Space-time evolution of hadronization probed in e+A collisions

Alberto Accardi (Iowa State U.)

Thomas Jefferson National Laboratory 31 January 2007

Based on: A.A., PLB in press [nucl-th/0604041] A.A., EPJC in press [nucl-th/0609010]

Hadronization in nuclear matter

- space-time evolution, non-perturbative confinement
- calibration of jet-quenching signal in A+A

Short review of experimental data

Hadron quenching in nDIS

- formation times
- 🗢 prehadron vs. hadron
- energy loss vs. absorption
- Can we distinguish energy loss from hadron absorption?
 - ➡ failure of the "A^{2/3} power law"
 - formation time scaling
 - ➡ p_T-broadening

Perspectives and conclusions

Hadronization in nuclear matter

Hadronization in elementary collisions

Alberto Accardi

Nuclear collisions 1 - nDIS

 $R_M < 1 \implies$ hadron attenuation in cold nuclear matter

Alberto Accardi

Breakdown of universality in nuclei

Hadronization is no more process-independent

Among possible causes: This talk: struck quark interactions with the medium (pre)hadron interactions with the medium other medium nuclear, e.g., partial deconfinement [Dias de Deus '87] in-medium modifications of parton showers [Borghini, Wiedemann '05] breakdown of factorization [for nuclear PDF, see Qiu, Sterman '02]

nDIS is a clean environment for

 (1) space-time evolution of hadronization
 nucleons as micro-detectors
 medium rather well known
 (2) Cold nuclear matter effects
 quark energy loss
 nuclear modifications of FF

VS.

Energy loss paradigm: success!

Paradigm: long lived partons hadron quenching due to energy lost by gluon brehmstralung

 $R_{AA} = \frac{(dN^{h}/d^{2}p_{T})_{A+A}}{N_{coll}(b) (dN^{h}/d^{2}p_{T})_{p+p}}$

 pQCD energy-loss theory used to extract initial gluon density dN^g/dy ≈ 1000

Can be converted to initial state energy density:

 $\epsilon \sim 14 - 20 \text{ GeV/fm}^3 > \epsilon_c$ allowing QGP phase transition

Challenges: heavy quarks

- Heavy flavour puzzle at RHIC [QM05: Djordjevic, Armesto, STAR, PHENIX]
 single non-photonic e⁻ as much suppressed as π
 - theory gives half of the observed suppression!
- Additional mechanisms:
 elastic energy loss?

 [Mustafa, Thoma]
 with running α_s? [Peshier '06]
 Uncertainties in NLO cross sect.
 (B/D ratio vs. p_T)?

This talk:

do hadrons form inside QGP?

$$E_{q} = v = E_{e} \cdot E_{e'} \approx 2 \cdot 25 \text{ GeV} \qquad E_{q} = p_{T} / z$$

at HERMES/Jlab
$$E_{h} = z v \approx 2 \cdot 20 \text{ GeV} \qquad E_{h} = p_{T} \approx 2 \cdot 20 \text{ GeV}$$

* HERMES/JLAB kinematics is relevant to RHIC mid-rapidity

...but beware the virtuality...

 $Q^2 = -q^2$ is measured

$$Q^2 \equiv E_q^2 \propto (p_T/z)^2$$

Alberto Accardi

Summary of motivations

Nuclei as space-time analyzers

- nucleons as femto-detectors
- medium rather well known
- Iow final-state multiplicity

Non perturbative aspects of hadronization

- approaching microscopic understanding of Fragmentation Functions
- how do partons dress up?
- understanding of color confinement

Calibration of jet-quenching signal in A+A collisions

properties of Quark-Gluon Plasma

Short review of e+A data

Present and future facilities

Measurements at HERMES

- HERMES: fixed target, E_{lab} = 27.5 GeV and 12 GeV
 Hadron attenuation as a function of (fixed target kinematics)
 ν = virtual γ energy
 p_T = hadron transv. momentum
 - $z = E_h/v = hadron's$

fractional energy $\rightarrow Q^2 =$ photon virtuality

- hadron flavour = π^{\pm} , K[±], p, \overline{p}
- fractional energy $\rightarrow A = target mass number$

Alberto Accardi

Measurements at HERMES

proton anomaly!

analogous to "baryon/meson anomaly" in p+p, p+A and A+A + what do they have in common?

