower scales the gluon density stops increasing and at higher values it becomes too
small for gluon recombination. Therefore we define the saturation scale () as the largest
() that satisfies Eq. (4.1.8). Note that Qs = Q(z,r) depends on z. Since the gluon
distribution increases at small x, the saturation scale is slowly increasing function of the
fractional momentum. Eq. (4.1.8) is difficult to be used in (4.1.6), therefore we will use a
weaker saturation condition:

Q wmlﬁ(x,r; Q) =0. (4.1.9)
This equation follows from Eq. (4.1.8) if we assume that in the saturation region Q% < Q?
the gluon distribution is independent of x. This is a reasonable assumption. Indeed,
starting at a given = and at a scale @ < Qs(x) (at fixed r), if we decrease x the saturation
scale increases and we remain in the saturation region. Conversely, by increasing x of a
small amount the saturation scale decreases a little bit, and if the variation of the fractional
momentum is not too high we still remain in the saturation region. Therefore, in both
cases the gluon distribution stays approximately constant. By combining Eqs. (4.1.6) and
Eq. (4.1.7) with the saturation condition Eq. (4.1.9) we get:
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Solving for Q? we finally get the saturation scale:

N,
Q2 = oy (Q)Talw, 1 Q%) - (4.1.10)
We can see that the saturation scale obtained in pQCD, Eq. (4.1.10), and with semi-
classical methods, Eq. (4.1.5), differ only by some group theoretical factors, which however
differ only by factors of order one.

4.1.3 Charged particle multiplicity in high-density QCD

Let us discuss an application of the picture of parton saturation in the initial state to
the computation of charged particle distributions [60,61]. First, we observe that the
saturation scale depends on the centrality of the collision. Indeed, ()5 depends on n,, the
density in the transverse plane of the gluons which participate in the collision. In a central
collision all the gluons of the nucleus participate, but in a peripheral collision only those
which are inside the overlap area of the two colliding nuclei. In a first approximation
we may take n, to be proportional to the density of nucleons which participate in the
collision, and if we consider for simplicity a scattering of two equal nuclei we get

p t(r b)c
ng(xa T, b; Q?) = ZUG(:L‘, Qg) X W# )
where p,qr¢(b) is the density of participant nucleons, and b is the impact parameter. In the
Glauber model we may express the density of participants in an equal nuclei scattering
as follows (see Sec. 1.3.1):

ar b —0y
Py 2t( ) _ /dzrm(b_r) 1 — =oin(V)Tar)

Here 74(r) is the nuclear thickness function at a transverse coordinate r and oy, (y/s) the
pp inelastic cross section computed at the nucleon-nucleon center of mass energy /s of
the nuclear collision. The saturation scale is given by Eq. (4.1.5):

9 8mN,

where we evaluated the gluon distribution at the typical Bjorken x of the collision, x;, =
2Q;/+/s. The saturation scale may thus be determined by solving iteratively Eq. (4.1.11).
For a central collision of two gold nuclei it is found to be @, = 2 GeV, where x,G(z,, Q?) ~
2 at xy ~ 0.02 with a4(Qs) =~ 0.6.

To compute the number of produced gluons we use a formula derived in Ref. [75, 76]
for the number of produced gluons at the saturation scale:

dN, N’-1 1
=c
d?rdn 4N, a,(Q2) °°7

(4.1.12)

where ¢ is called parton liberation coefficient, and accounts for the transformation of
virtual partons into on-shell partons caused by the interaction. It is expected to be of
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Vs =130 GeV | /s =200 GeV | /s =6 TeV
b (fm) Npart Qz Npart Qz Npart Qz

0 378 2.05 380 2.33 387 | 6.47
1 372 2.04 374 2.32 382 | 6.44
2 354 2.02 356 2.30 368 | 6.38
3 325 1.98 327 2.25 343 | 6.25
4 290 1.92 292 2.18 310 | 6.06
5 251 1.84 253 2.09 271 | 5.81
6 210 1.74 212 1.98 230 | 5.49
7 169 1.61 171 1.83 188 | 5.08
8 130 1.46 132 1.66 148 | 4.61
9 94.3 1.26 95.7 1.43 110 | 3.98
10 62.7 1.04 64.0 1.18 76.1 | 3.28
11 37.5 0.77 38.7 0.88 47.7 | 2.43

Table 4.1: The number of participants computed in the Glauber model and the saturation scale
Qs at RHIC and LHC energies. At 130 GeV Qs is determined by solving Eq. (4.1.11) iteratively
and is taken from Ref. [60], while at different energies we used the scaling relation (4.1.14).

order one. Putting together Egs. (4.1.11) and (4.1.12) and integrating over the transverse
coordinates r, we get

dN,

dn
If we assume local parton-hadron duality [85], we may take the charged particle density to
be proportional to the density of produced gluons: dN°"/dn = 2/3 dN,/dn. With suitable
hypotheses on the behaviour of the parton distribution function it is possible to write an
analytical formula for charged particle multiplicity valid at all energies [61]. For central
pseudorapidities, which is the case we will discuss in this chapter, we have:

1 Nch % 2
e aNT _ . <3> In w , (4.1.13)
Npare/2 17=0 dn S0 Abep

where ¢ is a constant which has to be extracted from the experimental data at some
reference energy ,/sg, as we discuss below. The logarithm in Eq. (4.1.13) is due to the
following ansatz for the gluon distribution at Q% ~ 1, which is based on the DGLAP

evolution equation [25]:
2
vG(z; Q%) o<log< « ) :

2
AQCD

- CNPart(b) xSG(x“ Q?) :

However, at very low (Q? perturbative computations of parton distribution functions ac-
quire theoretical errors of nearly 100% and this ansatz may be questionable [45]. The
saturation scale at energies different from the reference one may be computed from the
scaling relation [42]

Q3 (b, s) = Q3 (b, 50) <3>A : (4.1.14)

So
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The exponent A describes the small-z rise of the gluon distribution function and may
be determined in deep-inelastic scattering experiments. The HERA data are fitted with
A= 0.25—-0.3, and A = 0.25 is used in Eq. (4.1.13) by the authors of Ref. [61]. In that
paper the approach is extended also to arbitrary pseudorapidity.

To determine ¢ we use the RHIC data on the charged multiplicity at /s, = 130 GeV.
The combined value [113] of the charged particle density per participant pair from the
four RHIC experiments [99, 102, 111-113,116] is (2/Npar)dN"/dn|,—0 = 3.37 £ 0.12. By
using Q% = 2.05 GeV? at b = 0 from Table 4.1 and Agep = 200 MeV we get!

¢ = 0.856 + 0.060
corresponding to a parton liberation coefficient
c=1.28+£0.09 .

This value compares well with a lattice computation [67] which gives 0.75 < ¢ < 1.20,
and an analytical computation which gives ¢ = 21n2 ~ 1.39 [66].

In Fig. 4.2 we show the centrality dependence of the charged multiplicity density
per participant pair at zero pseudorapidity. The curves are obtained by inserting in
Eq. (4.1.13) the computed values of N,q at /s = 130 and 200 GeV and of @, at
V50 = 130 GeV from Table 4.1. We can see that data are very well described by the
high-density QCD prediction. We also checked that using A\ = 0.3 instead of A = 0.25
practically does not change the results. The multiplicity at LHC energy shows a slight
increase in the slope, which doesn’t depend on A, but its absolute normalization depends
strongly on that parameter (see Fig. 4.13).

4.2 Final state saturation

In heavy-ion collisions at ultrarelativistic energies the average number of minijets pro-
duced with pr > py in a given rapidity window, Ay, may be obtained, in a first approxi-

Ito account for the various approximations introduced, the quoted error on ¢ is the double of what
one would get from Eq. (4.1.13).
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mation, by the Eikonal model discussed in Sec. 2.1:
ij (b7 Do, Ay) =2 TAA(b) om (pUa Ay)

where Tya(b) = [d*r7a(r — b)7a(r) is the nuclear overlap function; oy is the cross
section for minijet production in a rapidity window Ay in proton-proton collisions and
is computed with an infrared cutoff p,. The approach is well suited for large values
of py, where the nuclei are dilute and the minijet multiplicity is low. However, since
roughly N™ oc Ty 4(b)/p3, when lowering the cutoff py the number of produced partons
(mainly gluons) increases rapidly. If sufficiently many partons are produced inside Ay,
they begin to overpopulate the available transverse area, which is of the order of the
geometrical nuclear overlap area. In this highly dense system of partons final-state fusion
processes among them may become important [43]. These processes may therefore lead
to a screening of additional parton production, and below some saturation cutoff psu
no further growth in the multiplicity is expected. This discussion may be formulated
quantitatively in two ways: (i) by a global saturation criterion (the “EKRT model”),
which depends only on the impact parameter of the collision, and (ii) by a local saturation
criterion (the “EKRT model”), which deals with the transverse plane density of produced
minijets. We will discuss them in turn in the next two subsections and then we will apply
them to the computation of charged particle densities.

4.2.1 Global criterion

Let us assign to the produced partons a transverse area a; which by uncertainty principle
may be taken inversely proportional to their typical momentum transfer: ar ~ 7/p3.
Then the average transverse area occupied by the minijets will be AT (b) ~ N™ (b) ay.
At some scale p,,; the minijet transverse area becomes comparable to the nuclear overlap
area Ar(b) then the minijets start overlapping transversely. Therefore, we may expect
saturation in their production to set in when A7’ (b) > Ar(b), i.e., when

N™ (b; po, Ay) = Tan(b)20(py) = fy%gAT(b) . (4.2.1)

The factor v is included to account for the fact that saturation of the transverse area
is only an approximate criterion. < may be also a function of «ay, as in initial state
saturation and we expect it to be of order one. Since it may be rescaled inside the k
factor by k—k' = k/v, in the following we will set v = 1 for simplicity. The cutoff p
which solves Eq. (4.2.1) defines the global saturation cutoff pse. The globally saturated
mingjet multiplicity is then obtained by computing N™ at such cutoff:

NP (b, Ay) = N™ (b; pear, Ay) = p2pAr/m .

This computation is depicted in Fig. 4.3 for central Pb-Pb collisions and Ay = [—0.5,0.5].

In this section we are interested in the minijet rapidity density at y = 0. Since the
rapidity distribution of minijets is nearly flat in the central rapidity region we will always
use Ay = [—0.5,0.5] without writing it explicitly, and we may take dN™ /dn|,—p ~
N™i(Ay). The saturation cutoff and the saturated minijet multiplicity computed by
using the global saturation criterion for central collisions may be expressed in terms of
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Figure 4.3: Graphical solution of the final
state saturation condition (4.2.1) for central
Pb-Pb collisions. The l.h.s. is represented by
the solid lines, which show the minijet multi-
plicities in a rapidity window —0.5 < y < 0.5
at /s = 17,200, 5500 GeV as a function of the
cutoff. The r.h.s. is represented by the solid
the dashed line. The intercept of the solid
and dashed lines gives the saturation cutoff at
‘ a given c.m. energy on the z axis, and the
15 2 2.5 3 saturated minijet multiplicity on the y axis.
po [GeV] Figure taken from [33].

10000 |

Ni(po) [mb]

scaling functions of the form aAC\/gd. In central collisions, with shadowing included
by the EKS98 parameterization [133], the saturation cutoff and the saturated minijet
multiplicity are [33, 36]:

psat — 0‘208140.128\/50.191

N™ = 1.38340922, /5% (422)
When shadowing is not included the result is [38]
st = 0.19340137,/5%20
Paat Vs (4.2.3)

N™ = 1.204094,/5%1%

sat

The above numerical results have been obtained by using Woods-Saxon thickness functions
and GRV94 [134] distribution functions. Note that in this computations there are no free
parameters except the k factor, which however has been fixed to £ = 2 according to
Ref. [34].

The origin of the scaling exponents in Eqgs. (4.2.2) and (4.2.3) may be understood by
using some approximation on the parton distribution functions such that we can perform
the computations analytically [35]. In that paper quarks are neglected and the compu-
tations are carried out for gluons only, since they are the main responsible of the scaling
exponents. Quarks contribute partially to the absolute normalizations, which are not
dealt with in detail. Moreover, shadowing is not included in the computations. The gluon
distribution function may be approximated in the relevant range by a power law:

5
:L‘G(:U,Q2) ~ CO (%) )
where Cy = 0.32 and 6 = 0.5 fit the behaviour of the GRV94LO parton distribution func-
tion [134]. In particular the exponent ¢ describes the small-z rise of the gluon distribution
in the proton (with CTEQ5 parton distributions Cy = 0.29 and § = 0.47). Shadowing is
not included in the computations. Then, it is possible to show that They show that the
proton-proton cross section at leading order may be approximated by

(5]

k 2 K
o(po) = T [%G(«Tmpg)] =C 5
Po Do
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where ¢ is a complicated constant which we are not interested in, zo = 2py/+/s, and
¢ = 0.444 describes the effects of the running coupling constant in the relevant kinematic
range. Next, if we use a hard-sphere nuclear geometry the transverse area is simply
Ar(b=0) = 7R? and the overlap function is Ty4(b = 0) = A?/7R? (in central collisions
using hard-sphere or Woods-Saxon distributions does not change too much the result).
Using these values in the saturation criterion (4.2.1) the following scaling law is obtained
for the case in which shadowing is not included [35]:

Doyt~ 0.163 kTP A7t /5778
N A 0.850 k7Fe ASHE /575

sat

(4.2.4)

Note that the dependence on the k factor is rather weak: N o k%! instead of  k, as

expected from pQCD without saturation. Substituting £ = 2 and the values of § and &
defined above we get:

Dsat ~ 0_187A0.136\/§0.204
N™ x5 1.130 A9, /54

sat

(4.2.5)

which compares very well with the numerical result (4.2.3).

