An interpretation of saturation phenomena as Glauber-Gribov multiple scattering

Alberto Accardi Columbia U.

OVERVIEW

Minijet production in pA and AA collisions

- PQCD + Glauber rescatterings
 → dipole representation of qA scattering
- CGC IN "GAUSSIAN APPROXIMATION"

 → dipole representation of qA scattering
- CGC_{semihard} is PQCD+Glauber!
- What do RHIC data have to say?
- Summary and conclusions

Semihard interactions: rescatterings

Calucci, Treleani, PRD41(90)3367, PRD44(91)2746

Assumptions:

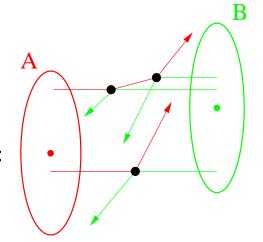
• QCD generalized factorization $D_A^n = \frac{1}{n!} G \tau_A \dots G \tau_A e^{-\int G \tau_A}$

n times

• Factorization of the *n*-body x-sec.:

$$S^{(n,m)} = \prod_{\substack{i=1,n\\j=1,m}} S_{ij}$$

• Only partonic elastic scatterings



 $N_{jet} \leq 2N_{collisions}$

Average number of minijets

Def. $\frac{\text{minijet} = \text{parton with at } \underline{\text{at least}}}{\text{semi-hard scattering}} = p_{exch} > p_0$

$$\frac{dN_{jet}^{A}}{dx}(b) = \int d^{2}r \underbrace{G(x,Q^{2})\tau_{A}(b-r)}_{\text{density of projectiles}} (1-e^{-\int_{4p_{0}^{2}/xs}^{1}(r_{0})G(x',Q^{2})\tau_{B}(r)})$$

prob. of at least 1 scatt.

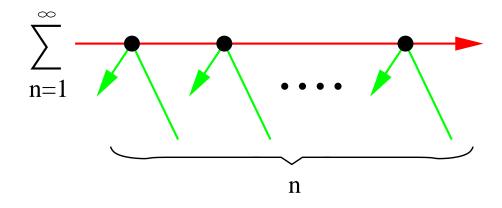
- pQCD gluon-gluon elastic x-sect.: $\hat{\sigma}_H(p_0) = \int^{k_{\text{max}}} \frac{9/2 \, \alpha_S^2(Q^2)}{(k^2 + p_0^2)^2} \propto \frac{1}{p_0^2}$
- Infrared cutoff: p_0 $k^{\max 2} = xx's/4 p_0^2$
- → Glauber multiple scattering formula at parton level

Expansion in the no. of scatterings

$$\frac{dN_{jet}^{A}}{dx}(b) = \int d^{2}r \, G(x, Q^{2}) \tau_{A}(b - r) \qquad \text{absorption factor}$$

$$\times \sum_{n=1}^{\infty} \frac{1}{n!} \left[\int_{4p_{0}^{2}/xs}^{dx' \sigma_{H}(p_{0})} G(x', Q^{2}) \tau_{B}(r) \right]^{n} e^{-\int dx' \sigma_{H}(p_{0})} G(x', Q^{2}) \tau_{B}(r)$$

PROBABILITY of n scatterings



Two remarkable limits

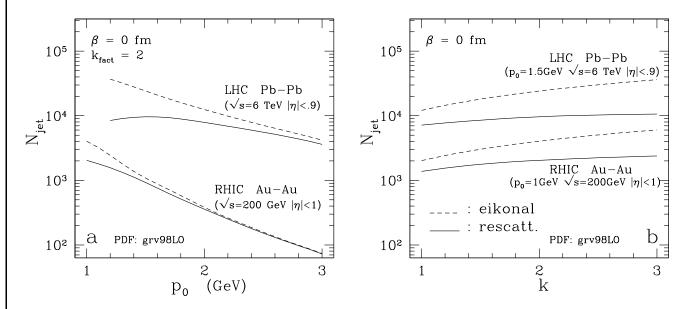
$$\frac{dN_{jet}}{dx}(b) \longrightarrow \begin{cases} 2 \int G \, \tau_A \, \sigma_H \, G \, \tau_B = \frac{dN_{jet}^{(1)}}{dx}(b) & \frac{p_0}{\sqrt{s}} \to 1 \\ \int G \, \tau_A + \int G \, \tau_B \stackrel{\text{def.}}{=} \frac{dN_{lim}}{dx}(b) & \frac{p_0}{\sqrt{s}} \to 0 \end{cases}$$
"black-disc limit"

- at high cutoff: single parton-parton scattering
- <u>finite limit at low cutoff</u>:

 "Elastic semihard collisions cannot free more partons than those inside the incoming nucleus"

Initial conditions A.A., D.Treleani, Phys.Rev.D 63(2001)116002

NOTE: in all computations we set the scale $Q = p_0$.