Alberto Accardi

Measurements at HERMES

 $R_{2}(z_{2})$

 $N_2(z_2)$

D

14N

● Kr 🛦 Xe

0.5

Double hadron attenuation R₂ in A+A: "same-side correlations"

Jlab, 31 Jan 2006

Preliminary results at CLAS

18

Hadron formation times

Prehadron vs. hadron

→ Hadronization is non perturbative \Rightarrow (many) models

General features:

♦ NOTE:

 \Rightarrow It's tricky to rigorously define t^* , t^h : consider them as working tools

Alberto Accardi

Hadron attenuation in nDIS

Formation time estimates 1

- Hadron formation time = time for partons to build up a color field and develop hadron wave function
- For a 7 GeV pion at HERMES t^π ~ 35 fm >> R_A
 pions are formed outside A, quark energy loss only
 Note, however: t^K ~ t^p ~ 8 fm !!
- This is used in energy loss models to justify the assumptions, but neglects interactions of forming color field with the medium

Formation time estimates 1 – energy loss models

Twist-4 modified Fragmentation Fns. [Wang&Guo '00, Wang & Wang '02]

Alberto Accardi

Formation time estimates 2 – pQCD estimate

pQCD estimate [see Vitev, QM'05]

assume,	h, m_h	more	e probab	oly,	// h	
q, M_q	Ly g		M_X			
$\left[p^{+}, \frac{M_{q}^{2}}{2p^{+}}, 0\right] \rightarrow \left[zp^{+}, \frac{\mathbf{k}^{2} + m_{h}^{2}}{2zp^{+}}, \mathbf{k}\right] + \left[(1-z)p^{+}, \frac{\mathbf{k}^{2}}{2(1-z)p^{+}}, -\mathbf{k}\right]$]
$\Delta y^+ \simeq \frac{1}{2}$	$\frac{1}{\Delta p^{-}} = \frac{1}{2}$	$k^2 + (1 + 1)$	$\frac{2z(1-z)m_h^2}{-z)m_h^2}$	$\frac{z)p^+}{-z(1)}$	(-z)M	$\overline{\frac{2}{q}}$
		π	K	р	D	В
HERMES (v~13 GeV, z~0.5)		37 fm	11 fm	4 fm	1.2 fm	0.1 fm
RHIC ($p_T^h \sim 7 \text{ GeV}$ z	26 fm	6 fm	4 fm	1.2 fm	0.1 fm	
			~ I1	nside ti	he medi	um !!

Formation time estimates 3 – Lund model

- Prehadrons and hadrons are identified as follows [Bialas-Gyulassy '87]
 Prehadron formed at qq creation (string breaking) C_i
 - Hadron h_i formed when q and q meet P_i
- Average formation times are analytically computable
 - At large $z \rightarrow 1$

 $E_h \rightarrow v \implies$ string breaks early to leave

all energy to the hadron: $\langle t^* \rangle \rightarrow 0$

★ <u>At small z → 0</u> hadron created at high rank after nucleus many string breakings: $\langle t^* \rangle \rightarrow 0$

 $\langle t^* \rangle = f(z) (1-z) \frac{zv}{\kappa} - \text{string-tension}$ $\langle t^h \rangle = t^* + \frac{zv}{\kappa}$

Alberto Accardi

Formation time estimates 3 – Lund model

 $\begin{cases} \langle t^* \rangle = f(z) (1-z) \frac{z v}{\kappa} \\ \langle t^h \rangle = t^* + \frac{z v}{\kappa} \end{cases}$

★ For a 7 GeV pion at Hermes $\langle t^* \rangle < 5 \text{ fm} \sim O(R_A) \quad \langle t^h \rangle \sim 10 \text{ fm} > R_A$

* Prehadron absorption with this estimate [A.A. et al., NPA 761(05)67]

see also: Falter, Gallmeister, nucl-th/0512104 for similar ideas in a transport model

Formation time estimates 4 – Dipole model

* Leading hadron formation (z > 0.5) [Kopeliovich et al., NPA 740(04)211]

Prehadron formation time t*

- = time at which gluon becomes decoherent with parent quark
- → <u>At large $z \rightarrow 1$ </u>

 $E_h \rightarrow \nu \Rightarrow$ quark must be short-lived

(otherwise radiates too much energy)

Can we distinguish energy loss from prehadron absorption?

