Higher twist E-loss, in medium evolution and the EIC or What do nuclei look like to a microscopic colored probe

> Abhijit Majumder The Ohio-State University

Workshop on nuclear chromodynamics at a future EIC, Argonne National Lab, April 2010

THE QUESTION:

Electron scattering gives the charge density or quark density inside a nucleon

What does the gluon density look like ?

J. Arrington, G. Miller

How confined are low-x gluons (fluctuations)?

Are there other long range correlations in nuclei ?

How does this change with resolution ?

Need a colored probe !

A second order probe! DIS with a hard jet in the final state

Note: the produced jet (not the photon) is the probe Lack of precise control on parameters as in regular DIS!

In order to study this with pQCD: the jet scale (virtuality) has to be hard on entry and exit

Why an EIC, or why a Large scale ? allows for a factorized approach

Philosophy of calculations

1) Calculate the effect of gluon interactions on basic, yet unobservable processes

2) Use these to construct more complicated observable processes

3) Quantify the effect in a handful of transport coeffs.4) Relax assumptions on gluon distribution and repeat

1) single parton without radiation a) transverse broadening

$$P_{0}^{\prime}$$

$$P_{0$$

Assuming independent scattering off nucleons gives a diff. equation

 $p^+ = \frac{p^0 + p_z}{\sqrt{2}}$

 $p^- = \frac{p^\circ - p_z}{\sqrt{2}}$

 $\hat{q} = \frac{p_{\perp}^2}{L^-} = \frac{4\pi^2 \alpha_S C_R}{N_c^2 - 1} \int \frac{dy^-}{2\pi} \frac{d^2 y_{\perp} d^2 k_{\perp}}{(2\pi)^2} e^{-i\left(\frac{k_{\perp}^2}{2q^-}y^- - k_{\perp} \cdot y_{\perp}\right)}$ $\times \quad \langle F^{\mu\alpha} v_{\alpha}(y^{-}, y_{\perp}) F^{\beta}_{\mu}(0) v_{\beta} \rangle$

b) Longitudinal drag and diffusion

A close to on shell parton has a 3-D distribution

$$p^+ = \frac{p_\perp^2}{2p^-}$$

$$f(\vec{p}) \equiv \delta^2(p_\perp^2)\delta(p^- - q^- + k^-)$$

Using the same analysis, we get a drag. and diff. term

$$\frac{\partial f(p^-, L^-)}{\partial L^-} = c_1 \frac{\partial f}{\partial p^-} + c_2 \frac{\partial^2 f}{\partial^2 l^-}$$

c1 is dE/dL, calculate in a deconfined quasi-particle medium.

There are a 4 medium properties which modify the parton $\hat{q}, \hat{e} = dE/dL$ and $\hat{f} = dN/dL$

$$D\left(\frac{\vec{p}_{h}}{|\vec{p}+\vec{k}_{\perp}|}, m_{J}^{2}\right) \quad \hat{q} = \frac{\langle p_{T}^{2} \rangle_{L}}{L} \quad \text{Transverse momentum diffusion rate}$$

$$\int \left(\frac{p_{h}}{p-k}, m_{J}^{2}\right) \quad \hat{q} = \frac{\langle \Delta E \rangle_{L}}{L} \quad \text{Elastic energy loss rate}$$

$$\int \left(\frac{p_{h}}{p-k}, m_{J}^{2}\right) \quad \hat{q} = \frac{\langle \Delta E \rangle_{L}}{L} \quad \text{Elastic energy loss rate}$$

$$\int D_{g}\left(\frac{p_{h}}{p+k}, m_{J}^{2}\right) \quad \hat{f} = \frac{\langle \Delta N \rangle_{L}}{L} \quad \text{Flavor (q <-> g)}$$

$$\int diffusion rate$$

$$\longrightarrow \int \frac{d l_{\perp}^2}{l_{\perp}^2} \int \frac{d y}{p_h} P(y) M(\vec{r}, y, l_{\perp}) D\left(\frac{p_h}{p y}\right)$$

couple the effect of these transport coeffs. with parton splitting

The number and form of the coeffs. is based on the short distance correlation approximation

All four gluons from one nucleon: prop. to L Two in one nucleon, two in another: prop. to L² 2 n gluon expectation ---> n X 2 gluon expectation What happens if low x gluons fluctuate over nucleons

Combine basic processes to calculate single gluon emission

For D(z), integrate over broadening, expand in $1/l_{\perp}^2$

$$\sim C_A^m \int dy \frac{dl_\perp^2}{l_\perp^2} P(y) \int d\zeta^- \frac{2\hat{q}(\zeta^-)}{l_\perp^2} \left[2 - 2\cos\left(\frac{l_\perp^2}{2q^-}\zeta^-\right) \right]$$

$$-\left(\frac{C_A}{2}\right)^s \int dy \frac{dl_\perp^2}{l_\perp^2} y P(y) \int d\zeta^- \frac{\hat{q}(\zeta^-)}{2l_\perp^2} \left[2 - 2\cos\left(\frac{l_\perp^2}{2q^-}\zeta^-\right)\right]$$

$$\sim -\left(C_F\right)^p \int dy \frac{dl_\perp^2}{l_\perp^2} y^2 P(y) \int d\zeta^- \frac{\hat{q}_Q(\zeta^-)}{l_\perp^2} \left[2 - 2\cos\left(\frac{l_\perp^2}{2q^-}\zeta^-\right)\right]$$

Need to repeat the kernel

What is the relation between subsequent radiations ?