4.2.2 Local criterion

The saturation criterion (4.2.1) requires that at the saturation scale the produced quanta,
which have a transverse area ~ 7/p?, fill completely the nuclear overlap area. This
criterion does not distinguish, however, between quanta produced by a parton colliding
centrally on the target, for which there is a high probability of scattering, or peripherally,
in which case the probability is lower. Therefore, the transverse density of produced
partons may vary a lot in the transverse plane, and saturation may be reached at different
scales in different transverse positions. The global saturation criterion (4.2.1) is easy to
generalize to a local one which depends on the transverse coordinate r as well as on the
impact parameter b [35]. Eq. (4.2.1) may, indeed, be rewritten as follows:

ij 2
/d27“ dd2r (po, b, 1) =2 a(po)/d2r TA(b —1r)Ta(r) = Po / d*r .

T Jr2<Rry

By dropping the integrations over the transverse coordinate r we obtain the local satura-
tion criterion:
mj 2
d;VT(Po, b.r) = 27a(b — 1)7a(r) 0 (po) = 2 . (4.2.6)
r T
Solving this equation for py, we obtain the local saturation cutoff psat = Psar(b, 7). Then
by integrating over r Eq. (4.2.6) computed at the saturation cutoff we obtain the locally
saturated minijet multiplicity: N2 (b) = [ d?r p2,,(b,7)/7. An important problem arises,
i.e., how to deal with values of r located in the periphery of one or the other nucleus.
Indeed, at such values of r the nuclear density of at least one of the two nuclei is very
low. To obtain saturation we need, therefore, a very small value of psu (b, 7), which could
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become comparable to Agcp, thereby barring the use of the perturbative approach. One
way out is to stop requiring final state saturation in a suitably defined peripheral region.
In [35] the peripheral region is defined as the region in the transverse plane such that
Psat(b,7) < Drim = 0.5 GeV, and it is checked that changing the limit to 0.7 GeV makes
only a 4% contribution to the minijet multiplicity at b = 0. We call interaction area
the region in the transverse plane such that pg.(b,r) < pum GeV. Obviously, the relative
importance of one or another choice for py;, increases for more peripheral interactions,
since the interaction area decreases. Hence, at large enough b we expect this approach
to be no longer valid. The locally saturated minijet multiplicity is finally defined by
integrating the minijet density over the interaction area?. The techniques described in
the last section may be used to derive an analytical formula for the local criterion [35].
The result without shadowing corrections is:

(b)) \/50.409 a(b— T)TA(T)]O.ZM

mi 1
NPy = L / Pr 2y (b, 1) 0y (b,7) — i)

™

(4.2.7)

where integration over the transverse area is limited to the interaction area defined by the
theta function. Note that 74(b — r)74(r) is first exponentiated and then integrated over
the transverse plane. In the global saturation criterion the order of the two operations
is opposite. This causes the locally saturated multiplicity to be slightly smaller than the
global one and determines a different b dependence in the two cases.

4.2.3 Centrality and charged particle multiplicity

The multiplicity of partons produced at p;r > pg is assumed to saturate below py = pgas
due to final state parton-parton fusion processes, where py,; may be estimated by the
final state saturation criteria discussed above. Although in parton-parton fusions the
transverse energy is not screened due to energy conservation, we may argue that also
the transverse energy produced in the collision may be estimated as the energy of the
saturated minijets. Indeed, as we have seen, the saturation scale at RHIC and LHC is
small, ps; ~ 1 — 2 GeV. Therefore, partons produced at pr < psq, though numerous,
carry little transverse energy and we may use py = psq; in the perturbative computation
of the transverse minijet energy as a reasonable lower bound on the effective transverse
energy produced in the collision. Transverse energy saturation may also be understood
perturbatively by the generation of a small transverse mass for low-p; parton moving in
a medium made of higher-p; partons due to colour screening effects [30]. However, the
relation between the two approaches has yet to be studied in detail.

For these reasons in the final state saturation model charged particle multiplicity
and transverse energy are assumed to be entirely computable from pQCD supplemented
by final state saturation [33]. To convert the number of initially produced minijets to
final state charged particles we assume local parton-hadron duality [85], according to
which we may roughly expect 2 charged particles every 3 minijets. Using hydrodynamics

2To obtain smooth minijet densities in the transverse plane, which is required to use these computation
as the initial state in hydrodynamics, the cutoff in the periphery is set equal to its limiting value of 0.5
GeV and no cut on r is used [62].
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to describe the evolution of the minijet plasma, it is found that when including also
resonance decays in the hadronization process the factor 2/3 is effectively reduced to 0.6
[36]. Moreover, charged multiplicities are divided by the number of participant nucleon
pairs to mark out any deviation from the simple expectation of the wounded nucleon model
dN"/dy o< Npgri. Finally, experiments quote their results in terms of pseudorapidity
instead of rapidity. In the central rapidity region the Jacobian of the transformation from
y to n may be approximated by a factor 0.9. The observable which we are interested in
is, therefore, the charged particle multiplicity per participant pair:

2 dN°h 2 AN
054k o
Npare(b) dy =0 Npare(b) dy v=0

In Fig. 4.4 we compare the results of the final state saturation picture with RHIC data for
central Au-Au collisions at /s = 56, 130, 200 GeV, and extrapolate the computation up to
LHC energies. A very good agreement with the data is obtained without the help of any
adjustable parameter (the k factor was chosen to be k = 2 according to Ref. [34]). Using
the local saturation criterion should not change too much the results, since the dependence
on 4/s is the same than with the global criterion, and the absolute normalization turns
out numerically to be quite the same at b = 0 (see Ref. [35]).

Global saturation and centrality

To extend the results of Eq. (4.2.2) to arbitrary centrality, Gyulassy and Wang have
proposed in Ref. [92] to approximate the two nuclei at non-zero impact parameter by two
nuclei colliding centrally but with a b-dependent atomic number A%/ (b) = N,q(b)/2,
proportional to the average number of nucleons from each nucleus which participate in
the collision. The “EKRT(GW)” model is then obtained by using A°//(b) instead of A in
Eq. (4.2.2). The result is a charged multiplicity per participant pair which decreases as a
function of Ny, and is almost ruled out by the data at /s = 130 GeV (see Fig. 4.7).

This approximation, however, suffers from two drawbacks. First, as noted in Ref. [80],
a nucleus with atomic number A°//(b) has an effective transverse area

e efF\2/3
AL (b) m R,y ) = mrd (AT (4.2.8)
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where 7y = 1.12 fm is the proton radius. By the approximation introduced above, AeTff(b)
represents also the overlap area of the two original nuclei at a given b. On the other hand,
if we assume a hard-sphere thickness function, the overlap area may be approximated by
the geometrical overlap in transverse space of two spheres of radius R 4:

Ap(b) ~ AL (b) = 2

R? arccos by RZ—g (4.2.9)
A 2R oV A 4| -

In general, as we argued in Sec. 1.3.1, the transverse area may be obtained by the following
Glauber model inspired formula:

Az (b) = / Pr[L — e~onmab=[]  g=onTa)] (4.2.10)

where 0;, is the inelastic pp cross section. In this formula the area is defined by weighting
the area element d?r by the probability that at least one nucleon from each nucleus has an
interaction at that transverse coordinate. As we can see from Fig. 4.5, the effective area
overestimates the overlap area over all the impact parameter range, except in central and
very peripheral collisions. When using Woods-Saxon thickness functions in Eq. (4.2.10)
we get a slightly larger area in central collisions which however decreases faster than A;f f
as a function of b. Therefore, by using A%/ at b # 0 in the saturation criterion (4.2.1) we
are asking the minijets to saturate a bigger area than the actual overlap area, resulting
in a higher multiplicity. Therefore, we expect that a better treatment of the overlap area
in the saturation criterion should increase the slope of the minijet multiplicity. As shown
in Ref. [80] this is indeed the case.

The second problem is that the A dependence in Eqs. (4.2.2)-(4.2.3) comes from two
different sources: the transverse area on the right-hand side of (4.2.1) and the nuclear
thickness functions in Ty4 on the left-hand side. Therefore one should replace A with
A¢/7(b) only on the right-hand side.

To treat correctly T4 4 and the transverse area we make use of the analytical approxi-
mations described in Sec. 4.2.1. Instead of fixing b = 0 as done in Sec. 4.2.1 and using the
values of the transverse area and of the overlap function at b = 0 in the saturation crite-
rion (4.2.1), we keep Ar(b) and T4 (b) generic in Eq. (4.2.1) and repeat the computation
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Figure 4.6: Left: Global saturation cutoff with no shadowing corrections as a function of the im-
pact parameter. Eq. (4.2.12) is used with the Glauber type transverse area (4.2.10) computed with
Woods-Saxon thickness functions. Right: Unshadowed local saturation cutoff in central collisions
as a function of the transverse coordinate r [see Eq. (4.2.7)].

that led to Eq. (4.2.4). The result is:

1

1
Psat ~ 0.285 k2% {TAA(b)]HQ& \/52%6

A7 (b) (4.2.11)
. 1 1 14+¢ 20
N 2 0.663 k2 [Taa(b)]7+ [Ar(b)]2+E /s .
By substituting the numerical values of the parameters as before, we obtain:
TAA(b)] 0205 205
sat ~ 0.328 s
Pt [AT(b) vs (4.2.12)

N~ 0.880 [TAA(b)]0~409 [.AT(b)]O'591 \/50.409 7

where the area is measured in fm? and the overlap function in fm 2. Note that by
construction these formulae reproduce the result of Eq. (4.2.4) at b = 0 and with an
hard-sphere nuclear geometry. As anticipated, we can see that the overlap function 744
and the transverse area Ap play different roles in the saturated minijet multiplicity.

For a better comparison with data and a better extrapolation to LHC energies, we
would like to have an approximate analytical parameterization of the effect of shadowing
corrections. We make a simplified treatment and assume that the shadowing corrections
to the minijet multiplicity amount to a multiplicative factor S, (b, v/s):

N lshad = Sa(b,\/s) x N (4.2.13)
The EKS98 parameterization of shadowing corrections [133] depends on the atomic num-
ber A, but does not depend on the transverse coordinate s at which a parton is hitting
the target nucleus®. Therefore in absence of other effects (in our case at fixed cutoff) the

3For a discussion of the dependence of shadowing on b and s see, e.g., Ref. [28, 50].
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shadowing factor should not depend on b. On the other hand, shadowing depends on the
typical fractional momenta probed in the interaction. At the saturation scale this is given
by Tsar = Tsat(b) ~ psar(b)//s for central rapidity minijet production, and depends on the
impact parameter. For typical values of x4, (~ 1072 at RHIC and ~ 5 x 10~ at LHC)
shadowing increases as w,,; decreases. We expect, therefore, S, to be a decreasing func-
tion of b. However, the global saturation cutoff, Eq. (4.2.5), is only a slowly decreasing
function of the impact parameter (see Fig. 4.6, left panel). Hence we may approximate
the shadowing factor S4 with an impact parameter independent function. Since we are in-
terested in pointing out the role of a correct treatment of the interaction area more than
in exact numerical results, this approximation should be not bad, especially at RHIC,
where nuclear shadowing is small and is not increasing fast when x,; decreases. We ma;
thus assume the shadowing factor to be of the form: Sa(b,/s) = Sa(v/3) = cA%/s”.
Then, by comparing the numerical result of Eq. (4.2.2) with Eq. (4.2.3) multiplied by the
shadowing factor (4.2.13) we get

Sa(v/s) = 1.152 A0019 /g0 (4.2.14)

We can see that shadowing decreases the saturated minijet multiplicity in central Au-Au
collisions by approximately 3% at RHIC and 10% at LHC. Our final result for the globally
saturated minijet multiplicity including shadowing is:

N™ ~ 1.014 A% [T, (0)] %4 [Ar(0)] %% /572 . (4.2.15)

sat

We call “EKRT+ model” this modification of the EKRT computation of globally saturated
minijet multiplicity when the Glauber-type transverse area A7 is used with Woods-Saxon
thickness functions, and “EKRT(GW)+ model” when the effective transverse area A%/
is used.

Local saturation and centrality

The charged particle multiplicity per participant pair obtained by using the local satu-
ration criterion (“/EKRT” model) is shown in Fig. 4.7 by a dotted curve. The result is
a nearly flat function of the number of participants and seems disfavoured by the data.
We stress that to compute the saturated minijet multiplicity in Eq. (4.2.7) the integra-
tion over the transverse coordinate r is limited to the interaction area, i.e., the region in
the transverse plane such that ps, > pum. We think that this method to determine the
interaction area is too arbitrary. Indeed, by by taking a small p;;,, we select a large area,
while choosing a large one we select a small area. Since the chosen value py,,, = 0.5 GeV
is rather small this may lead to an overestimate of the interaction area. By the saturation
criterion this would lead in turn to an overestimate of the saturated minijet multiplicity.
In other words, choosing a limit py;, is like choosing by a radius for the two nuclei: if we
choose a too large radius we need to fill with minijets a too large area and we obtain a
too large value of N..7. In central collisions we expect small effects when changing py;,,
within reasonable values like 0.5 GeV < py;,, < 1 GeV. However, for peripheral collisions
the difference may be rather large. We verified this by computing the saturated minijet
multiplicity, Eq. (4.2.7), with p;;,, = 0.7GeV. When dividing it by the number of partici-
pant nucleons the result is an increasing curve as a function of the number of participants.
Conversely when using py,, = 0.5 GeV the result is a nearly flat curve.
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A way to reduce this arbitrariness is to relate the definition of the interaction area
to the underlying dynamics of the event. As discussed in Sec. 1.3.1 this can be done
by making reference to the Glauber model of nuclear collisions. The probability that a
projectile nucleon at a given transverse distance r from the center of the target nucleus
has an interaction is given by P4(r) = 1 — exp[—0,74(r)], where oy, is the inelastic pp
cross section. In an AA collision the probability of having a nucleon-nucleon scattering
at a given r is

Pas(b,r) =Pa(b—r)Pa(r) . (4.2.16)

Then, we may expect that the average number of produced minijets at a given r is pro-
portional to the probability (4.2.16) and we may define the saturated minijet multiplicity
as follows:

- 1
Nt (b) = ;/d%pfat(b,r) Paa(b,r) . (4.2.17)

We may include shadowing corrections by noting that as N;Z{ ~ p?, we may simply

multiply the saturation cutoff itself by a shadowing factor S4:
pgat |shad(b’ T) = SA(b7 r, \/E) pgat(b7 T) .