I - Hadron absorption model A.A. et al., NPA 761(05)67

Hadron absorption model – 1

A.A. et al., NPA 761(05)67

◆ Two-step hadronization inside the nucleus:
 1) quark *q* neutralizes color ⇒ prehadron *h**
 2) hadron *h*'s wavefunction fully develops

Average formation lengths <t^{*}>(z,v), <t^h>(z,v) taken from theLund model
 for a 10 GeV π: <t*>~4 fm ~10 fm

Hadron absorption model – 2

A.A. et al., NPA 761(05)67

♦ (Pre)hadron suppression factor S^A by transport diff. eqns.
 ♦ (Pre)hadron-nucleon cross sections:

 σ^{*} = 0.35 σ^h
 fitted to e⁺ + Kr → π⁺ + X
 σ^h
 from Particle Data Group

 ♦ Full integration over γ^{*}q interaction point (b,y)

Hadron absorption model - results

A.A. et al., NPA 761(05)67

Note: in ref. above, curves differ by inclusion of Q²-rescaling due to additional hypothesis of partial deconfinement in nuclei

Alberto Accardi

II - Energy loss model A.A. (QM'05) nucl-th/0510090

Energy loss model A.A. (QM'05) nucl-th/0510090

◆ Quark hadronizes outside the nucleus
 ◆ Gluon bremsstrahlung ⇒ $\Delta E = v \Delta z$ ⇒ modified Fragmention Function
 [see Arleo EPJ C30(02)213]

 $D_q^h(z, Q^2) \longrightarrow \frac{1}{1 - \Delta z} D_q^h(\frac{z}{1 - \Delta z}, Q^2)$

▶ <u>New</u>: realistic geometry + quenching weights \$\mathcal{P}(\Delta z, L)\$ corrected for finite in-medium path \$L=L(b,y)\$ [Salgado-Wiedemann '03]
 \$\tilde{D}_{f}^{h}(z,Q^{2};L) = \int_{0}^{(1-z)} d\Delta z \$\mathcal{P}(\Delta z; \hat{q}, L)\$ \frac{1}{1-\Delta z}\$ D_{f}^{h}(\frac{z}{1-\Delta z},Q^{2}) + \$p_{0}(\hat{q}, L)\$ D_{f}^{h}(z,Q^{2})\$ Quenching weight: prob. of radiating no gluons prob. of radiating \$\Delta z\$ to radiating \$\Delta z\$ to radiating \$\Delta z\$ to radiating \$\Delta z\$ to reduce the prob. of \$\Delta z\$ to reduce the \$\Delta z\$ to reduce the prob. of \$\Delta z\$ to reduce the \$\Delta z\$ to re \$\Del

Energy loss model - results

A.A. (QM'05) nucl-th/0510090

Energy loss vs. absorption

A.A. (QM'05) nucl-th/0510090

Both models account well for HERMES R_M data

Surprisingly similar up to heavy nuclei

Alberto Accardi

III – How to tell energy loss from absorption?

1) The "A^{2/3} power law" A.A., Gruenewald, Muccifora, Pirner, NPA 761(2005)67

- \clubsuit Conventional thinking: the A^{2/3} law
 - → Energy loss (LPM effect in QCD): $1 R_M \sim \langle \Delta z \rangle \sim L^2 \sim A^{2/3}$ → Hadron absorption: $1 - R_M \sim \langle no. \text{ of nucleons seen} \rangle \sim L \sim A^{1/3}$ WRONG!
- $A^{2/3}$ also for absorption models!
 - \Rightarrow extra dimensionful scale: prehadron formation length $< l^* >$
 - → neutralize it \Rightarrow extra power of A $(R_A/<l^*>)^n \sim A^{n/3}$
 - typically n=1

1) The "A^{2/3} power law" A.A., Gruenewald, Muccifora, Pirner, NPA 761(2005)67

Don't believe it?

 try fitting 1−R_M = cA^α
 [Accardi et al., NPA 761 (05);
 Accardi, Acta Phys. Hung. in press]

 A^{2/3} broken on large nuclei

Absorption & en. loss mimick each other

 not possible to distinguish (separate) the 2 mechanisms

not even using heavy nuclei up to Pb

A-dependence of R_M does not test dominance of partonic or prehadronic physics

2) Scaling of R_M – basic idea A.A., nucl-th/0604041, PLB in press

R_M should scale with $\tau = \tau(z, v)$ not with z and v separately

 $R_M = R_M[\tau(z,v)]$ with $\tau = C z^{\lambda} (1-z) v$

• "Scaling exponent" λ can distinguish absorption and energy-loss

 $\text{$ **absorption models:** $} \lambda > 0 \\ [finite formation time]$

The energy loss models: λ ≤ 0 [from energy conservation:

$$\epsilon < (1-z_h) \vee]$$

radiated energy

2) Scaling of R_M – Absorption models

♦ Extreme situation: if quark has no interactions, $\Rightarrow R_M \text{ depends only on the prehadron's in-medium path, i.e. <t*>$