Rescatterings vs. single-scattering:

- Less sensitive to both p_0 and the k-factor
- Minijet multiplicity <u>tends to saturate</u> at low p_0 : the black-disc regime is setting in

Choosing typically
$$p_0 = 1 \text{GeV}$$
 at RHIC $p_0 = 2 \text{GeV}$ at LHC

$$\left. \frac{dN}{dy} \right|_{y=0} \approx 1000 \text{ (RHIC)}, 5000 \text{ (LHC)}$$

Black-disc and saturation cutoff

A.A., Phys.Rev.C 64 (2001) 064905

Let's exploit the black-disc limit

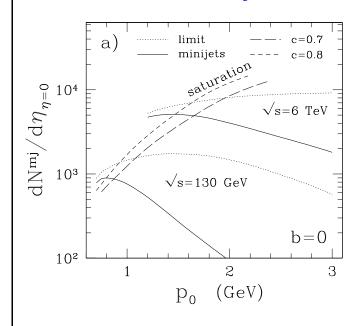
$$\frac{dN_{jet}}{dx}(b; p_0) \underset{p_0 \to 0}{\longrightarrow} \frac{dN_{lim}}{dx}(b; p_0)$$

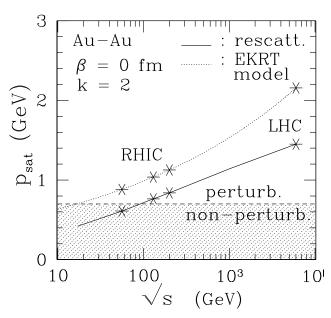
Def. Saturation cutoff: p_0 at which blackness sets in

$$N_{jet}(p_0 = p_{sat}) = 70\% N_{lim}(p_0 = p_{sat})$$

Def. Saturated initial conditions:

$$N_{jet}^{sat} = N_{jet}(p_{sat})$$





- 70% is a parameter. Results don't depend strongly on it.
- Def. of p_{sat} as blackness of the target equivalent to local saturation of gluon distribution per unit transverse area

Iancu, Itakura, McLerran, hep-ph hep-ph/0212123

Dipole representation

<u>AA</u>, Treleani PRD64(2001); Gyulassy, Vitev PRD66(2002) <u>AA</u> hep-ph/0212148

• Consider a quark scattering on A at impact parameter b

$$\frac{d\sigma_{qA}^{A}}{d^{b}dxd^{2}p_{T}} = \sum_{n=1}^{\infty} \delta^{(2)}(p_{T} - \sum_{j=1,n} k_{Tj}) \times \frac{[\tau_{A}(b)]^{n}}{n!} e^{-\sigma_{H} \int dx' G(x') \tau_{A}(b)} \times \frac{d\sigma_{H}}{d^{2}k_{T1}} \int_{4p_{0}^{2}/xs} dx'_{1} G(x'_{1}) \times \ldots \times \frac{d\sigma_{H}}{d^{2}k_{Tn}} \int_{4p_{0}^{2}/xs} dx'_{n} G(x'_{n})$$

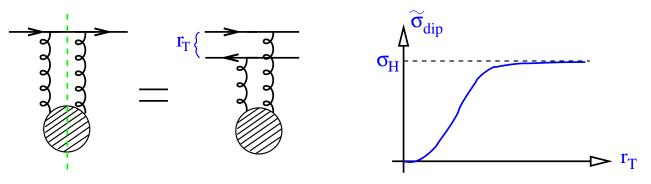
• Resummations are possible in coordinate space:

$$\frac{d\sigma_{qA}^{A}}{d^{b}dxd^{2}p_{T}} = \int \frac{d^{2}r}{(2\pi)^{2}} e^{i\vec{p_{T}}\cdot\vec{r_{T}}} \underbrace{\left[e^{-\tilde{\sigma}_{dip}(r_{T},b;p_{0})\tau_{A}(b)} - e^{-\sigma_{H}(b;p_{0})\tau_{A}(b)}\right]}_{S_{pQCD}(r_{T},b)_{p_{0}}}$$

where
$$\tilde{\sigma}_{dip}(r_T, p_0) = \int d^2k_T \frac{2\pi\alpha_s^2 \int dx' G(x')}{(k_T^2 + p_0^2)^2} \left[1 - e^{-\vec{k}_T \cdot \vec{r}_T} \right]$$

and $\sigma_H(p_0) = \lim_{r_T \to \infty} \tilde{\sigma}_{dip}(r_T; p_0)$

• $\tilde{\sigma}_{dip}$ is interpreted as the cross-section in coordinate space for the semihard scattering of a dipole on a nucleon.