However, finding a reasonable parameterization for S, is not as simple as in the case
of the global saturation criterion. Indeed, the local saturation cutoff is not a slowly
changing function of the transverse coordinate r, see Fig. 4.6 (right panel). Therefore,
by using a shadowing factor independent of the transverse coordinate (and of the impact
parameter) we would largely underestimate the shadowing corrections in the periphery of
both nuclei. This means that we would overestimate Psat(b,7) at large r, which in turn
implies largely overestimating N,.7(b) at large b. With such a b-independent shadowing
factor and Eq. (4.2.7), we may reproduce at RHIC energies the numerical results of
Ref. [35] by using a slightly larger limit p;;,,)0.53GeV instead of 0.5 GeV. With the same
Pum at LHC energy we find a good agreement for N, 2 200 and an overestimate in
more peripheral collisions which worsen as N, decreases. On the other hand, by using
Eq. (4.2.17) we give the peripheral regions in the transverse plane a small weight and
N;Z‘Z is found to be less sensitive on small changes of p,,; than when using the cutoff as in
Eq. (4.2.7). Since we are interested more in the qualitative changes that a more accurate
treatment of the interaction can introduce than in quantitatively accurate results, we
think that it is nonetheless worth using the b- and r-independent parameterization of the
shadowing factor in Eq. (4.2.14). Then our final expression for the local saturation cutoff
and of the saturated minijet multiplicity are:

— 0.383 )
Paat lshaa(br7) = 0.346 4 PO [rab = r)7a(r)) ™

_ 1 (4.2.18)
N faaa® =5 [ P18 o) Pastbr)

where the coefficient has been obtained by normalizing the shadowed local saturation
cutoff to the numerical result in Fig. 1 of Ref. [35]. We call “/EKRT+” model this
modified computation of the locally saturated minijet multiplicity, and will use Woods-
Saxon nuclear thickness functions in the computation of Pyy.
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Discussion

The centrality dependence of the charged particle multiplicity per participant pair com-
puted in the different variants of the EKRT final state saturation model are presented in
Fig. 4.7, for Au-Au collisions at /s = 130 GeV.

The global EKRT model in the Gyulassy-Wang approximation gives, as we have dis-
cussed, a decreasing function of the number of participants (long-dashed curve). The
same approximation supplemented by the correct treatment of Ty4 at b # 0 in the satu-
ration criterion gives only a marginal effect, as demonstrated by the short-dashed curve,
which was obtained by using the effective area A%/ (b) in Eq. (4.2.15). We note, how-
ever, that the slope is less negative than in the EKRT(GW) model. A qualitatively
different behaviour is obtained in the EKRT+ model, which is defined by the use of the
Glauber-type transverse area Az (b) (4.2.15) and use of the Woods-Saxon nuclear thickness
function (solid line). Indeed, we obtain an increasing charged multiplicity per participant
pair, whose slope compares well with experimental data, except in the most peripheral
collisions where our naive treatment of shadowing becomes inadequate! As anticipated,
the overestimate of the transverse area introduced by the Gyulassy-Wang approximation
has a strong effect, both quantitatively and qualitatively.

The local /FEKRT model result (dotted line) is a nearly flat charged multiplicity per
participant pair, which seems disfavoured by experimental data. On the other hand, the
(EKRT+ model (dot-dashed line), which improves the fEKRT model with a treatment
of the interaction area inspired by the Glauber model, gives a slightly increasing function
of the number of participants, with a slope comparable to the EKRT+ result.

Note that in the EKRT model (in the various formulations discussed) there is some
dependence on the k factor (which, however, may be computed at next-to-leading or-
der [34]), and on the factor v in front of the r.h.s of the saturation condition (4.2.1):
N oc kO4y =041 Moreover, other dynamical effects like intrinsic k; may increase the
multiplicity [80]. These two effects introduce in the computations some theoretical uncer-
tainties, which, however, are difficult to estimate.

In conclusion, both the local and global final state saturation models may account
reasonably well for the experimental data at /s = 130 GeV when supplemented by a more
refined treatment of the interaction area. Its correct definition is a very important issue

4By using the hard-sphere thickness function we obtain an even steeper curve.
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since global observables are very sensitive to its actual value and qualitatively different
behaviours of their centrality dependence may be found for different estimates of this
area. The predictions of the local and global models at higher energies will be studied in
Sec. 4.4.

4.3 Saturation in the minijet production

At very high energies the target parton densities experienced by projectile partons are so
high that the probability for them to have more than one semihard scattering may become
non negligible already at RHIC. At such regimes the usual perturbative computation [55],
obtained by eikonalization of the minijet cross section, may become inadequate. Indeed,
it takes into account only disconnected two-parton interactions located at different points
in transverse space but neglects the rescatterings. In Chapter 2 we described how it is
possible to include semihard parton rescatterings in the interaction mechanism with the
help of a few simplifying hypotheses. In Chapter 3 we showed that they lead to sizeable
effects on initial conditions already at RHIC energies. Based on these results, in this
section we propose a new saturation mechanism for semihard minijet production and use

it in a two-component model to compute charged particle multiplicities at RHIC and at
LHC [4, 6].

4.3.1 Global criterion and initial conditions

When rescatterings are included in the interaction of two nuclei of atomic numbers A and
B, the average number of A nucleus minijets at fixed impact parameter b is given by [17]:

N7 (b) = /dZTdib'FA(l', b—r;Q%) |1 — e k) &onlea,@Tn(' rsQ%) | (4.3.1)

and the average minijet initial multiplicity is obtained by summing the analogous contri-
bution from the B nucleus, N™ = N} + N3? (see Sec. 2.6.1). For simplicity we omit the
flavour indices and consider only gluon-gluon interactions in our formulae, the inclusion
of quarks being straightforward. In the numerical computations both the gluons and the
quarks have been included. In Eq. (4.3.1), 'y = 74(r)G(x) is the nuclear parton distri-
bution function 74(r) of the A nucleus is its nuclear thickness function, normalized to A,
evaluated at a transverse coordinate r relative to the center of the nucleus and G(x) is
the parton distribution function of a proton at a given fractional momentum x. oy is the
pQCD gluon-gluon cross section at leading order in the high energy limit,

2
ol @) = 5ra2(@) 5 (1= 222 ) ar's — 21001 — 01— )
where we included all the kinematic limits and py is the cut-off that discriminates between
soft and semihard interactions. We also included explicitly the k factor, k, to take into
account higher order corrections. Both the cross section and the parton distributions
depend on a scale () = pg, which we take equal to the cutoff, and will understand in the
following. In the numerical computations we will set £ = 2 and will use Woods-Saxon
thickness function and GRV98LO parton distribution functions [135].
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Figure 4.8: a) The minijet multiplicity N (solid line), and its limiting value N,/ (dotted

line) in a central Au-Au collision as a function of the cutoff py at RHIC and LHC energies. The

dashed lines are the saturated minijet multiplicities, N7, with a saturation parameter ¢ = 0.7

(long dashes) and ¢ = 0.8 (short dashes). The intercept of the dashed lines with the dotted lines
determines the saturation cutoff. b) The saturation cutoff as a function of the impact parameter
at RHIC and LHC energies. The shaded area is the region where we estimate that the saturation
criteria ceases to be valid.

Eq. (4.3.1) may be interpreted as the integral of the average density of projectile par-
tons (at a given x and r) times the probability of having at least one semihard scattering
against the target. The exponent in Eq. (4.3.1) may be interpreted as the opacity of the
target nucleus, being proportional to the total transverse area occupied by its partons at
the resolution scale py. Two interesting limiting cases may be studied. At high values of
po the target has a small opacity and is seen by the incoming partons as a rather dilute
system. As a consequence N™ = 2 [ d*rdxdz'T s(x,b — r)oy (za')T g(a’), and we recover
the usual perturbative result [55]. On the other hand, at low values of py the target opac-
ity increases: the target is becoming black to the projectile partons. As a consequence,
the probability of scattering at least once becomes so high that nearly every projectile
parton scatters and the minijet multiplicity reaches a limiting value instead of diverging
as it happens in the Eikonal computation.

In the regime where the target is almost black the semihard interactions are extracting
from the projectile nucleus wave function all its partons, and even if we use a lower cutoff
no more partons are there to be extracted. for this reason the minijet multiplicity tends
to saturate (3] (see also Fig. 4.8a). We call saturation cutoff the value of py at which this
happens, and will denote it as p,q;. Of course the validity of this picture is limited to the
kinematic regions where the saturation cutoff is in the perturbative range, psa > Agep.
To give a quantitative definition of the saturation cutoff we start by considering a central
collision of two equal nuclei. We define the upper bound for the minijet multiplicity as

/ d*rdxl A(z,7) .
4pg/s<z<1

Taking a very large k factor corresponds, indeed, to the limit in which the target becomes
completely black and the semihard interactions are effective in extracting all the partons

N (b=0) = lim N}’ =

k—o0

(4.3.2)
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from the projectile nucleus. The limiting procedure is needed in order to keep track of the

kinematic limits. As it is easy to see, N ~ . N, therefore we can define the saturation
po—

cutoff as the value of py such that the minijet multiplicity becomes a substantial fraction
of its limiting value:

ij(pO = psat) = CN[T%(pO = psat) , (433)

where the saturation parameter c is a positive number smaller than one. Note that p,,; =
Psat(1v/S, €) is a function also of the energy of the collision. From our discussion it is obvious
that ¢ must be close to one to let pyq lie in the region where N™ is saturating. However,
to stay in the perturbative regime we cannot choose it too close to one since ps,;—0
as ¢c—1. Finally, we define the saturated minijet multiplicity as the average multiplicity
evaluated at the saturation cutoff:

N:;g = N:;i(\/g7 C) - Nm](pO - psat) . (434)

In our approach this number represents also the multiplicity of partons produced in the
early stage of the heavy ion collision.

In Fig. 4.8a we show the minijet multiplicity and its limiting value as a function of
the cutoff py at RHIC and LHC energies. The rapidity density at n = 0 is computed
by integrating Eqs. (4.3.1) and (4.3.2) over a pseudorapidity interval |n| < 1, where we
approximated n =~ log (x+/s/py), and by dividing the result by a factor two. The dashed
lines represent the saturated initial conditions computed with ¢ = 0.7 and ¢ = 0.8. We
can see that at a given energy N7, which is obtained as the intercept of the solid and
dashed lines, is nearly independent of the saturation parameter as long as the latter is close
enough to one. Indeed, both at RHIC and LHC energy we obtain approximately a 3%
increase in the saturated multiplicity going from ¢ = 0.7 and ¢ = 0.8. Therefore, whereas
c is an arbitrary parameter its actual choice doesn’t affect strongly the determination of
the initial conditions. The dependence of py,; on /s is shown in Fig. 4.9, where we can
see that for central collisions the saturation criterion is applicable from RHIC energies on.

Unless we use nuclear thickness functions with sharp edges, like the hard-sphere dis-
tributions, by applying blindly the saturation criteria to non central collisions we would
obtain an impact parameter independent bound on the minijet multiplicity. Indeed we
would have N7 (b) = [d*rdala(z,b —r) = [ d*rdaT 4(x,r). In this way, by requiring
saturation as in Eq. (4.3.3) we would be asking the semihard interactions to extract all
the partons from the projectile nucleus even in a very peripheral region, which is clearly
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Figure 4.10: The minijet average occupation
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unphysical. A simple way to implement the collision geometry in the saturation criterion
is to cut by hand the thickness functions outside a given radius R, of the order of the
nuclear radius. However, the minijet multiplicity as a function of the centrality of the col-
lision turns out to depend too strongly on the choice of R, except at very high centrality
or very high energies [4].

To find a less arbitrary way of implementing the collision geometry we look at the
Glauber model computation of the average number of nucleons which participate in the
collision (see Sec. 1.3.1):

Npart(b) = /dzr Ta(b—1)Pg(r)+ A<+ B, (4.3.5)

where Pp(r) = 1—[1 — 04,,(s)7p(r)/B]” and oy, is the inelastic pp cross section, which we
take from [121]. At /s = 130,200, 6000 GeV we have o, = 39,42, 75 mbarn, respectively.
Pp is the probability that a projectile nucleus at a given transverse coordinate r has
at least one inelastic interaction with the target nucleons. Then, we may require the
saturation only for the fraction of projectile partons that belong to a participant nucleon,
and define an effective nuclear distribution function

Tag(z,b,7) =T 4(z,b—17)Pp(r) .

Correspondingly, we have an effective minijet multiplicity, N}’ (b) = [ d®rdzT sp5(z,b,7)
x[1 —exp ( — [da'on(za")Ty(2'))], and an effective upper limit Ny, (b) = [ d*rdx
[ 4p(z,b,7), which is no more b-independent. Then, the saturation criterion generalized
to arbitrary impact parameter becomes:

N3 (Po = psat) = ¢ N yjin (Do = Paat) - (4.3.6)

Finally, having determined py, in this way we use it in Eq. (4.3.4) to compute the average
initial parton multiplicity.