• General form of $< t^* >$:

$$\langle t^* \rangle = f(z) (1-z) \frac{zv}{\kappa} \sim \tau(z,v)$$

energy conservation

model dep. scale (e.g. string tension)

• obtain τ -scaling with $\lambda > 0$

2) Scaling of R_M – Energy loss models

- Approximate: $R_M \approx \frac{1}{1 \langle \epsilon \rangle / \nu} D\left(\frac{z_h}{1 \langle \epsilon \rangle / \nu}\right) / D(z_h)$
- Use KKP at Q² = 2 GeV² $D(z_h) = C z_h^{\alpha} (1 z_h)^{\beta}$
- Obtain approximate τ scaling with λ≈0:

$$R_{M} \approx \frac{1}{\left(1 - \frac{1}{\nu}f[(1 - z_{h})\nu]\right)^{\alpha + \beta + 1}} \left(1 - \frac{f[(1 - z_{h})\nu]}{(1 - z_{h})\nu}\right)^{\beta} \sim \tau(\lambda = 0)$$

in practice, $\lambda \leq 0$

2) Scaling analysis A.A., nucl-th/0604041, PLB in press

HERMES data presented as:

- rightarrow z-distributions: $R_M(z)$ with $\langle v \rangle = \langle v \rangle(z)$
- \Rightarrow v-distributions: $R_M(v)$ with $\langle z \rangle = \langle z \rangle(v)$
- Scaling analysis of R_M remember $\tau = C z^{\lambda} (1-z) v$

1) Fix λ

2) For each *z* compute $\tau = \tau(z, \langle v \rangle)$ and $R_M(\tau) = R_M(z)$ For each *v* compute $\tau = \tau(\langle z \rangle, v)$ and $R_M(\tau) = R_M(v)$

3) Fit $\phi(\tau)$ to $\{\tau, R_M\}$ obtained above $-\chi^2 = \chi^2(\lambda)$ $\phi(\tau) = a + b\tau + c\tau^2 + d\tau^3 + e\tau^4$

(cross-checked by $\phi(\tau) = \frac{a+b\tau+c\tau^2}{a+d\tau+e\tau^2}$)

4) Best-fit λ_{best} by χ^2 minimization 5) If $\chi^2(\lambda_{\text{best}})/\text{d.o.f.} \leq 1 \implies R_M$ scales with τ , and is charachterized by λ_{best}

 NOTE: the overall scale of τ cannot be extracted (R_M scales, or doesn't scale, independently of the value of the overall constant *C*)
 Alberto Accardi
 Jlab, 31 Jan 2006

2) Scaling analysis - example A.A., nucl-th/0604041, PLB in press

2) Results – E_{lab} = 27 GeV A.A., nucl-th/0604041, PLB in press

→ $\lambda(\pi)>0$: Formation-time scaling for pions!

Hadronization starts inside the nucleus!

Alberto Accardi

2) Data vs. theory A.A., nucl-th/0604041, PLB in press

3) p_T – broadening

<p_T²> broadening [Kopeliovich et al., NPA 740(04)211]

- 1) Directly proportional to quark's in-medium path
- 2) Can measure prehadron formation time t^*
- 3) Detect hadronization inside or outside the nucleus

$$\Delta \langle p_T^2(L) \rangle = 2C(s) \int_0^L dz \,\rho_A(z), \quad \text{where:} \quad C(s) = \left. \frac{d\sigma_{\bar{q}q}(r_T, s)}{dr_T^2} \right|_{r_T=0}$$

 \rightarrow Can be cross-checked by the scaling analysis of R_M

Alberto Accardi

Jlab, 31 Jan 2006

dipolo y soct

3) p_T – broadening

→ If prehadron inside nucleus \Rightarrow quark path length varies with z_h , v

 $\rightarrow \Delta p_T$ should:

- 1) rise with v until $\langle t^* \rangle \sim R_A$, then level off
- 2) decrease as $z_h \rightarrow 1$

