Can we distinguish energy loss from hadron absorption? Alberto Accardi (Iowa State U.)

Introduction. Knowing wether a hadron is formed inside or outside the nuclear medium is very important for correctly interpreting jet-quenching data. The cleanest experimental environment to study the space-time evolution of hadronization is semi-inclusive DIS on nuclear targets.

Two frameworks are presently competing to explain the observed attenuation of hadron production: quark energy loss (with hadron formation outside the nucleus) and nuclear absorption (with hadrons formed inside the nucleus). I explore the possibility to distinguish them using the Adependence of the hadron attenuation ratio in nuclear DIS.

- Both energy loss and hadron absorption models account well for HERMES R_M data
- Without correcting for finite medium length the energy loss model cannot describe data

- Two-step hadronization inside the nucleus: 1) quark *q* neutralizes color \Rightarrow **prehadron** h^*
- 2) hadron *h*'s wavefunction fully develops
- Average formation lengths $\langle l^* \rangle (z,v), \langle l^h \rangle (z,v)$ from Lund model
- (Pre)hadron-nucleon cross sections:
 - fitted to $e^+ + \text{Kr} \rightarrow \pi^+ + X$ $\sigma_* = 2/3 \sigma_h$
 - from Particle Data Group σ_h
- Survival probability S_A by transport diff. eqns.
- Full integration over $\gamma * q$ interaction point (b,y)

 $\frac{1}{N_A^{DIS}} \frac{dN_A^h(z)}{dz} = \frac{1}{\sigma^{lA}} \int dx \, d\nu \sum_f e_f^2 q_f(x, Q^2) \frac{d\sigma^{lq}}{dx d\nu} S_{f,h}^A(z, \nu) D_f^h(z, Q^2)$ exp. cuts $S_{f,h}^{A} = \int d^{2}b \, dy \, \rho_{A}(b,y) \int dx' \int dx' \frac{e^{-\frac{x-y}{\langle l^{*} \rangle}}}{\int dx' \frac{\langle l^{*} \rangle}{\langle l^{*} \rangle}} e^{-\sigma_{*} \int_{x}^{x'} ds A \rho_{A}(b,s)} \frac{e^{-\frac{x'-x}{\langle \Delta l \rangle}}}{\langle \Delta l \rangle} e^{-\sigma_{h} \int_{x'}^{\infty} ds A \rho_{A}(b,s)}$

Energy loss model

(b,y) 660

The quark hadronizes outside the nucleus • Quark energy loss \Rightarrow modified fragment. funct.

 $D_q^h(z,Q^2) \longrightarrow D_q^h(\frac{z}{1-\Delta z},Q^2) \quad ; \quad \Delta z = \varepsilon/\nu$

- Quenching weights $P(\Delta z, L)$ [2] with corrections for finite in-medium path L=L(b,y)Transport coefficient $^{\uparrow}q = 0.5 \text{ GeV}^2/\text{fm}$ - fitted to $e^+ + \text{Kr} \rightarrow \pi^+ + \text{X}$ • Full integration over $\gamma * q$ interaction point (b,y) $\frac{1}{N^{DIS}_A}\frac{dN^h_A(z)}{dz} =$
- $\frac{1}{\sigma^{lA}} \int d^2b \, dy \, \rho_A(b, y) \int dx \, d\nu \sum_f e_f^2 q_f(x, Q^2) \frac{d\sigma^{lq}}{dx d\nu} \tilde{D}_f^h(z, Q^2; L(b, y))$ exp. cuts $\tilde{D}_{f}^{h}(z,Q^{2};L) = \int d\Delta z \ \mathcal{P}(\epsilon;\hat{q},L) \frac{1}{1-\Delta z} D_{f}^{h}(\frac{z}{1-\Delta z},Q^{2}) + p_{0}(\hat{q},L) \ D_{f}^{h}(z,Q^{2})$

A-DEPENDENCE naïve argument

a) Energy loss (LPM effect): $1-R_M \sim \langle \Delta z \rangle \sim L^2 \sim A^{2/3}$

HOWEVER... let's really expand in powers of $A^{1/3}$ [approximations: hard-sphere nuclei ($R_A = r_0 A^{1/3}$), neglect effects on ²H] a) Energy loss [approx: no finite size corrections, large $v \Rightarrow$ neglect boundary in $\int d\Delta z$]

- b) Hadron absorption: $1-R_M \sim < no. of rescatterings >$ $\sim L \sim A^{1/3}$
- \Rightarrow a simple fit to A^{α} should discriminate the 2 models

pure absorption

0.01 0.02 0.03 0.04 0.05 0.06

 $\hat{q} = 0.7 \text{ GeV}^2/\text{fr}$

0.01 0.02 0.03 0.04 0.05 0.06

z=0.75

 $\hat{q}=0.3 \text{ GeV}^2/\text{fm}$

 $1 - R_M^{\text{en.loss}} = \frac{C_F \alpha_s r_0^2}{5} \frac{\hat{q}}{\nu} \left[-1 - z \frac{\partial_z D(z)}{D(z)} \right] A^{2/3} + \text{h.o.t.}$ b) Hadron absorption [approx: prehadron formed inside A, hadron outside)] $1 - R_M^{\text{abs.}} = \frac{2\rho_0 r_0^2}{5} \frac{\sigma_*}{\langle l^* \rangle(z)} A^{2/3} + \text{h.o.t.}$

Hadron absorption follows $A^{2/3}$ law, as well! need to look for higher order terms to distinguish from energy loss

Note: A2/3 law valid for a large class of absorption models, not an artifact of this one [1]. Numerical results below computed without these approximations.

0.5

0.5

A new observable: cA^{α} fits [1]

Definition:

- i) fit $1-R_M(z) = c(z) A^{\alpha(z)}$
 - at fixed z (or v or Q^2)
- \rightarrow with *c* and α as free parameters ii) draw 1σ confidence contour in (c, α) plane

The power of this observable:

- sensitive to model assumptions E.g., pure absorption vs. absorption plus partial quark deconfinement
- sensitive to model parameters E.g., energy loss with $\hat{q}=0.3$ GeV²/fm vs. $\hat{q}=0.7$ GeV²/fm

HERMES vs. THEORY

0.01 0.02 0.03 (74 0.05 0.06

0.01 0.02 0.03 0 04 0.05 0.06

z=0.95

BAD LUCK! the 2 models mimick each other!

- small differences mainly due to inclusion of He in the fit
- increasing number of targets (possible) in the near future at JLAB) shrinks contours but doesn't separate models
- Restricting to either heavy or light target doesn't help, either
- Other author's models may be different

 cA^{α} fits will help reducing the no. of theory models, but will not distinguish energy loss from hadron absorption

Conclusions

- Contrary to common expectations, the A-dependence of hadron attenuation doesn't distinguish energy loss from hadron absorption. - We need more exclusive observables (e.g., the z-dependence of the Cronin effect [3]).

For future experiments (JLAB, a few runs at HERMES)

- Use a few more targets, but not too many, to complete the light-heavy scan (and to keep our eyes open to surprises).

- Concentrate resources on collecting high-statistics,

in order to access more exclusive observables

References: [1] Accardi et al., hep-ph/0502072, NPA + erraturm in press [2] Salgado, Wiedemann, PRD68(2003)014008 [3] Kopeliovich et al., NPA740(2004)211-245