In Fig. 4.8b we show the saturation cutoff as a function of the impact parameter at
RHIC and LHC energies for different saturation parameters c. The horizontal line show
the limit of approximately 0.7 GeV whose intersection with psq(b) sets the limit of validity
of the present approach, as will be discussed in the next section.

In the proposed mechanism saturation is reached when there are no more partons
that semihard interactions can extract from the nuclear wave functions. In this sense
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this mechanism is a saturation of the minijet production and is intermediate between
initial and final state saturation. In initial state saturation the parton density inside
the incoming nuclei saturate due to a compensation between parton splitting and parton
fusion processes in the DGLAP evolution, which induces a corresponding saturation in
the minijet multiplicity (see Sec. 4.1.2). On the contrary, in the final state mechanism (see
Sec. 4.2) the saturation is assumed to be caused by the high density of produced minijets,
which screens softer parton production due to parton fusion processes in the final state.
In particular these final state interactions are assumed to set in when the transverse area
occupied by the minijets becomes comparable to the nuclear overlap area. Both processes
may, therefore, complement our saturation mechanism since the former modify the input
parton distribution functions and the latter deals with a later stage process. However, as
we can see in Fig. 4.10, at /s = 130 GeV and /s = 200 GeV the saturated minijets fill
the transverse area only partially. Therefore final state saturation effects should not alter
significantly our computations at RHIC energy, but may play some role at LHC.

Note that the saturated initial conditions, are practically determined by the choice
of the parton distribution functions and are nearly independent of the remaining free
parameters, namely the saturation parameter ¢ and the k factor. Changing c or the k
factor should affect the value of the saturation cutoff — namely, the larger the k£ factor
(or the smaller ¢) the larger ps,; — but should not affect strongly the multiplicity. Indeed,
the multiplicity as a function of the cutoff presents a plateau for py ~ psu, so that small
changes in psat result in even smaller changes in the multiplicity. Similar considerations
may be done when introducing additional dynamical effects like an intrinsic k; for the
initial partons, which can be done in a straightforward way within our model. The effect
of intrinsic k; should be a slight increase in the saturation cutoff, due to an increased
target flux, and an increase in the incoming flux, which induces a smaller increase in the
charged multiplicity than when rescatterings are neglected.

4.3.2 Local criterion

The saturation criterion is easy to generalize to a local one. Indeed, we can write
Eq. (4.3.6) as follows:

/d2 /dﬂ? FAB x b 7") [ - efk fdm'UH(mm’)Fb(m’)]

= C hm d T/\dx FAB :I,‘ b "“) |: _ eik fd:n’o'H(ZL’m’)Fb(ml)

k—o00

Note that Tap(x,b,7) = G(x)74(b — 7)Pg(r). Then by dropping the integrations over r
we get the local version of the saturation criterion:

_ o~k [dr'og(zz")Ty(z") _
/Ac;lx G(x) [1 e H b ] —— C/chl' G(x) R (4.3.7)

Note that every information on the geometry of the projectile has dropped out, and only
the parton distribution of a single nucleon has remained, so that saturation is practically
determined by the target nucleus. For this reason there is no more need to take into
account the collision geometry and we could perform explicitly the limit for k—oo. A
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further localization of the criterion in the pseudorapidity variable would make any in-
formation on the projectile disappear. The meaning of (4.3.7) is as before: at a given
transverse coordinate r saturation is reached when the target nucleus extracts on average
nearly all the incoming partons. The local saturation cutoff obtained by solving (4.3.7) is
b-independent, and we stress that it depends only on the nuclear target: psqs = psar(r, B).
The locally saturated minijet multiplicity density in the transverse plane is then obtained
by computing the minijet transverse density at a point r with the local saturation cutoff.

The next step is to integrate the locally saturated minijet multiplicity density over
the transverse plane. However, the same problem encountered in the local final state
saturation model arises. Indeed, at sufficiently large r the saturation cutoff becomes
comparable to Agep and we have to find a way to determine which is the transverse area
where it is sensible to ask for local saturation. As we discussed in the last subsection,
we have to avoid any arbitrary definition and make reference to the actual collision. The
most intuitive way of doing that, given the discussion about the global criterion, is to
make use of the effective nuclear distribution function for the projectile nucleus. The
locally saturated multiplicity is therefore defined as

N:;«i — Nm] (pO — psat) = /d2T /dl‘ {fAB(xa b, T) [1 - eik fd:L"U'H(:D:D,)Fb(I,)]} |P0:p )
An sat

However, a deeper investigation of this problem is needed and is in progress.

Using the local criterion instead of the global one in the computation of the initial
conditions should not affect too much the results. Indeed in the global criterion first we
integrate over the transverse plane, then we ask for saturation in the gluon production.
In other words, we ask that the collision produce in the whole transverse plane, say, 80%
of the number of gluons in the initial wave function. When using the local criterion, we
first ask for saturation and then integrate over the transverse plane. Since the chosen
percentage is a fixed parameter, it comes out of the integration and we are left with the
80% of the gluons present in the nuclear wavefunctions. Therefore, the local criterion
determines the exact distribution in the transverse plane of the saturated minijets but
doesn’t alter the total minijet multiplicity.

In summary, the local criterion should be preferred to the global whenever detailed
information about initial conditions in the transverse plane are needed, e.g. for hydrody-
namic computations of the evolution of the minijet plasma [62]. Conversely, when only the
total minijet multiplicity is needed the two saturation mechanism should be equivalent.
Numerical computations with the local saturation criterion are in progress.

4.3.3 Charged particle multiplicity

In this section we want to apply the global saturation criterion for the semihard parton
production to the computation of the observable charged particle multiplicity.

Thanks to the self-shadowing property of the semihard interactions (see Sec. 1.3.4)
even if in Eq. (4.3.1) only the semihard cross section o appears, we are actually taking
into account all the partons that had at least one semihard scattering, while their other
scatterings may be semihard or soft with no restrictions. A heuristic way of seeing this
is to assume that the parton-parton cross section may be divided in a semihard and a
soft part (which we don’t specify any better, see Ref. [71]) separated by the cutoff py:
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0 = 0g + og. The probability that a part has at least one soft or hard scattering may
therefore be expressed as:

fB (:U, 7") = |:1 _ efkfd;p’(O’S(;n;p’)+o—H(wwl))rB(m,,r)]

]. n ! ! ! !
— Z = |:/ dl‘l (0'5(1'1',) + UH(Z'Z'I))FB(I'I, 7"):| efkfdw (os(za’)+om(zx'))T (' ,r)

n!
- :zl: % ; <7’Z[) (O—S(xx,)FB(xI,T))n_nH (O'H(ajx’)FB(x/,,r))nH

> e—kfd:v’(as(:v:v’)+aH(xx’))FB(:v’,r) ‘

In the second line we expanded Ppg as a Poisson distribution in the number n of interactions
undergone by the parton. In the third line we separated them, at each given n, into ny
semihard interactions and ng = n — ny soft interactions. A minijet is defined as a parton
which had at least one semihard interactions, without specifying if the remaining ones
are semihard or soft. Then it is interesting to separate in the above sums the terms with
only soft scatterings, whose sum defines the soft scattering probability P35, and those with
at least one semihard interaction, whose sum defines the semi-hard scattering probability
PH. In the latter we may further collect the terms with a fixed number ny of semihard
interactions disregarding the number of additional soft scatterings:

Polr,r) = ) ’I’Lig' [/dxlas(m')FB(x',7")]nse"“fd’”'(as(”')”H(”’))FB(CL"J)
ng=1,00 X . 1 .
+ Z . [/ dx'aH(xx')FB(x',T)] Z ] [/ dr'og(xa"\Tp(a',r)
ng=1,00 ng=0,00
efkfdw’(ag(ww')+ay(mm’))FB(w’,r) ) (438)

The sum over ng and ny may be performed explicitly, giving the desired result:

Po(z,r) = Pz, 1)+ Pplx,r),
where

f; (ZL‘, 7”) = |:1 _ e*kfdm’ﬂ's(l‘m’)f‘g(w’,r)] e*kfdmlffh(mm')f‘g(z’,r)

fg(m, T) — |:1 _ efkfdm'f’H(fEfE')FB(z’,r)] ‘

Note that in fH, namely, the probability of having at least one semihard interaction, no
soft cross section appear in spite of the fact that we included additional soft scatterings
explicitly. This is due to the fact that the sum over ng in the second term of the last
line of Eq. (4.3.8) canceled against the soft part of the absorption exponential, namely,
exp[— [ 0sI'g]. Note also that as the semihard opacity of the projectile [ oyI'p increases,
the probability P; of having only soft scatterings tends to zero, being proportional to
the probability of having no semihard scattering, exp[— [ oy 'p]. In summary, the prob-
ability of having at least one semihard scattering is independent of soft interactions and
dominates the scattering probability at small cutoff or high energies.
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Given the above discussion, by applying the saturation criterion to compute minijet
multiplicity, we are missing only the purely soft part of the initial production mech-
anism. This leads us to adopt a two-component model in which the charged parti-
cle multiplicity is written as the sum of a soft and a semihard part: dN°/dn(b) =
ANEly, /dn(b) + dNE /dn(b). The soft part is assumed to scale with the number of partic-
ipants, Eq. (4.3.5), so that [60]

stC(})th N, art(b)

S0l () = () 2

s (4.3.9)

Here n,;(s) the pseudorapidity density of charged particles produced at 7 = 0 in pp colli-
sion at a given c.m. energy /5. We use the fit [97] n,;(s) = 2.5—0.251og(s)+0.023 log?(s).
The coefficient = x(s) is a parameter that allows to adjust the relative weight of soft
and semihard interactions and will be determined from the experimental data. Further,
we assume the semihard part to be completely computable from the saturation criterion
for minijet production described in the last section. To convert the minijet multiplicity
to charged particle multiplicity, we further assume isentropic expansion of the initially
produced minijet plasma and parton-hadron duality, so that

ANt 2  dN™
—sh(h) = 0.9 x = sat (i 4.3.1
dn() 0.9 x =X dn()’ (4.3.10)

where the factor 0.9 is due to the different number of degrees of freedom of the system in
the minijet-plasma phase and in the hadronic phase [33]. To mark out the contribution
of the hard part it is customary to divide the charged multiplicity by the number of
participant pairs, so that the observables we are interested in are:

1 dNe 1 dN

Ny 72 dn ) = ) T R

ch c . .
and the fraction of semihard interactions Fi, = d]\;—j]-h- ‘ﬂjnh Note that any deviation

from a flat curve as a function of N, or b is due entirely to semihard interactions.
Therefore a positive slope may be interpreted as due to minijet production. There are,
however, models that predict also a scaling of the soft part with the number of collisions
[21], therefore the last sentence should be considered with care.

To make a comparison with experimental data we have first to relate the observables
appearing in Eq. (4.3.11), which are functions of the impact parameter, to the experi-
mental ones, which are obtained as averages over centrality classes of events [99,110, 111].
Following [59, 60], to which we refer for the details, we do this by studying the minimum
bias multiplicity distribution of charged particles and by dividing the events in suitable
subsets over which the average is performed. The next step is to extract the parameter x
in Eq. (4.3.9) by comparing the computation for the 3% most central events and the PHO-
BOS data at /s = 130 GeV from Ref. [111]. This value is then used to make predictions
at higher energy.

In Fig. 4.11 we show both the results for the semihard part before the averaging over
the centrality classes, and the results obtained after the averaging and the inclusion of the
soft part. For each curve the result obtained by setting ¢ = 0.7 and ¢ = 0.8 in Eq. (4.3.6)
is shown.

(b) (4.3.11)
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Figure 4.11: Charged particle multiplicity per participant pair, Eq. (4.3.11), as a function of the
number of participants at different center of mass energies and saturation parameter ¢ = 0.7 and
¢ = 0.8. In each panel the lower pair of curves (dashed and dotted lines) represent the semihard
contribution. The upper pair of curves (solid and dot-dashed lines) are obtained by averaging the
semihard contribution and by adding the soft part. At /s = 130 GeV the parameter z is extracted
from the 3% most central PHOBOS events at /s = 130 GeV [111]. At higher energies the upper
curves may be considered an upper bound, while the lower ones give a lower bound, see text. Data
taken from [99,111,113,116].

At /s =130 GeV we find x = 0.445 and = = 0.453, for a saturation parameter ¢ = 0.7
and ¢ = 0.8, respectively. These values of z correspond to a fraction of semihard interac-
tions Fyj, = 0.805 and Fy . = 0.817, respectively, and show a good stability with respect
to c. The relatively large value of F§ ;. with respect to the common expectation of nearly
a half and to the value of 0.37 extracted from PHOBOs data in Ref. [60] is due to the fact
that we considered as belonging to the non-soft part of the observable also a semi-hard
region 0.7 GeV < py < 2 GeV. Note that we can push our perturbative computations to
such low values of the cutoff because inclusion of parton rescatterings results in a rather
small sensitivity of global observables on py in that region [3,4].

The two curves start with a moderate slope at high centrality and at some point they de-
crease very fast. This happens when the corresponding saturation cutoff becomes smaller
than 0.7 GeV, approximately. The reason for this behaviour is that the distribution func-
tions are fitted just down to a scale () = 0.9 GeV and they are numerically extrapolated
at lower scales. Below 0.7 GeV the extrapolation gives an unnaturally fast decrease of
the parton densities, which results in the rapid fall of the minijet production. Then, we
define the region of validity of our computations as the one such that ps,; 2 0.7 GeV, or
in other words the one to the right of the knee in the charged multiplicity.