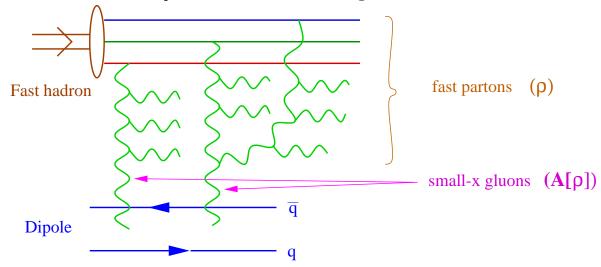


 $\implies qA$ is rewritten as a multiscattering of a $q\bar{q}$ dipole on A

The Colour Glass Condensate

review: Iancu, Leonidov, McLerran, hep-ph/0202270

An effective theory for the nucleus gluon field at small-x



• Observables $\mathcal{O}[A[\rho]]$ are averaged over ρ with weight function $W_{\tau}[\rho]$, where $\tau = \log(1/x_{Bj})$:

$$\langle \mathcal{O} \rangle_{\tau} = \int D\rho W_{\tau}[\rho] \mathcal{O}[A[\rho]]$$

• Gluons at x' are colour sources for gluons at x < x' \sim RGE for W_{τ} : schematically

$$\frac{\partial W_{\tau}}{\partial \tau} = \frac{1}{2} \int \delta_{\rho} \chi[\rho] \delta_{\rho} W_{\tau}[\rho]$$

• Gaussian approximation (GA) Iancu, Itakura, McLerran '02 A self consistent approximation for W_{τ} :

$$W_{\tau}[\rho] = \mathcal{N}_{\tau} \exp\left[-\frac{1}{2} \int_{\infty}^{\tau} dy \int dx_{\perp} dy_{\perp} \frac{\rho^{a}(x_{\perp})\rho^{a}(y_{\perp})}{\lambda_{y}(x_{\perp}, y_{\perp})}\right]$$

• qA scattering and the dipole: Gelis, Jalilian-Marian '02 Related to the $q\bar{q}$ -nucleus cross-section:

$$\frac{d\sigma_{qA}^{A}}{d^{b}dxd^{2}p_{T}} = \int \frac{d^{2}r}{(2\pi)^{2}} e^{i\vec{p}_{T}\cdot\vec{r}_{T}} S(r_{T};b)$$

◆ Assume: straight popagation, no gluon bremsstrahlung
⇒ in the Gaussian Approximation:

$$S_{GA}(r_T; b) = \exp\left\{-g^2 C_R \int d^2 k_T \frac{\mu_\tau(k_T, b)}{k_T^4} \left[1 - e^{-\vec{k}_T \cdot \vec{r}_T}\right]\right\}$$

$$\tilde{\sigma}_{dip}(r_T) \tau_A(b)$$

where μ_{τ} is interpreted as unintegrated gluon PDF, and has two limits

$$\mu_{\tau}(k_T, b) = \begin{cases} k_T^2 \phi_{\tau}(k_T, b) \propto k_t^2 \alpha_s \int_{-\infty}^{\tau} d\tau' \frac{\partial x' G(x', k_T^2)}{\partial k_T^2} \tau_A(b) & k_T^2 \rangle \rangle Q_s^2 \\ \delta_{\tau} k_T^2 \tau_A(b) & k_T^2 \langle \langle Q_s^2 \rangle \rangle \end{cases}$$

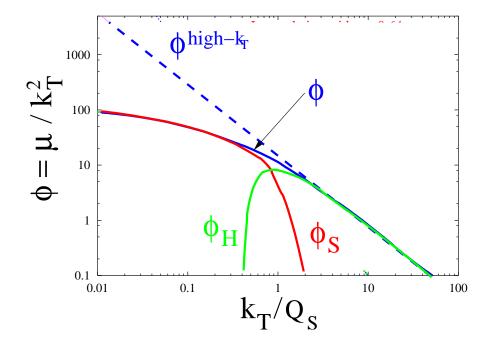
with $Q_s^2 = Q_0^2 e^{c\alpha_s(\tau - \tau_0)}$ the saturation momentum.

• In the high- k_T limit S_{GA} very similar to S_{pQCD} , but self-regulates the IR divergences.