3) possibly, decrease as Q² increases

Alberto Accardi

3) p_T – broadening

"Model independent" measurement of <l*>=lp [Kopeliovich,Nemchik,Schmidt, hep-ph/0608044]

$$\Delta p_T^2 = \frac{2C z_h^2}{A} \int d^2 b \int_{-\infty}^{\infty} dz \,\rho_A(b,z) \int_{z}^{z+l_p} dz' \,\rho_A(b,z')$$

where

dipole cross-section

$$C(s) = \left. \frac{d\sigma_{\bar{q}q}(r_T, s)}{dr_T^2} \right|_{r_T = 0}$$

 fit *l_p* to data for each nucleus
 determine *C* by minimizing differences of *l_p* among nuclei

Perspectives 1 – mesons

- ***** Why is η as much suppressed as π in Au+Au collision?
 - points towards long lived quark
 - but scaling analysis suggests pions formed on short time scales

★ Is it so also in nDIS? [η is heavier \Rightarrow hadronizes earlier] ★ measurement possible at HERMES, CLAS @ JLAB

Alberto Accardi

Perspectives 2 – baryons

 ★ Is the baryon anomaly in nDIS only for protons? ⇒ measure Λ! (at RHIC R_{dAu} and R_{AuAu} similar for p and Λ)
 ★ possible at HERMES and CLAS @ JLAB

production rate @ CLAS++ 12 GeV (not folded with PID) [W.Brooks, FizikaB13(04)321]

	hadron	c au	mass	flavor	detection	production rate
			(GeV)	content	channel	per 1k DIS events
1. Star 1. Star	p	stable	0.94	ud	direct	1100
	$ar{p}$	stable	0.94	\overline{ud}	direct	3
8	\blacktriangleright Λ	79 mm	1.1	uds	$p\pi^-$	72
	$\Lambda(1520)$	$13 \mathrm{fm}$	1.5	uds	$p\pi^-$	-
100	$\sum +$	24 mm	1.2	us	$p\pi^0$	6
	Σ^0	22 pm	1.2	uds	$\Lambda\gamma$	11
1. The second	Ξ^0	87 mm	1.3	us	$\Lambda \pi^0$	0.6
120	jaan jaan jaan	49 mm	1.3	ds	$\Lambda\pi^-$	0.9

* More in general: clarify baryon production:

- proton anomaly / antiproton normality
- diquark content of nucleons
- baryon transport

Perspectives 3 – heavy quarks

 Heavy-quark energy loss and hadronization of D, B mesons in the spotlight at RHIC
 measure D, B in e+A !

★ At HERMES

Iuminosity is to low for D meson

★ At Jlab 12 GeV

- high luminosity may compensate for low-v and large-x (and PID)
- chances for D meson measurement close to but not zero

★ Needs an Electron-Ion Collider!

Perspectives 4 – eRHIC / ELIC

- ★ Can repeat HERMES / JLAB
- ★ Large v-span: 10 GeV < v < 1600 GeV
 - hadronization inside/outside target
 - test parton energy loss in cold nuke matter
 - test of factorization for FF
 - larger phase space for heavy hadrons
 - jet physics
- ★ Small *x*:

→ heavy quarks \Rightarrow D, B mesons

- J/ ψ "normal suppression"
- "away-side" correlations: hadron-hadron, γ-hadron

Conclusions

* Space-time evolution of hadronization important:

- on its own: understanding of color confinement
- for correct interpretation of hadron suppression in A+A
- \star τ -scaling analysis suggests small formation times for π
 - measures $t^*(\pi) \propto z^{0.6} (1-z) v$
- pT-broadening confirms small t*
 - → measures $t^*(\pi) \propto 7$ fm at v~4 GeV and Q²~1.5 GeV²
- * A new challenge to the energy loss paradigm in A+A?
- * Rich hadronization physics to be studied at
 - HERMES @ DESY
 - CLAS, Hall-A @ JLAB, JLAB12
 - ✤ eRHIC/ELIC
- Enough phenomenology in nDIS: can we address the space-time evolution of hadronization at a more fundamental level?