The value of py,; at fixed centrality decreases when the saturation parameter ¢ increases
(see Fig. 4.8), therefore the curve with ¢ = 0.8 is reliable for a smaller range of centrality
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than the curve with ¢ = 0.7. They agree, however, in the common region of validity
(showing a slight tendency to increase their slope when increasing ¢), and after the ex-
perimental averaging and the fit to the most central data point, both describe well the
experimental data.

The fraction of semihard to soft interactions is expected to grow with the energy of
the collision, and we can use the value of Fy . determined at /s = 130 GeV to obtain an
approximate upper bound for the charged multiplicities: for /s > 130

1= Fonlpmo. /5130 cev AN Jdn

IN

TNy5(S) (b=0,s) . (4.3.12)

Fs.h.|b:0,ﬁ:130 GeV Npart/2
At /s = 200GeV the curves for the two values of ¢ agree over a wider range of neutralities.
This is to be expected since the saturation cutoff at fixed centrality grows with the center
of mass energy, and goes below the critical value of 0.7 GeV at smaller centrality. Note
also that the slope of the curves has increased. The upper and lower bounds shown in
Fig. 4.8 are actually predictions of the production saturation model [4, 6], later on verified
by PHOBOS [113].

At LHC energy, /s = 6 TeV, the particle production is generally believed to be
almost completely semihard. Therefore we expect that the data will be close to the
averaged semihard multiplicity without any normalization (which is very similar to the
lower curve plotted in Fig. 4.11). Though the saturation criterion is applicable over all
the centrality range considered (see Fig. 4.8b) the slope of the curves is rather sensitive
to the saturation parameter, resulting in a larger theoretical uncertainty. We expect that
a better treatment of the scale () and of the pseudorapidity, which are taken to depend
simply on the cutoff py, could solve at least partially this problem. However, the average
slope has increased confirming the trend observed at lower energies.

The dependence of the charged multiplicity on the energy of the collision is shown in
Fig. 4.12. The solid line represents the semihard contribution to the charged multiplicity,
Eq. (4.3.10). The relative semihard contribution is expected to increase with energy.
Hence, we may parametrize in naive way the fraction F; . of the semihard to total charged
multiplicity as follows:

Fon(Vs)=1—a — 1, (4.3.13)

1
(v/5)? Vso0
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Figure 4.13: Impact parameter dependence of charged multiplicity per participant pair in the
three saturation models at /s = 130,200 GeV (left) and /s = 6 TeV (right). Curves at 200
GeV have been shifted upwards by to units to improve clarity. The shaded area indicates actual
theoretical uncertainties (EKRT model uncertainties are difficult to evaluate and are not included

in the figure). Note that the production saturation result has been averaged over centrality bins,
see Sec. 4.3.3.

where a and b are positive coefficients. This parameterization is only meant to give a
rough idea of the behaviour of the soft part as the energy increases. The total charged
multiplicity is obtained from the semihard part as follows:

AN 1

NG,
d—77 (\/E) -

Fyn(Vs) dn
By fitting Eq. (4.3.14) to the PHOBOS data at /s = 56,200 GeV and to the combined

value of the four RHIC experiments [113], we get a = 0.565 and b = 0.415. With these
values, at LHC energies the semihard contribution is nearly the 96 percent of the total.

(V) . (4.3.14)

4.4 Comparing the saturation mechanisms

The main difference in the saturation mechanism described in this chapter is the predicted
centrality dependence of the charged multiplicity per participant pair, see Fig. 4.13. We
summarize the main features of the results of the various models.

e Initial state saturation d la Kharzeev-Levin-Nardi (KLN) gives an increasing curve,
whose slope changes slowly with energy.

e Local final state saturation ((EKRT) predicts a nearly flat curve at all energies.

e Local final state saturation with improved treatment of the interaction area ((EKRT+)
gives a slightly increasing curve, whose slope increases smoothly with energy.

e Global final state state saturation with improved treatment of the interaction area
(EKRT+) predicts a curve which increases with N, with a slope comparable to
the /EKRT+ model. A better treatment of shadowing corrections should correct
the tendency of the slope to become negative in most peripheral collisions.
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e Saturation in the minijet production predicts a slope which increases decidedly with
energy, due to an increasing role of minijets in particle production in the initial stage
of the collision.

Both the EKRT+ and the JEKRT+ models are sensitive to variations of the k& and
factors and to inclusion of additional dynamics like intrinsic k7. On the other hand, the
production saturation model is rather stable with respect to the above effects Initial or
final state parton-parton fusion processes may come into play in the production saturation
mechanism at /s > 1 TeV, and decrease the slope in semi-central collision.

The data at /s = 130 GeV are well described both in the KLN model and in the
“production saturation” model. Also, the improved final state saturation model, both in
the local and global version, accounts well for the data, while the original local saturation
criterion ((EKRT) seems disfavoured. At /s = 200 GeV all the models, except /EKRT,
predict basically the same slope. The situation changes drastically at /s = 6 TeV,
where all models make distinct predictions. Initial state saturation predicts the smallest
multiplicity for central and semicentral collisions, with the smallest slope. Local final state
saturation still gives a flat curve with an intermediate normalization. Improved final state
saturation predicts increasing curve, the FEKRT+ one less steep than the EKRT+ one.
The global EKRT+ model presents also a very rapid rise in nearly central collisions which
distinguish it from all the other models. The production saturation mechanism predicts
the steeper dependence on the number of participants and the higher multiplicity in
semi-central events. Therefore, at LHC energy we should be able to discriminate among
the various models, while at lower energy the results are too similar to allow a clear
distinction. The discriminating power of this observable might improve by studying the
energy dependence at b # 0.

In Fig. 4.14 we show the energy dependence of the charged multiplicity per participant
pair at impact parameter b = 0. The KLN initial state mechanism is very much dependent
on the value of the parameter A = 0.25 — 0.3, which describes the small-z rise of the gluon
distribution in the proton. At LHC energies the results vary by nearly 50 percent, and
with A = 0.3 the KLN model even gives the a result very similar to the EKRT model. The
“production saturation” mechanism gives a steeper increase in the charged multiplicity
than the other two, however at energies larger than 1 TeV additional initial or final state
interactions could set in and lower the slope in the TeV energy range. Therefore it is still
too early to say if this observable will help in distinguishing between the three mechanisms.
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Figure 4.15: a) pseudorapidity dependence of charged multiplicity at different centrality cuts in
the KLN model at W = /s = 130 GeV. b) Centrality dependence at various rapidity cuts. Data
taken are from [112]. Figures taken from [61].

When better measurement of the gluon distribution will be available may be that it will
be possible at least to distinguish between production or final state saturation on one
hand and initial state saturation on the other. In any case it would be very interesting
to have a good scan of the energy range between RHIC energy of /s = 200 GeV and the
maximum LHC energy of /s = 6 TeV.

Another observable which should be sensitive enough on the different dynamics en-
coded in the various models is the rapidity distribution of charged particles. The KLN
model results are shown in Fig. 4.15a. Also the centrality dependence at different rapidity
cuts is a promising observable that should allow to distinguish between the various mod-
els, Fig. 4.15b. Computations in the EKRT model [39] and in the production saturation
model are in progress.

The three models differ slightly also in the predicted atomic number dependence. In
both initial state and production saturation the produced gluon multiplicity is roughly
proportional to the gluon distribution computed at the saturation scale: dN°"/dn o
TsatG(Tsar, Q%) X A’ where .4 = 2Q,/+/s and § < 1. Indeed, at fixed z and @Q we
have xG o< A. However, as the atomic number increases, the high gluon density regime
is reached at higher saturation scales ()5, which translates in a smaller gluon multiplicity
than with a fixed Q. The EKRT model predicts dN"/dn o< A€ with € = 0.922 (smaller
than the value ¢ = 4/3 expected from the Eikonal minijet production picture, due the
saturation criterion adopted to fix the saturation scale). The differences in the A scaling
may therefore be too small to lead to measurable differences. On the other hand, the
A scaling of the multiplicity at b = 0 in the EKRT saturation model depends only on
the exponent ¢ [see Eq. (4.2.4)]. Since ¢ is related to the behaviour of the running
coupling constant, using an as-dependent coefficient in the saturation criterion (4.2.1)
would therefore change the A dependence. In conclusion the A dependence of the charged
multiplicity could be a direct probe of the saturation criterion itself [38].
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4.5 Conclusions

The inclusion of semihard parton rescatterings in the interaction dynamics of heavy-
ion collisions at very high energy allows a reliable computation of the initial conditions,
like the minijet multiplicity, and the introduction of a nearly parameter-free saturation
criterion to determine the infrared cutoff to be used in the perturbative computations.
The proposed saturation mechanism is intermediate between the initial and final state
ones in that it deals with the saturation in the production of minijets.

We tested our approach against RHIC data on the centrality dependence of charged
multiplicities by using a two-component model in which the semihard part is assumed to
be completely given by the proposed saturation criterion. At /s = 130 GeV we find a
good agreement with the data, which allows us to extrapolate the results at the highest
RHIC energy of /s = 200 GeV and at LHC energy, /s = 6 TeV, by putting upper
and lower bounds on the charged multiplicities per participant pairs as a function of the
number of participants and by predicting their slope. The proposed saturation mechanism
is also applicable to study pseudorapidity distributions of charged particles.

The problem of the correct definition of the interaction area is a central one both
for the final state and production saturation models. Indeed, the centrality dependence
of observables like the minijet multiplicity per participant is very sensitive to the actual
definition, which may lead to qualitative different behaviours. For this reason, we believe
that we should avoid introducing arbitrary parameters in this definition and proposed a
way to do that by use of the Glauber model of nuclear collisions.

Discriminating among the various saturation mechanism described in this chapter is
possible by the combined study of the centrality, pseudorapidity and energy dependence
of the charged particle multiplicity. Present RHIC data at /s = 130 GeV seem not to
privilege one or another. The forthcoming data at /s = 200 GeV might give further
indications but to really say a final word we have probably to wait for data from the
LHC.



Chapter 5

Minijet transverse spectrum

The purpose of this chapter is to discuss the effects of the rescatterings on the minijet
transverse spectrum in the case of hadron-nucleus interactions (hA, for brevity). Be-
ing intermediate between hadron-hadron (hh) and nucleus-nucleus (AA) interactions, in
hA collisions the theoretical models can be tested against experimental data in a sit-
uation where further nuclear effects are absent, like, e.g., the formation of a hot and
dense medium which can further modify the transverse spectrum via energy loss [9, 93].
Therefore a detailed understanding of hA collisions represents an important baseline for
the generalization to AA collisions [70,91] and for the discovery of novel physical effects
(69, 101].

Besides its intrinsic interest, the inclusion of semihard rescatterings in the computation
of the transverse spectrum was advocated by many authors [57, 68, 86,89, 90| as the basic
mechanism underlying the Cronin effect [119], namely the deformation of the hadron p,
spectra in nuclear collisions as compared with the expectations of a single large-p; produc-
tion mechanism. Multiple parton collisions have also been related to higher-twist parton
distributions [44,72,81]. A nonperturbative study of the transverse spectrum in hA col-
lisions in the framework of the McLerran-Venugopalan model for nuclear and hadronic
collisions was presented in [65, 66].

After the introduction of semihard parton rescatterings, integrated quantities such
as the semihard cross section and the minijet multiplicity show a weak dependence on
the infrared cutoff needed to regularize the infrared divergences arising in perturbative
computations [3,17]. Conversely, it will be shown that differential quantities such as the
minijet p; spectrum are more sensitive to the detailed dynamics of the interaction and
show a stronger dependence on the cutoff, if only logarithmic. To reduce this dependence
on the cutoff one needs to improve the picture of the dynamics further by also including
gluon radiation in the interaction process. Some steps along this line in the case of
deep inelastic electron-nucleus scattering were presented in [44]. In this paper, however,
we neglect the problem of the gluon radiation and concentrate on the effects of elastic
rescatterings.

The deformation of the high-p, hadron spectra which leads to the Cronin effect was
studied in terms of semihard parton rescatterings in Refs. [57,68,86,89], where partons
that suffered up to two scatterings where included. This leads to a good description
of the data for pA collisions up to /s = 39 GeV in the hadron-nucleon center of mass
frame. However, the two-scattering approximation breaks down at higher energies, except
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at very high p;, and the whole wounded parton transverse spectrum is needed. More
phenomenological approaches [90, 91] model the effects of multiple scattering as Gaussian
py broadening for each rescattering suffered by a parton. A random-walk model of the
multiple scatterings was proposed in [70].

In Sec. 5.1 we discuss the inclusive minijet transverse spectrum with particular em-
phasis on the mechanism of subtraction of infrared divergences, which is explicitly im-
plemented in our approach. Results of numerical evaluations of the inclusive spectra of
minijets in hadron-nucleus collisions are presented in Sec. 5.3. Finally, Sec. 5.4 is devoted
to a concluding summary. Some technical issues are discussed in Appendix A.

5.1 Inclusive minijet transverse spectrum

We can expand the average number of projectile wounded partons [Eq. (3.1.7)] at a given
x and b in a collision with impact parameter 3, in the following way':

= b
Wi(2,b, B) = D, b — B Zwe—wx,b» ,

v=1

where (na(z,b)) = [ da'T 4(2', b)o(xz') is the average number of scatterings of a projectile
parton at a given x and b [19]. The average number of wounded partons is then given
by the average number of incoming partons I', multiplied by the probability of having at
least one semihard scattering, which is given by a Poisson distribution in the number v
of scatterings, with an average number () = (ns(z,b)). Therefore, we can obtain the
inclusive differential distribution in p, by introducing a constraint in the transverse mo-
mentum integrals that give the integrated parton-parton cross sections in the expression
above:

d h = E — [dz'T a(z" ,b)o(zz")
d Dy ( b 5) Fh l/’ /FA 1'1, .. ({L‘ b) A
do da @) ) ) , ,
Xko.l"'ko_V(S (k1+"'+ky—pt)dk1...dkydx1...da:,j.