CGC vs. pQCD+rescatterings

Step 1 In CGC separate "hard" and "soft" interactions:

Def.
$$\mu_{\tau} = \mu_{\tau}^{S} + \mu_{\tau}^{H}$$
 with
$$\begin{cases} \mu_{\tau}^{H} = \mu_{\tau}^{\text{high}-k_{T}} \times \frac{k_{T}^{4}}{(k_{T}^{2} + Q_{s}^{2})^{2}} \\ \mu_{\tau}^{S} = \mu_{\tau} - \mu_{\tau}^{H} \end{cases}$$



Accordingly: $\tilde{\sigma}_{dip}(r_T) = \tilde{\sigma}_S(r_T) + \tilde{\sigma}_H(r_T)$

• The "hard" dipole-nucleon cross-section is then

$$\tilde{\sigma}_H \propto \int d^2 k_T \frac{\mu_{\tau}^{\text{high}-k_T}(k_T, b)}{(k_T^2 + Q_s^2)^2} \left[1 - e^{-\vec{k}_T \cdot \vec{r}_T} \right]$$

Step 2 Approximate unintegrated PDF with integrated ones:

$$\mu_{\tau}^{\text{high}-k_T} \propto k_T^2 \int_{-\infty}^{\tau} d\tau' \frac{\partial x' G(x', k_T^2)}{\partial k_T^2} \tau_A(b) \approx \int_{-\infty}^{\tau} d\tau' x' G(x', k_T^2)$$

and take $G(x, Q^2)$ from, e.g., the GRV98 parametrization.

 \implies We obtain the same as in pQCD but with $p_0 = Q_s$:

$$\tilde{\sigma}_H \, \tau_A \propto \int d^2 k_T \frac{\int_{-\infty}^{\tau} d\tau' x' G(x', k_T^2) \tau_A(b)}{(k_T^2 + Q_s^2)^2} \left[1 - e^{-\vec{k}_T \cdot \vec{r}_T} \right]$$

Step 3 Assume dominance of hard scatterings

For integrated multiplicities:

$$\frac{d\sigma_q}{dx \, d^2 b} = \underbrace{e^{-\sigma_H \tau_A} \left[1 - e^{-\sigma_S \, \tau_A} \right]}_{\text{soft part}} + \underbrace{\left[1 - e^{-\sigma_H \tau_A} \right]}_{\text{hard part}} \approx \left[1 - e^{-\sigma_H \tau_A} \right]$$

⇒ The semihard limit of CGC is pQCD+rescatterings

Step 4 Use pQCD+rescattering to QUANTITATIVELY COMPUTE!

Charged multiplicities in pQCD+rescatt.

A.A., Phys.Rev.C 64 (2001) 064905

Semihard part: from our model + saturation cutoff

$$\left. \frac{dN^{ch}}{d\eta} \right|_{s,h} (b) = 0.9 \frac{2}{3} \frac{dN_{jet}^{sat}}{d\eta} (b)$$

- Isentropic expansion & d.o.f conversion $\rightsquigarrow 0.9$
- Parton-hadron duality $\rightsquigarrow 2/3$

Soft part (= non minijet-like):

from the wounded nucleon model

$$\frac{dN^{ch}}{d\eta}\bigg|_{soft}(b) = x(\sqrt{s}) \ n_{pp}(\sqrt{s}) \ N_{part}(b)$$

 $x(\sqrt{s}) = \text{relative weight of soft and hard}$ $n_{pp}(\sqrt{s}) = \text{ch. part. pseudorap. density in } pp \text{ scattering}$ $N_{part}(b) = \text{Number of participant nucleons}$

Two-component model (soft + semihard)

$$\frac{2}{N_{part}(b)} \frac{dN^{ch}}{d\eta}(b) = 2x(\sqrt{s}) \ n_{pp}(\sqrt{s}) + \frac{2}{N_{part}(b)} \frac{3}{5} \frac{dN_{jet}^{sat}}{d\eta}(b)$$

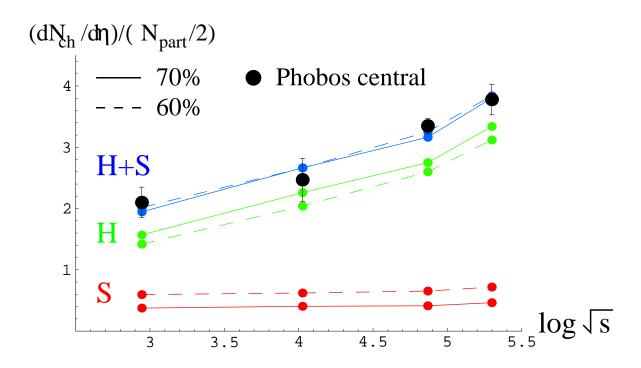
Note: soft part independent of impact parameter