To have unquestionable pQCD control need large Q²

In the large Q² we can argue that there should be ordering of l_T . $l_\perp^1 \gg l_\perp^2$

The same statement in a plot

Virtuality is like l_{\perp}^2 , At leading log, CS goes as dl_{\perp}^2/l_{\perp}^2 Integrating over this yields a $\log(\mu_1^2/\mu_2^2)$ Multiple emissions will yield large logs if strongly ordered

This CS is slightly modified in the medium Include the largest correction from the medium $d\sigma = Log + \# L$,

If form is not too different, then sum with DGLAP

Testing all this for the single frag. func. nuclear p. d. f. = A X nucleon p. d. f. Assuming we can construct the ratio of the frag. funcs. Data from HERMES at DESY 0.8Three different nuclei $D^{V}_{A}(z)/D(z)$ one $\hat{q} = 0.08 \text{GeV}^2/\text{fm}$ Fit one data point in Ne 0.8 everything else is prediction 0.6 1 emission eading parton evolution 0.4 $Q^2 = 3GeV^2$, v = 16-20 GeV0.2 0.8 0.4 0.6 \mathbf{Z}

The v and Q^2 dependence

Many approximations made!

 $\tilde{D}(z,Q^2,\nu) \bigg| \stackrel{\zeta_f}{\longrightarrow} \to \tilde{D}(z,Q^2,\nu) \bigg|$ ζ_f

Dihadrons, yet another test of the formalism

Works in DIS with no additional parameters

Works in HIC with no additional parameters

Requires the same non-pert. input a dihadron fragmentation func.

Relaxing the assumptions on the gluon correlation consider photon Brem.

This is basically a gluon GPD

It does not yet involve color correlations over several nucleons

only momentum correlations

Turning all this into a Monte-Carlo not so trivial

A Monte-Carlo tracks the momenta of each of the partons

Need to use calculated double differential distribution

$$\frac{d\sigma}{dl_{\perp}^{2}dl_{q\perp}^{2}} \propto \int \frac{dyd^{2}l_{\perp}d^{2}l_{q\perp}}{2\pi^{2}} \frac{\alpha_{s}C_{F}P(y)}{l_{\perp}^{2}y} \int_{0}^{L^{-}} d\zeta^{-}D(\zeta^{-}) \left\{2 - 2\cos\left(p^{+}x_{L}\zeta^{-}\right)\right\} \left[\left(\frac{4 - 2\vec{l}_{\perp} \cdot \nabla_{l_{q\perp}}}{l_{\perp}^{2}}\right) \frac{e^{-\frac{l_{q\perp}^{2}}{4f\,dy-D(y^{-})}}}{4\pi\int dy^{-}D(y^{-})} + \nabla_{l_{q\perp}}^{2}\frac{e^{-\frac{l_{q\perp}^{2}}{4f\,dy-D(y^{-})}}}{4\pi\int dy^{-}D(y^{-})} - \left(\int_{\zeta^{-}}^{L^{-}} dy^{-}D(y^{-})\right) \left\{\frac{2\vec{l}_{\perp} \cdot \nabla_{l_{q\perp}}\nabla_{l_{q\perp}}^{2} - 4\nabla_{l_{q\perp}}^{2}}{l_{\perp}^{2}}\right\} \frac{e^{-\frac{l_{q\perp}^{2}}{4f\,dy-D(y^{-})}}}{4\pi\int dy^{-}D(y^{-})} \left[\cdot\right] \left(95$$

 $l_{q\perp}$ is the off-set from the quark and gluon momenta being equal and opposite

Integrating out the $l_{q\perp}$

$$\frac{d\sigma}{dl_{\perp}^2} \sim C_A^m \int dy \frac{dl_{\perp}^2}{l_{\perp}^2} P(y) \int d\zeta^- \frac{2\hat{q}(\zeta^-)}{l_{\perp}^2} \left[2 - 2\cos\left(\frac{l_{\perp}^2}{2q^-}\zeta^-\right)\right]$$

Conclusions: what is missing ?

1) The scale evolution of the transport coefficients

2) Incorporation of elastic loss and diffusion (just done!)

3) A complete NLO calculation to estimate the error

4) Extension to Monte-Carlo simulations (underway!)

6) Going beyond the lowest order and diagonal coeffs.

7) Making more general transport coefficients for multi-gluon correlations

Back up

What is "higher twist"?

A knitting technique ?

A technical term referring to the inclusion of multiple scattering effects on Hard processes

 $F^{\mu\nu}v_{\nu}F^{\alpha}_{\mu}v_{\alpha}$

Involves the Lorentz force²

Twist t = d - s = 2

Possibility of setting up a rigorous theory at some large Q, compare directly with experiment no fudge!

Virtuality of photon: $Q \gg l_{\perp} \leqslant m_{J}$ Virtuality of jet,

Radiated gluon momentum: $\left[\frac{l_{\perp}^2}{2 q^- y}, yq^-, l_{\perp} \right]$ Soft medium $\lambda_{QCD} \ll k_{\perp} \ll l_{\perp}$ However! $A^{\frac{1}{3}}k_{\perp} \leqslant l_{\perp}$ gluons $\frac{1}{3}$ $L \sim A^3$ A, atomic number of the nucleus,

The single gluon emission kernel

Calculate 1 gluon emission with quark & gluon N-scattering with transverse broadening and elastic loss built in Finally solved analytically, in large Q² limit.