(5.1.1)

The limits of integration on ) and 2’ are respectively zzls > 4k? and za's > 4p?,
respectively, and all the distribution functions are evaluated for simplicity at a fixed
scale.

By using the above formula one can study the p; broadening of a wounded parton, in
particular the square root of the average transverse momentum squared acquired through
its path across the nucleus. Consider a single projectile parton with fixed x and b. The
probability that it acquires a certain p; after the collision is given by Eq. (5.1.1) divided
by the number, T'y(z,b — /3), of incoming partons:

dPa(z,b)  dW, 1
= 2,b, ) .
d*py d*py (,6.5) Lu(z,b—B)

'In this section we changed slightly the notation and used W = N™J.
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Then, the average transverse momentum squared of a wounded parton is given by (p?(z, b))

((p))/{(1)), where ({f(p:))) = [ d®pef(pr)dPa/d*p,. By exploiting the azimuthal sym-
metry of the differential parton-parton cross sections, and the symmetry of (5.1.1) under
exchanges of k;, it is easy to see that

(na(z,0))

P D) (5.1.2)

1 , o do ,
W)= g5~ [ e L' B) = (o)

where (pi(z,b))1 = [ d®prda’p} dfiz” T 4(2',b)/ [ da'o(za’)T o(', D) is the average trans-
verse momentum squared in a smgle parton-parton collision. The p; broadening of the
wounded partons in a hA collision is then given by the p; broadening in a single collision
multiplied by the average number of rescatterings suffered by a wounded parton. A simi-
lar result for the p; broadening of a fast parton traversing a nuclear medium was derived

in Ref. [52]. Two interesting limits can be considered:

, () p—
st { QR i) o 613

Since the minijet yield is dominated by transverse momenta of the order of the cutoff,
these two limits say roughly that the minijets at high p; [i.e., high py in Eq. (5.1.3)] suffer
mainly one scattering. Conversely, at low p; [i.e., low py in Eq. (5.1.3)] they undergo a
random walk in the transverse momentum plane and the broadening is proportional to
the average number of steps in the random walk, (n4). This picture will be studied in
more detail in Sec. 5.3.1.

An explicit formula for the transverse spectrum can be obtained by studying its Fourier
transform, since all the convolutions in Eq. (5.1.1) turn into products and the sum over
v may be explicitly performed. To this end, we introduce the Fourier transform of the
parton-parton scattering cross section

do
o(vyza') = /ko lk”d%(xx') :

Note that 7(0;zz") = o(x2’) and that due to the azimuthal symmetry of do/d%k, its
Fourier transform depends only on the modulus, v, of v. Then the transverse spectrum
[Eq. (5.1.1)] may be written as:

dWh dZU ; o
,b, b— “PEU VY (v, b 5.1.4
b ) = Tu(e b= 5) [ S e Wi (514
where
[ > 1 v ’ ! ~/n. ’
Wh(v;x,b) = z; o {/ dz'T 4 (2", b)5 (v; a:x')} ¢~ [ do'Ta (e b)7(05z2")
— ef dz'T 4 (2’ b){6 (v;zz')—G(0;zx’)} e—fd:v’FA(:v’,b)&(O;:v:v’) ) (515)

An immediate consequence is that the transverse spectrum has a finite limit as p;—0,
even when a cutoff on the momentum exchange is used:
dWy,
d?py

(2.5, ) = Ta(a, b — 5)/%%(0;96,1)) |

pt=0
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5.2 Expansion in the number of scatterings

We can obtain an expansion of Wh in the number of the rescatterings suffered by the
incoming parton by expanding Eq. (5.1.5) in powers of 4:

(v;z,b) ZW vy, b) (5.2.1)
= i_o: % [(/deA(x’, b) [6(v; z2") — 5(0; m:')])y — ( — /deA(x', b)a (0; xm'))y] :

Coming back to the p; space, the expansion of the transverse spectrum in number of
scatterings reads

AW, < dw) > v )
— — r _ ipt-v . )
d2p, (2,0,5) E : d2p, (z,b, ) ;:1: n(z,b 5)/ (27)? € W, (v; z,b)

v=1

(5.2.2)

The series (5.2.1) can be obtained also by expanding W (v) around v = 0. Since the vari-
able v is Fourier-conjugated to p;, the expansion of the transverse spectrum [Eq. (5.2.2)]
will be valid at high p, and we expect a breakdown of any truncation at sufficiently low
momentum. Note that we can obtain this high-p; expansion of the spectrum directly in
p; space by expanding the exponential in Eq. (5.1.1) and collecting the terms of the same
order in 0. As an example, the first three terms, Eqs. (A.4), (A.5) and (A.9), can be
found in the appendices.

5.2.1 Cancellation of the divergences

All terms of expansion (5.2.2) are divergent in the infrared region, so that we need to cure
them with the regulator py. Nevertheless, the infrared divergences are already regularized
to a large extent by the subtraction terms originated by the expansion of exp[—(n4(z,b))]
appearing in Eq. (5.1.1); namely by the constraint of probability conservation. This
cancellation mechanism was observed also in Ref.[57] for the two-scattering term and in
Ref.[93] in a different context.

It is instructive to examine in detail how the subtraction works for the lower order
terms of the expansion. We start by considering the case of a single rescattering (v = 2).
To simplify the notation we write the elementary differential cross section do/d?*k as o(k),
and note that it depends only on the modulus £ of the momentum. By expressing the
semihard cross section as o = [ d?ko(k) the term of order o may be written as

dgp (2.5, 8) = Ta(a,b— B) / 4 dyd ey kT a (2, )T () (5.2.3)
t
" o(ki)o(ks)

9 [5(2) (kl +ky — Pt) - 5(2) (kl - Pt) - 5(2) (kZ - Pt) )

where the first term in the square brackets represents two successive scatterings with no
absorption. The two negative terms are the corrections induced by the expansion of the
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absorption factor exp[—(na(x,b))] of the single-scattering term, » = 1 in Eq. (5.1.1), and
correspond to a single-scattering along with the effects of absorption in the initial or final
state. The expression we obtained is symmetric in the integration variables k; and k.
The cutoff dependence is originated by the singular behavior of the integrand for k; ~ 0 or
for ko & 0, since the J functions in the square brackets prevent the possibility of k; and k,
being both zero at the same time. Because of the symmetry under the exchange k; <> ko,
to study the cutoff dependence of Eq. (5.2.3) it is enough to discuss the integration around
k; = 0. In the region k; ~ 0 the term §® (k; — p;) does not contribute, as long as p; is
finite. The integration in k, is done with the help of the ¢ functions, and one obtains

/dela(kl) [U(pt — ki) —o(pt)

On the other hand, for k; &~ 0, one may use the expansion o(ps — ki) ~ o(pt) — o’ (pt) s -
ki /pi, where p;-k; represents the scalar product of the two vectors, and o'(pg) = ﬁa(pt)
depends only on the modulus of p;. One is left with

/
—M /Pt : kla(k1)d2k1 =0,
Dt

where the vanishing result is due to the azimuthal symmetry of o(k;). The dominant
contribution to the integral comes therefore from the next term in the expansion of
o(k; — py), which goes as kZ. Hence the resulting singularity is only logarithmic in
po, since o(k) ~ k~* as k — 0. The subtraction terms, originated by the absorption fac-
tor exp[—(na(x,b))] in Eq. (5.2.3), have canceled the singularity of the rescattering term
almost completely. This feature is common to all the terms of expansion (5.2.3) as is
discussed briefly at the end of Appendix A.1, where the three-scattering term is discussed
in detail.

Before concluding this section we want to point out that for the numerical computation
of the series it is necessary to symmetrize each of its terms after having exploited the delta
functions. A general method to do this is explained at length in Appendix A.2.

5.3 Numerical results and discussion

In this section we discuss in detail, both qualitatively and quantitatively, the modifications
induced by the rescatterings on the minijet inclusive transverse spectrum. We consider a
proton-lead collision with center of mass energy /s = 6 TeV in the proton-nucleon center
of mass frame and impact parameter § = 0. In the numerical computations we used the
leading order perturbative parton-parton cross section with a mass regulator m = py:

do I, (Q)?

=k

%(xx') = Wﬁ(xx's —4(p* +m?))0(1 — z)6(1 — 2')

where £ is the k factor that simulates next-to-leading order corrections (we chose k = 2).
The single-parton nuclear distribution function has been taken to be factorized in x and

b,

La(z,b) = 74(0)G(2,Q) ,
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where 7, is the nuclear thickness function normalized to A and G is the proton distribution
function. We evaluated the strong coupling constant and the nuclear distribution functions
at a fixed scale () = m. In the computations we used a hard-sphere geometry

_ 3 2 2 2 2
Ta(b) = A27TR3\/R b2 0(R* —b%) ,
where R = 1.12A'/3 is the nuclear radius. For G we used the GRV98LO parameterization
[135]. At low p; the spectrum is obtained by computing numerically the Fourier transform
in Eq. (5.1.4), but at high p; the result begins to oscillate too much, and in that region
the spectrum was computed by using the expansion in the number of scattering up to
the three-scattering term [the formulae actually used, Eqs. (A.4), (A.7) and (A.11),
are discussed in Appendix A.2]. We checked that the spectrum obtained by Fourier
transformation matched the expansion smoothly.

5.3.1 Effects of rescatterings

In this section we discuss the projectile and the target transverse spectrum averaged over
a given rapidity interval,

dWwy,
] d*py

dw, 1
h(ﬁanminanm(m) = 7/ : d$d2b (l',b, 5) . (531)
ne

d2pt Nmaz — Tlmin

Nmin sTmazx

where we approximated the pseudorapidity by n = log(z+/s/ps). The target spectrum
dW 4 /d*p; is obtained by interchanging h and A in Eq. (5.3.1). Note that now we are
taking into account all possible rescatterings of the target, as well.

In Fig. 5.1 we compare the full transverse spectrum (solid line) with its expansion in
the number of scatterings up to three scatterings (dotted and dashed lines). We show both
the projectile and target minijet spectrum in a pseudorapidity region n € [3,4] for the
projectile and n € [—4, —3] for the target. Note that the rapidity is defined with reference
to the projectile hadron direction of motion. The choice of a forward region (backward
for the target) is done to enhance the effect of the rescatterings and to better discuss
the deformation induced in the spectrum. Indeed, in those regions the average fractional
momentum of an incoming parton is large, so that the number of available target partons
is large and the probability of rescattering becomes large.

First we look at the projectile spectrum. At high p, the spectrum is enhanced with
respect to the single scattering approximation because of the p; broadening induced by
the rescatterings. As p, is further increased it approaches the single-scattering spectrum,
as expected on general grounds when the p; distribution of the elementary scattering
follows a power law. This can be understood qualitatively by looking at the path in
py space followed by the incoming parton. Given a final large p;, due to the leading
divergences in Eq. (5.2.3), the leading processes to obtain that p, with two semihard
scatterings are a first scattering with momentum transfer ¢; ~ py followed by a second
one with ¢» = p;, and vice versa. For an analogous reason, the leading configuration to
reach the final p, with three scatterings is ¢; = p; plus ¢» = ¢3 = py and permutations.
This sequence of three scatterings is less probable than the process with two scatterings
as p; increases because the fraction of phase space volume that this process occupies
decreases much faster with p, than in the two-scattering case. For an analogous reason
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Figure 5.1: Left: Target p; spectrum for n € [—4, —3]. Right: Projectile p; spectrum for n € [3,4]. The
full transverse spectrum (solid line) is compared with the one-, two- and three-scattering approximations
(viz., dotted, short-dashed and long-dashed lines).

the relative importance of the two-scattering term with respect to the single-scattering
term also decreases as p; increases. In conclusion as p; increases the average number of
scatterings per parton decreases, and eventually the spectrum is well described by the
single-scattering approximation.

At intermediate p; the average number of scatterings per parton increases and the
shape of the spectrum is more and more distorted with respect to the single-scattering
case. In fact, the fraction of phase space available to the leading configuration of a
multiple scattering process (¢1 ~ p;, @2 & - - - & ¢, &~ py and permutations) increases as p;
decreases. However, this is not the only mechanism at work. Indeed, in our computation
each wounded parton is counted as one minijet in the final state, independently of the
number of rescatterings. On the other hand, in the single-scattering approximation one
identifies the number of minijets in the final state with the number of parton-parton
collision. This leads to an overestimate of the jet multiplicity and to a divergence of the
spectrum at p; = 0 as pg goes to zero. Therefore at low p, the minijet yield is more and
more suppressed with respect to the single scattering approximation.

At very low transverse momentum p; < py a parton undergoes a large number of
rescatterings, all with ¢; =~ pg. Hence the parton performs a random walk in the trans-
verse plane and the spectrum becomes flat as p;—0 because the phase space becomes
isotropically populated. This shows that at very low p; multiple semihard scatterings are
consistent with the random-walk model of Ref. [70], while at moderate and high-p; the
physical picture is rather different.