Soft component at b = 0

• Naive modeling of the fraction of soft processes

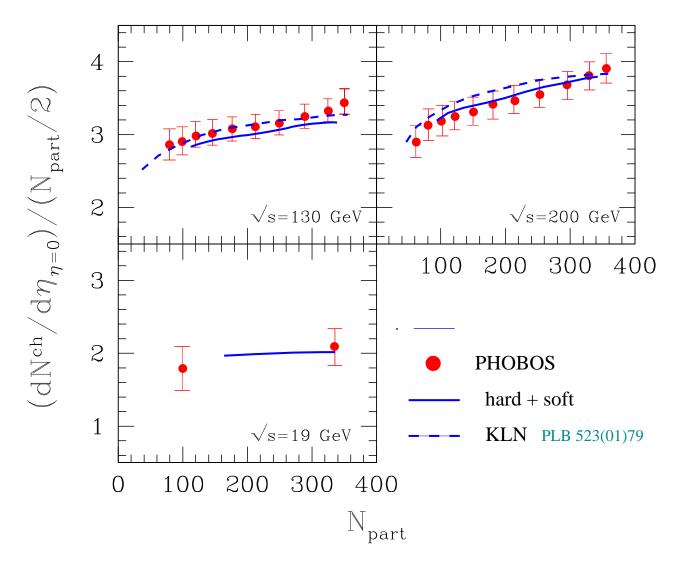
$$\frac{dN_{soft}^{ch}}{d\eta}(s) / \frac{dN^{ch}}{d\eta}(s) = \frac{1}{1 + a\log(\sqrt{s})^b} \xrightarrow{\sqrt{s} \to \infty} 0$$

• By fitting RHIC data for central collision only at $\sqrt{s} = 56, 130, 200 \text{ GeV}$ we obtain



- at RHIC $\sqrt{s} = 130 200 \text{ GeV} \Rightarrow 15\text{-}20\%$ soft contribution
- extrapolation: at $\sqrt{s} = 19 \text{ GeV} \Rightarrow 25\text{-}40\% \text{ soft}$ at $\sqrt{s} = 5500 \text{ GeV} \Rightarrow 5\text{-}10\% \text{ soft}$

Centrality dependence



- At $\sqrt{s} = 130$, 200 GeV, we used k=2 and 70% saturation
- At $\sqrt{s} = 19$ GeV, we used k=5 and 60% saturation

We used standard DGLAP evolved PDF's (GRV98)

⇒ no sign of saturation!

CONCLUSIONS

- Based on the data for N_{ch} and the presented phenomenological analysis
 - no clear sign of saturation effects at RHIC
- We have two approaches: pQCD and CGC
 - we should <u>fully exploit these two handles</u>, theoretically & numerically
- To asses or disprove the above conclusions:
 - <u>study more exclusive observables</u> and <u>kinematic regions sensitive to saturation effects</u>
 - e.g.: Cronin in dA, back-to-back correlations

Remark I

Average minijet energy

$$E_{jet}(b) = \int d^2r dx \left(x \frac{\sqrt{s}}{2}\right) G(x) \tau_A(b-r) \left(1 - e^{-\int dx' \sigma_H(xx') G(x') \tau_B(x',r)}\right) + A \leftrightarrow B$$

• Performing the integral over d^2r we have an upper limit for the minijet total energy:

$$E_{jet}(b) \lesssim N_{part}(b) \frac{\sqrt{s}}{2} \int dx \, x G(x, p_{sat}^2)$$
$$= N_{part}(b) \frac{\sqrt{s}}{2}$$

Energy conservation has been implemented (consequence of the unitarization)

• The inequality is saturated in the black disk limit, only geometry survives:

Participant scaling

Remark II

Minijet multiplicity and transverse energy

$$N_{jet}(b) = \int d^2r dx \, G(x) \, \tau_A(b-r) \, \left(1 - e^{-\int dx' \sigma_H(xx') G(x') \tau_B(x',r)}\right) + A \leftrightarrow B$$

• In the **black disk limit** not only geometry survives:

$$N_{jet}(b) \approx N_{part}(b) \times \int dx G(x, p_{sat}^2(b))$$

$$E_{Tjet}(b) \approx N_{part}(b) \times p_{sat}(b) \int dx G(x, p_{sat}^2(b))$$

 $(p_{sat} = \text{scale at which the black disk limit is reached})$

Participant scaling violations (due to pQCD evolution)

• Charged multiplicitity:

$$\begin{array}{c}
\text{Naively} \\
N_{ch} \propto N_{jet}
\end{array} \implies \begin{array}{c}
\text{Scaling violations are} \\
\text{observable in the final state}
\end{array}$$