Energy loss model - realistic geometry \Rightarrow <u>New</u>: Full integration over γ^*q interaction point (b,y) $\frac{1}{N_A^{DIS}} \frac{dN_A^h(z)}{dz} = \frac{1}{\sigma^{lA}} \int d^2b \, dy \, \rho_A(b, y) \int dx \, d\nu \sum_f e_f^2 q_f(x, Q^2) \frac{d\sigma^{lq}}{dx d\nu} \tilde{D}_f^h(z, Q^2; L(b, y))$ exp. cuts Realistic geometry: Woods-Saxon parametrization for A>2 Reid's soft-core for 2D $L(b,y) = 2 \int_{u}^{\infty} dz \, (z-y)\rho(b,z) \, \left(\int_{y}^{\infty} dz \, \rho(b,z) \, \left(= R(b) - y \text{ for Hard-Sphere} \right) \right)$ $\langle \rho \rangle(b,y) = \int_{u}^{\infty} dz \,\rho(b,z) / L(b,y) (= \rho_{HS} \text{ for Hard-Sphere})$ Transport coefficient

 $\langle \hat{q} \rangle (b, y) = \hat{q}_0 \frac{\langle \rho \rangle (b, y)}{\rho(0, 0)}$ where $\hat{q}_0 = \langle \hat{q} \rangle (0, 0)$

with $\hat{q}_0 = 0.5 \text{ GeV}^2/\text{fm}$ - fitted to $e^+ + \text{Kr} \rightarrow \pi^+ + \text{X}$

Alberto Accardi

Results – E_{lab} = 27 GeV

Results – E_{lab} = 12 GeV

pions are still positive! confirms results at 27 GeV

λ_{best}(h+) ~ 0 but λ_{best}(h-) > 0
 proton anomaly hypothesis confirmed!

Alberto Accardi

The energy loss paradigm

Review: Gyulassy, Vitev, Wang, Zhang, nucl-th/0302077 Baier, Dokshitzer, Levai, Mueller, Peigne, Schiff, Wiedemann, Zakharov, ...

Jet tomography: QCD analog of Computed Axial Tomography (CAT)

Computed Axial Tomography

Calibrated x-ray sourcex-ray absorption

Alberto Accardi

Single hadron tomography

- Calibrated hard partons source
- energy loss (gluon bremsstrahlung) computed in pQCD
- properties of the medium

Challenges: baryon anomaly

p+p, p+A: difference in meson and baryon production at medium p_T not understood in pQCD + quark fragment.

• A+A : baryon anomaly persists – h/π ratio increases

Alberto Accardi

Challenges 3: surface emission

Disappearance of the back-to-back jet

Montecarlo simulations [Dainese et al.]

Alberto Accardi

Challenges 3: surface emission

Alberto Accardi

Challenges 3: surface emission

But... Cu+Cu should quench more than Au+Au!

 $(S/V)_{CuCu} < (S/V)_{AuAu}$

N_{part}^{CuCu} (0-3%) ~ 100

 N_{part}^{AuAu} (35-45%) ~ 100

Twist-4 effects: quark rescattering and gluon bremsstrahlung

Gluon radiation from a single scattering (a) and double scattering (b-d) in DIS.

Guo-Wang '00, Wang-Wang '02
 Soft gluon emission

• quark rescattering + induced radiation

 $= 0.006 @ Q^2 = 3 GeV^2$ fitted to HERM

0.013 @ Q² =40 GeV² fitted to DY

Result <u>effectively</u> approximated

by:

$$\widetilde{D}_{a \to h}(z) \approx \frac{1}{1 - \Delta z} D_{a \to h} \left(\frac{z}{1 - \Delta z} \right)$$

 $\Delta z_{\perp V}$

(d)

Where

(c)

$$V_{\rm ang} = 0.6 \langle \boldsymbol{z_g} \rangle \propto A^{2/3} \alpha_s^2(Q^2) \widetilde{C}(Q^2) \frac{1}{\nu} \ln\left(\frac{m_N \nu}{Q^2}\right)$$

An absorption+transport model for Au+Au Falter et al., PRC 70(04)054609

★ Formation times: $t_* = 0$ fm and $t_h = (E_h/m_h) \tau_F$ with $\tau_F = 0.5$ fm

Cross sections: leading h: $\sigma_* = 1/2 \sigma_h$ (mesons) 1/3 σ_h (barions)

subleading h: $\sigma_* = 0$ mbarn

★ Final state X

- by PYTHIA and FRITJOF
- Fermi motion, Pauli blocking, shadowing
- evolved by BUU transport equations

Definition of "Transverse Momentum Broading"

Will Brooks, JLAB user's group workshop, 13 June 2006

p_T broadening: "A" dependence, large v, mid-z, π^+

1<Q²<2 3<ν<4 0.500000<Z_π<0.600000 | π

Will Brooks, JLAB user's group workshop, 13 June 2006