By comparing the results for the projectile and target transverse spectrum one “sees”
that a projectile parton is traversing a very dense target and the effects of the rescatterings
are large. On the contrary, a target parton sees a rather dilute system, and its minijet
spectrum does not differ too much from the single-scattering result, except at very low
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Figure 5.2: Projectile plus target p; spectrum (solid line) at different rapidities compared to the result
of the one-scattering approximation (dot-dashed line). Also shown are the contributions of the projectile
minijets (dotted line) and the target minijets (dashed line).

pi. Moreover the changes induced by the rescatterings on integrated quantities, like those
entering in the expression for the hadron-nucleus cross section, are minimal. This is
consistent with our approximation of not including rescatterings for the target partons to
obtain analytical formulae for the hadron-nucleus cross section. One can also see that the
three-scattering approximation well describes the projectile spectrum for p; 2> 15 GeV,
while it breaks down completely at p; < 7 GeV, where it becomes negative. For the target
spectrum the three-scattering approximation is not accurate for p; < 4 GeV.

5.3.2 Minijet inclusive transverse spectrum

In this section we study the minijet transverse spectrum resulting from the sum of the
transverse spectra of the projectile and target wounded partons:

dWhA 1 2
57 min> Nlmaz ) = — / dxdb
T (B Mhmins Nmaz) .

Nmaz — Tlmin

dWy,
] d*py

dW 4
dZPt

(2,b, B) + (x,b,ﬁ)) . (5.3.2)

Nmin sTmaz

We analyze the spectrum in three rapidity regions, namely n € [—4,-3], n € [—1,1]
and 7 € [3,4] (respectively “backward”, “central” and “forward” with reference to the
projectile direction of motion). While the target partons basically do not suffer any
rescattering in all three regions, the projectile partons undergo many rescatterings in the
forward region, some in the central region and basically no one backwards.

In Fig. 5.2 we show the spectrum (5.3.2) (solid line) and the contributions of the pro-
jectile and of the target (dotted and dashed lines, respectively). For comparison also the
total spectrum obtained in the one-scattering approximation is also plotted (dot-dashed
line). The spectra are computed with a regulating mass m =1 GeV.

In the backward region both the projectile and the target suffer mainly one scattering
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Figure 5.3: Regulator dependence of the projectile plus target p; spectrum at different rapidities for
m = 1,2 and 3 GeV (viz., solid, dashed and dotted lines).

over all the p;, range except at p; ~ 0, and the spectrum is dominated almost everywhere
by target minijets.

In central and forward regions the target jets still suffer basically one scattering over all
the p; range. Conversely, the projectile crosses a denser and denser target and under-
goes an average number of rescatterings that increases with pseudorapidity. This means
that at low p; the projectile spectrum is very reduced with respect to the one-scattering
approximation, and the minijet yield may become negligible with respect to the minijet
yield from the target. The overall effect is that at low p; the spectrum is dominated by
minijet production from the target, while at intermediate and high p, it is dominated by
minijet production from the projectile.

At very forward rapidities this effect becomes quite dramatic and the spectrum acquires
a structured shape: it follows the inverse power behaviour of the single-scattering term
at high p;, it is concave at intermediate p, because of the suppression of the projectile
minijets, and becomes convex again at low p;, where the target begins to dominate.

In Fig.5.3 we study the dependence of the spectrum on the choice of the cutoff, and
plot the result for m = 1,2 and 3 GeV. The deformation of the spectrum decreases as the
regulator increases (indeed, the average number of rescattering decreases) and for m 2 3
GeV it begins to become negligible.

The effects of the rescatterings are better displayed by studying the ratio of the full
transverse spectrum and the single-scattering approximation,

R (p ) . dWhA/dZ]Qt . dWhA/dzpt
t) — - )
P W) e, Ay WD) jdp,

(5.3.3)

where Ag = [ d*b7,(b — B)7a(b) is the number of target nucleons interacting with the
projectile at a given impact parameter.
In Fig.5.4 we plotted the ratio Rg(p;), which measures the Cronin effect for minijet
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Figure 5.4: Ratio of the full projectile plus parton p; spectrum to the one-scattering approximation at
different rapidities and for m = 1,2,3 GeV (viz., solid, dashed and dotted line).

production, computed with three different regulators m = 1,2,3 GeV. At m = 3 GeV the
effect of the rescatterings is rather small in all the three rapidity intervals, except at very
low p;, and does not affect the integrated quantities like the average number of minijets.
As the regulating mass is decreased the rescatterings begin to show up, and lead to a
large effect in the forward region.

The ratio Rs(p:) is characterized by three quantities: the momentum p, where the
Rpg crosses 1, the momentum py; where it reaches the maximum and the height R, of the
maximum. The sensitivity of p, on the cutoff decreases as the pseudorapidity increases.
Loosely speaking, when the average number of scatterings is high, as it is the case at
Pr = Py, the jets loose memory of py, which gives the order of magnitude of the typical
momentum exchanged in each collision. p,; shows a slightly larger sensitivity on the
regulator, since it lies in a region where the average number of scatterings is smaller. This
behaviour is very different from the conclusions drawn by considering only the expansion
up to two scatterings, where both p, and p,, are proportional to py [86]. In fact, at low
center of mass energies the two-scattering is a good approximation in all rapidity ranges,
except may be very forward. However, it breaks down in any case at transverse momenta
comparable to the regulator py. Therefore, while most of the spectrum is well described
by the two-scattering approximation, the behaviour of p, and p,, is not.

On the other hand, the height of the peak is much more sensitive to the cutoff, since
its leading term is roughly proportional to some power of the logarithm of the regulator:

dWhA . deEX N 10 @ (nresc(pM»
d*py d?py po—0 & 2

Since pjs is not very large, the average number of rescatterings at that value of the
transverse momentum, (N,es.(Par)), is much greater than 1 and the sensitivity of Ry on
po is high. At high p; the average number of rescatterings tends to zero, so the sensitivity
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of the Rz on py decreases and disappears at very large transverse momenta.

Note that the peak is located in a p; region, where soft interactions (which have been
disregarded in our approach) are expected to be negligible, therefore in that region our
perturbative computations should describe the spectrum almost completely. Following
Ref. [86] we might interpret py as the momentum scale at which the interaction deviates
from the perturbative computations. With this interpretation p, would acquire a physical
meaning: though Physics does not know about the artificial subdivision in hard and
soft interactions, it is a well defined question to ask up to what scale the perturbative
computations are good. If the collision dynamics would be determined by parton multiple
elastic scatterings alone, then the measure of the height of the peak would be a way of
measuring py.

On the other hand, the sensitivity of Rz on py is rather signaling a weakness in our
description of the dynamics underlying the hadron-nucleus collision. We expect that such
a sensitivity will be considerably reduced when also including in the dynamics the gluon
radiation emitted by the multiply scattering partons. Some of the effects of the radiation
on the transverse spectrum might however be described by the parameter py in our model,
in which radiation is neglected. Since the inclusion of gluon radiation in the dynamics
would introduce new physical scales, like the radiation formation time, related to the
energy of the collision and the nuclear size, we would expect in any case that the value

of po will depend on /s and A.

5.4 Conclusions

The purpose of this chapter is to draw attention to some of the advantages of studying
hadron-nucleus semihard interactions at the LHC. As in the case of lower energies, hA
interactions represent an important intermediate step to relate hh and AA reactions,
being much simpler to understand as compared with the latter. Moreover, even at higher
energies, like those obtainable at RHIC and LHC, in hA collisions we do not expect the
formation of a dense and hot system, like the quark-gluon plasma, so that one can study
directly the nuclear modification of the dynamics without the need of disentangling the
effects of the structure of the target and those due to the formation and evolution of
the dense system. Hadron-nucleus interactions represent therefore the baseline for the
detection and the study of new phenomena peculiar to AA collisions.

We faced the problem of unitarity corrections to the semihard cross section by in-
cluding explicitly semihard parton rescatterings in the collision dynamics, exploiting the
self-shadowing property of the semihard interactions. In the interaction mechanism we
took into account just elastic parton-parton collisions, while we neglected the production
processes at the partonic level (e.g., all 2 — 3 etc. elementary partonic processes), whose
inclusion represents a non-trivial step in our approach and deserves further study.
Contrary to the case of AA collisions, it is possible to obtain closed analytical expres-
sions for the semihard hA cross section, [see Eq. (2.5.15)]. To that purpose a crucial
assumption has been to consider the hadron as a dilute system, so that rescatterings of
nuclear partons can be neglected, while rescatterings of the projectile are fully taken into
account. In our expressions we have disregarded correlations in the nuclear multiparton
distributions, whose effect may nevertheless be studied in a straightforward way within
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the present functional approach.

We have then focused on the inclusive minijet transverse spectrum at fixed impact pa-
rameter [Eq. (5.1.4)] which is influenced in a more direct way by rescatterings. The
modifications of the transverse spectrum induced by the semihard rescatterings of the
projectile partons is emphasized in the ratio Rg(p:), [Eq. (5.3.3)], defined as our p; spec-
trum divided by the impulse approximation. In particular, we have evaluated it at =0
for different values of the regulator py. The results are described by the values of p
(defined by Rg(px) = 1), pym (which is the value of p, that maximizes the ratio) and
Ry (which is the maximum of Rg). We obtain that both p, and pp; depend weakly on
po, while Rj; has, on the contrary, a strong dependence on p, also when the regulator
is rather small. Therefore, the results for the spectrum also allows us to identify the
limits of the picture of the dynamics considered in this paper. Analogously to the average
transverse energy and the number of minijets in AA collisions [3], some of the features
of Rg, like p, and pys, show a tendency toward a limiting value at small py. All these
quantities depend therefore only marginally on details of the dynamics which have not
been taken into account in the present approach. Conversely, the limits of the simplified
picture of the interaction show up in R),;. Because of its strong dependence on py, in order
to describe the spectrum one needs to fix the value of py experimentally by measuring
Ry;. This feature might be not so unpleasant, because if one limits the analysis to the
inclusive transverse spectrum of minijets in hA collisions, all the effects which are not
taken into account in the interaction (like the gluon radiation in the elementary collision
process) are summarized by the value of a single phenomenological parameter. However
this feature will not hold any further if one had to evaluate more differential properties
of the produced state, which can be properly discussed only after introducing explicitly
further details into the description of the elementary interaction process.

The experimental measure of the Cronin effect in minijet production in hA collisions
would therefore be of major importance: it would allow one to establish the correctness
of the whole approach described here and it would represent the basis for a deeper insight
in the semi hard interaction dynamics both for hA and AA collisions.



Appendix A

More on the transverse spectrum

A.1 Cancellation of the divergences in the three-scattering term

Hereafter we consider in detail the cancellation of the divergences in the term with three
scatterings:

(3)
W (5 b, B) = Tu(a,b— B) / D (&), BT (a2, D)L (2, b)da, ety dhn ko

d*p,
y g(kl)a(:jcz)U(k3) [5(2)(1{1 + ks +k; — py)

— 6@ (k) + ky — pr) — 0P (ky + ks — p;) — 6P (ks + ki — py)
+ 6@ (ky — py) + 0P (ky — py) + 6P (ks — py) | - (A.1)

The different § functions in Eq. (A.1) correspond to all the terms of order o3 in Eq. (5.1.1)
and represent the triple scattering term together with all subtraction terms induced by
the expansion of the absorption factor exp[—(na(z,b))] of the double- and of the single-
scattering terms. The expression has been symmetrized with respect to ki, ko and k3
and is singular for k; = 0, ko = 0 and k3 = 0. The § functions in (A.1) prevent the
tree momenta to be close to zero at the same time, then we start by discussing the most
singular configuration corresponding to two integration variables both close to zero. Given
the symmetry of the integrand it is enough to study the integration region with k; ~ 0,
ky =~ 0. In this region the terms 6® (k; +k, — p;), 6@ (k; — p;) and 6@ (ky — p;) do not
contribute. The integrals on the transverse momenta are therefore written as

/d2k1d2k20(k1)a(k2) o(pr — ki — k) — o(p, — ki) — o(py — k) + U(pt)] . (A.2)

In the region k; =~ 0, ky &~ 0 one may use the expansion

o(ps — k) ~o(ps) — 0'(pt)p;;k + % o"(ps) (ptp'%k)Q — o' (py) %] . (A3)

where py X k represents the vector product of py and k and ¢”(py) = d|z—i|20(pt) depends

only on the modulus of pg. All terms proportional to o(pg) cancel and all the terms linear
in k integrate to zero thanks to the azimuthal symmetry of o(k). Then one is left with

/ deld%a(kl)o(kZ){UI;;?) (pe- (la +k2))" = (pr- K1) = (p1- ka)”|

- 0,2(;;;) |:(pt X (kl + k2))2 — (pt X k1)2 — (pt X kZ)Z]} ,
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which simplifies to

/

/ d%d%a(kﬁa(kz){“"IEE“') (br16) (b o)~ T (o ) (o k2>} =0.

t t

The result is again zero because of the azimuthal symmetry of o(k). Hence, all terms of
the expansion (A.3) up to the second order in k& do not contribute. All other terms linear
in k; or in ky, which are obtained from the first terms in the square brackets in Eq. (A.2),
do not contribute for the same reason, so the first term different from zero is at least of
order k?k3, and originates a square-logarithm singularity as a function of the regulator
Do-

One may repeat the argument for the regions where only one of the integration vari-
ables is close to zero. We consider in detail the case k; = 0 and ky, k3 both finite. In this
region the term §(® (p; — k) does not contribute to Eq. (A.1). The transverse momentum
integrals are therefore

/kolkoQU(kl)a(kg){a(pt — ki —ky) —o(pr — ki) —o(pr — ka) + a(pt)}

+/d2k1d2k30(k1)0(k3){—0(pt “ k) —|—U(pt)} .

To study the singularity it is sufficient to keep the first two terms in the expansion of
o(k) in Eq. (A.3), the remaining ones leading to a logarithmic divergence. One obtains

/d2k1d2k20'(k1)0'(k2)

x {"(Pt k) —o(py— ko) PR K )P (p k) + a(pJ}

p: — ko Pt

* / dzkld%ga(kl)a(kg){‘U(pa Lol a(pa} ,

ygs

which simplifies to

—ky) -k -k
/delekZU(kl)U(k2){—UI(Pt - kQ)M + 20'(pt)L} =0.
p: — ko Dt

As in the previous case one obtains a vanishing result thanks to the azimuthal symmetry
of o(k).

In summary, all integrations in the singular points of the three-scattering term, Eq. (A.1),
induce at most a square-logarithm singularity, as a function of the cutoff.

The reduction of the divergences from power-like to logarithmic is a common feature
of all the terms of the expansion of th etransverse spectrum in the number of scatterings
as one may see by looking at its Fourier transform, Eq. (5.1.5). Indeed, to study the
dependence of the inclusive spectrum on the regulator py at a given p, different from zero
one needs to consider the first term in the square brackets only. The cutoff enters in the
difference

o
o(v) —a(0) = / % [eik'” — 1]d2k = —zﬂg /,, k3%dk + finite terms

so that, also in this case, the divergence for py — 0 is only logarithmic.

0
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A.2 Symmetrization of the expansion in the number of scatter-
ings

For the numerical computation of the high-p, expansion of the minijet spectrum in the
number of scatterings suffered by a projectile parton it is convenient to implement the
subtraction of the IR divergences directly in the integrand. In this way the Monte Carlo
integrations, which we use because of the high dimensionality of the phase space (in
particular for three or more scatterings), work at their best. In fact, Egs. (5.2.3) and
(A.1) are not suited for numerical implementation due to the delta functions. The basic
property that allowed the cancellation of the divergence in the integrand was the symmetry
under exchanges of the integration variables. Unfortunately after using the delta functions
to perform on of the integrals, one obtains in general non-symmetric expressions.

The goal of this appendix is to study how to symmetrize each term of the expansion of
the transverse spectrum. We will discuss them in detail up to the three-scattering term,
but the techniques discussed can be applied also to the generic term in the expansion.
For simplicity, we will use the following notation, already introduced in the main text:

o(k) = 5 (aa)
One-scattering term

The one-scattering term doesn’t include any subtraction term, so that we don’t need to
symmetrize it. It is simply given by

AW, (1
d*p,

(2,0, ) = Tu(z,b — B) / 42T (2!, D)o (pe) | (A.4)

and corresponds to the result one obtains by considering just disconnected parton colli-
sions and neglecting parton rescatterings. It corresponds also to modeling the hadron-
nucleus collision as a superposition of hadron-nucleus collisions.

Two-scattering term

The two-scattering term is given by Eq. (5.2.3), and we need to perform one integration
over ky or over ky to dispose of the § functions. By calling simply q the remaining
integration variable we obtain

dW
d?p,

(,b,8) =Tp(x,b—p /FA 2, b)) a2, b)dx' dx,

« [ @afot@otoe @)~ 20(@o(p0 (A5)

As discussed in Section 5.2, the negative term in the expression above subtracts the
leading inverse power divergence in the integrand leaving only a logarithmic divergence.
However, the cancellation happens only after performing the integral over q, which may
be a difficult result to achieve numerically (actually this is not a problem for the two-
scattering term, due to the low dimensionality of the integral, but becomes a big issue
from three scatterings on).
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There are two divergences to be subtracted: one in q ~ 0 and the other in q ~ pg,
but the subtraction term is divergent just in q ~ 0, and the cancellation of the inverse
power singularities is obtained only after performing the integration over q. To allow
the numerical integration to do a better and faster job, we want that the divergences in
the convolution term and in the subtraction term be cancelled directly in the integrand.
This is obtained by symmetrizing the integrand with respect to an interchange of the two
singularities in the convolution term. Let’s introduce therefore an operator that performs
the interchange of the two singularities:

T:q—pt—q,
so that

T/d2qf(q):/dZQf(Pt—Q)-

Note that the change of variables operated by T has unit Jacobian and that T? = I. Then,
we define the symmetrized two-scattering term as

ALl Yl
d*py d*p,

sym

where we introduced the symmetrization operator
@1
S = 5(]1 +T) . (A.6)

The result is:

aw'?)
d?py

(2,5, 8) = Ta(a,b— B) / D a2, D)T a(h, b},

sym

X/fﬂdmdm—m—amwwo—dm—quo-(AU

Note that the first term in (A.7) describes two subsequent scatterings with total transverse
momentum p; and is the naive pQCD result. The two negative terms are the absorption
terms induced by probability conservation. The two IR divergences of the first term are
canceled by these two subtraction terms: as q—0 by the first one and as q—p¢ by the
second one. The remaining linear singularity gives a zero contribution because it is odd
in a neighborhood of q = 0 and q = p¢ so that only the logarithmic divergence remain.
Note that now the two divergences are subtracted directly in the integrand, which was
the goal of the symmetrization procedure.

Eq. (A.7) is the expression that we use in the numerical computations of the transverse
spectrum at high p;. It could have been guessed directly from Eq. (A.5), but the use of
the symmetrization operator (A.6) will facilitate the discussion of the more complicated
three scattering term.
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Three-scattering term

To prepare the ground for the treatment of the three-scattering term, we note that T
generates the group of the permutations of the two singularities q ~ 0 and q ~ p¢; this
is called the symmetric group of order 2 and indicated as Sy = (T) = {I, T}, where (T)
means “generated by T”. It’s then easy to see that we can construct the symmetrizing
operator (A.6) by summing all the elements of Sy and by dividing by its cardinality.
From Eq. (A.1), after exploiting the § functions, the three-scattering term reads

dw(3)
dZ—;t(x,b, B) = Tu(z,b—B) / T4 (2, )T 4(2h, )T 4 (2%, b)da dydary (A.8)

x % d*qd*r [o(a)o(r)o(ps — a — 1) — 30(a)o(pe — @) (ps) + 30(q)a(r)a(py)] -
(A.9)

Following the general analysis previously done at the end of the last paragraph, we observe
that in (A.9) in absence of the cutoff we would have four divergences, i.e:

qNO, I'NO, pt_q_rNoa pt_qNO (A]-O)

Then, to write the symmetrized three-scattering term, we need to consider the group S,
of the permutations of these four divergences, which has 4! = 24 elements:

PE)  =s@pP

Bsym

where

1

TeS,y

When applying this operator to the three-scattering term the resulting expression has
49 terms and is too long to be discussed here. To have an idea of the result, we will
consider only the subgroup S; given by the permutations of the first three divergences in
(A.10), which are the divergences that appear in the first term of (A.9), i.e. the naive
three-scattering term. After the symmetrization it will be immediate to check that all the
“single” divergences cancel explicitly in the integrand, while “double” divergences cancel
only after performing the integrations over the transverse momenta. We call “single”
divergence a point (q,r) such that only one of the expressions in (A.10) is near zero, and
“double” divergence a point such that two of these terms are nearly zero. For example
{q~0; r £ 0,p,pt —q} and {q ~ 0; r ~ pg} are respectively a single and a double
divergence.

The first step is the definition of the operators that exchange the three singularities:

T, - {q—>r T, - {q—>pt—q—r T, - {q—>q
r —q r—r r - pg—q-—r

Note that they are idempotent: T; = I. Next, we observe that the group S; of the
permutations of the three singularities is made of 3! = 6 objects, and that

53 - <T17T27T3> — {T07T17T27T37T47T5} )
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where T =1, Ty =TTy and T5 = T; T3, so that the reduced symmetrizing operator is

5

@ _ 1
Sred_ ngl :

1=0

Finally one can write the partially symmetrized three-scattering probability:

dw) 3 AW
x,b,8) =S, z,b,B) =
d%twm( 9) = Srai iy (50 F)

=Ty(z,b—B) /FA(x'l, b)L a(zh, b)T a(2h, b)da', dhydald®ky d*koyd ks

<o [ dr'dgd?r (@) (r)o(pe —a )

31
— So(@a()o(pe — @) + So(@)o (b — a)o(p)
— So(@o(r)o(pe — 1) + 50(pe ~ r)o (o ()
~ 5o(oe— a=D)o(@o(p. — a) + 5o(b, ~ D)o (pe -~ @) ()
— 50 = a—1)o(®)a(p. — 1) + 30(p. — 1)o(pe — a — r)o(py)

— So()o(be = a - ro(a+1) + Soljola— D)o,
~ So@o(pe—a - rjolat ) + sol@ola—rolp] . (A11)

Analogously to what has been done for the two-scattering term, one can see by inspection
that the four single divergences (A.10) explicitly cancel in the integrand, while double
divergences cancel only after performing the integrations over ¢ and r. By considering
all four singularities, and by using the whole S, group we would get explicit cancellation
of both “single” and “double” divergences directly in the integrand, as is discussed in
Appendix A.1. Nonetheless, the partial symmetrization is enough to get satisfactory
numerical results.

In conclusion, to compute numerically the expansion of the transverse minijet spectrum
in the number of scatterings one has to fully exploit the symmetry properties of each term,
in such a way that all the divergences get cancelled directly in the integrand. This is crucial
to obtain a good numerical precision and to speed up the computation of the terms with
three or more scatterings. In this appendix we developed a general technique to perform
such a symmetrization.

A.3 Generalization of the transverse spectrum

In this section we discuss how to generalize the rescattering formalism discussesd in Chap-
ter 2 to include a rather generic choice of the scale in the parton distributions and in the
strong coupling constant «y,. For brevity, we will illustrate this in the specific case in
which parton correlations inside the nuclei are neglected. The following discussion may
be nevertheless done using the more general formalism discussed in Chapter 2.
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We start from the formula (5.1.1) for the transverse minijet spectrum. We can rewrite
it in terms of the pseudorapidity n = log(xz+/s/p;) of the wounded projectile parton
(which, from now on, will be called minijet), and show explicitly the dependence of various
quantities from the momentum scale:

dW,,
dn d?p,

(z,0,8) = [2l(x, B,Q)]x— (pe/v/3) exp(n) (A.12)

00 1 _ ! ' 2 do(za -0 >
8 Zy!/FA(x,l’b;Qll)---FA(xﬁ,,b;Q’V)e [ da' DA (2! b) [ dkdo(aa'sQ")/dk
v=1

do(xx}; Q)  do(xx);Q))

2 2 2
e 0D (ky + -+ k, — py) dky ... d%k, da! ... dd!, .

(A.13)

The scale for the target parton distributions and the coupling constant for each scattering
may be naturally chosen to be a function ¢g of the transverse momentum exchanged in
each interaction:

Qi =g(ki) and Q" =g(k),

and typically we may choose g(k;) = k;. The choice of the scale for the projectile parton
is less evident. However, in the spirit of Sec. 2.3 we think to the projectile parton as
interacting with the whole target, therefore the most natural choice is to take the scale
to be a function of the overall exchanged momentum, i.e., p;:

Q:f(pt),

typically f(p;) = pi. Let us define the Fourier transform of the product of the traget
parton distribution and the differential parton-parton cross section:

- , (- ol
Qa(v;2,0) = / A’k eV / da'T 4 (', b; g(k)) % .

After Fourier transforming the sum in Eq. (A.13), and performing the sum over v, the
spectrum may be written as

dw, v o~
- d2h (b,8) = {xrh (x, b—B; f(pt)) / 2 )ZG*lpt-vWA(U; z,b) ,
1 a=py 7r z=(p:/+/s) exp(n)

(A.14)

where

Walvz,b) = Y B [QA v b)] o= (0mh) — Ra(viwb)—2a(02,0) _ o= [ Da(0i20) |

v!
v=1

Equation (A.14) may be computed numerically and gives good results for not too large
py, after which the result begins to oscillate too much. For higher p, we may use a
suitable generalization of the results of Appendix A.2. Then, the low-p; and high-p, part
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of the spectrum must be glued together. The gluing point turns out to be a function of
the infrared regulator py, such that we did not find a good way to glue the two parts
automatically and we had to do it by hand.

To compute integrated quantities like the pseudorapidity distribution of minijets,

dW,, , AW,
—— = dp—5—,
dn dnd?p;

(A.15)

it would be better to have an analytical formula. We start from a simpler problem, namely
the computation of the x distribution of minijets,

dW, d? o
d—xh = /d2pt Fh({L',b— B,f(pt))/ (27:;262m-vWA(U;1‘,b) .

Next, let us introduce the Fourier transform of the projectile parton distribution:
fh(w; b—p) = /det e PV, (x, b— 3; f(pt)) . (A.16)

Note thatNF is a function of the modulus w of the Fourier variable w conjugated to pg,
and that I'(v) = I'(—v). Then, it is easy to prove that

AWy,
dxd?p;

0.6) = [ PwTitwb - 5)Wa(winb (A7)
= 2#/dwwfh(w;b— BYWa(w; z,b) . (A.18)

The computation of the pseudorapidity distribution of minijets [Eq. (A.15)] is more com-
plicated because the integrand in Eq. (A.16) has to be evaluated at x = (p;//s) exp(n)
and it is no more possible to obtain as a simple equation as Eq. (A.18). To simplify a
little bit the problem we define

fz(w; b) = /d2pt e~ PEW [aij (a:, b—5; f(pt))];n:(pt/\/g) exp(n)

Note thatNF is a function of the modulus v of the Fourier variable v conjugated to px,
and that I'(v) = I'(—v). Then the minijet pseudorapidity distribution may be written as

dWy,

= /d2v dPw d?p, e PV e PV (13 ) WA(’U; z,b)
n

o=(p¢/v/3) exp(n)

Since I and WA depend only on the moduli of u, v, and pg, we obtain

dW,
dn

:/dv dw dp; Jo(piv)Jo(prw) [w fﬁ(w;b)] [ptv WA(v;x,b)L(p e |

Whether this equation is of practical use or not is a question under investigation.
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