#### **Overview of JLab hadronization data**



Overview of JLab hadronization data, T.Mineeva



#### Means to study parton propagation and fragmentation



Parton Propagation and Fragmentation in QCD Matter, A.<u>Accardi</u>, F.<u>Arleo</u>, <u>W.K. Brooks</u>, <u>D. D'Enterria</u>, <u>V.Muccifora</u> <u>arXiv:0907.3534v1</u> [nucl-th]

2

#### Means to study parton propagation and fragmentation



Parton Propagation and Fragmentation in QCD Matter, A.<u>Accardi</u>, F.<u>Arleo</u>, <u>W.K. Brooks</u>, <u>D. D'Enterria</u>, <u>V.Muccifora</u> <u>arXiv:0907.3534v1</u> [nucl-th]

### Physical picture of hadronization in DIS





Overview of JLab hadronization data, T.Mineeva



### Physical picture of hadronization in DIS





Overview of JLab hadronization data, T.Mineeva



### Physical picture of hadronization in DIS



Production time  $\tau_p$  - effective lifetime of the quasi-free quark . Formation time  ${}^{h}\tau_{f}$  - time required to form full sized hadron.



Overview of JLab hadronization data, T.Mineeva



### SIDIS



 $Q^{2} = -q^{2}$ v = E - E' $z = E_{h}/v$ 

four-momentum transferred by the electron;

energy transferred by the electron, = Initial energy of struck quark;

fraction of the struck quark's initial energy that is carried by hadron;

**p**<sub>T</sub>

hadron momentum transverse to virtual photon direction;



Overview of JLab hadronization data, T.Mineeva



### Observable (I)



$$\Delta p_T^2 = z_h^2 \Delta k_T^2$$



Overview of JLab hadronization data, T.Mineeva



### Observable (I)



How long a quark can remain deconfined?  $T_p$  from the shape and magnitude of  $\Delta p T^2 vs A$ 

Overview of JLab hadronization data, T.Mineeva



Thursday, April 8, 2010

Jefferson Lab

### Observable (2)

#### Hadronic multiplicity ratio

$$\left[ R_{A}^{h} \left( \nu, Q^{2}, z, p_{T}, \phi \right) = \frac{\frac{N_{h}(\nu, Q^{2}, z, p_{T}, \phi)}{N_{e}(\nu, Q^{2})|_{\text{DIS}}} \Big|_{A}}{\frac{N_{h}(\nu, Q^{2}, z, p_{T}, \phi)}{N_{e}(\nu, Q^{2})|_{\text{DIS}}} \Big|_{D}} \right]$$



Overview of JLab hadronization data, T.Mineeva



### Observable (2)

#### Hadronic multiplicity ratio

$$\left( R_{A}^{h} \left( \nu, Q^{2}, z, p_{T}, \phi \right) = \frac{\frac{N_{h}(\nu, Q^{2}, z, p_{T}, \phi)}{N_{e}(\nu, Q^{2})|_{\text{DIS}}} \Big|_{A}}{\frac{N_{h}(\nu, Q^{2}, z, p_{T}, \phi)}{N_{e}(\nu, Q^{2})|_{\text{DIS}}} \Big|_{D}} \right)$$

#### How long it takes to form full hadronic wave function?

#### $^{h}T_{f}$ via $R_{h}(Q^{2}, U, p_{T}, Z_{h})$



Overview of JLab hadronization data, T.Mineeva





# Experiment

CLAS EG2



Overview of JLab hadronization data, T.Mineeva





Thursday, April 8, 2010

5, 2010

## Comparison of CLAS/JLab and HERMES/DESY



Overview of JLab hadronization data, T.Mineeva



## Comparison of CLAS/JLab and HERMES/DESY

#### - Beam energy 5.0 (JLab) vs 27.6 GeV (DESY)

v>2 GeV vs v > 7 GeV particle identification 0.3<P<5 vs 2.5<P<15 GeV HERMES can detect more particles species

#### -Solid target in CLAS vs gas targets in HERMES

Heaviest target <sup>207</sup>Pb vs <sup>131</sup>Xe

#### -Luminosity in CLAS is 100 times greater than HERMES Access to 3(4) differential binning vs 1(2). CLAS has good statistics at high $Q^2$ and $p_T^2$ , access to more particle species

Results from HERMES and JLAB agree and compliment each other.



Overview of JLab hadronization data, T.Mineeva



#### CLAS EG2 statistics

$$\sum_{\text{events}} \approx 5B \Rightarrow \sum_{e} \approx 130M$$

| π+                          | 6.60M |
|-----------------------------|-------|
| π-                          | 2.85M |
| π <sup>0</sup>              | 2.05M |
| K <sub>s</sub> <sup>0</sup> | 32K   |
| η                           | 300K  |

#### Sufficient statistics to analyze more channels..



Overview of JLab hadronization data, T.Mineeva



# Transverse momentum broadening



Overview of JLab hadronization data, T.Mineeva



#### Transverse momentum



### Transverse momentum broadening(2)



W.Brooks, H.Hakobyan arxiv.0907.4606



Overview of JLab hadronization data, T.Mineeva



#### Transverse momentum broadening(2)

α

 $\Delta p_T$  vs v



V



Overview of JLab hadronization data, T.Mineeva



### Transverse momentum broadening(3)



# Hadron attenuation



Overview of JLab hadronization data, T.Mineeva







Overview of JLab hadronization data, T.Mineeva



 $R_h vs z$ 





Overview of JLab hadronization data, T.Mineeva



 $R_h vs z$ 





Overview of JLab hadronization data, T.Mineeva



 $R_h vs z$ 





Overview of JLab hadronization data, T.Mineeva





Overview of JLab hadronization data, T.Mineeva



Thursday, April 8, 2010

Jefferson Lab





Cronin effect in 0.4<z<0.7





Overview of JLab hadronization data, T.Mineeva









# EIC offers Elab= 100-2000 GeV, 10<v<1600 GeV .long parton live time -> high dpt hadron formation outside of nuclear medium





Overview of JLab hadronization data, T.Mineeva



### $\Delta p_T$ observables (1)

#### -Quark energy loss

attenuation is suppressed, pure energy loss heavy quark energy loss (D,B)



Overview of JLab hadronization data, T.Mineeva



### $\Delta p_T$ observables (1)

#### -Quark energy loss

attenuation is suppressed, pure energy loss heavy quark energy loss (D,B)

- Quark-gluon correlation function X.Guo, J.Qiu Phys Rev D vol61 096003

$$T^{A}_{qF}(x,Q^2) = \lambda^2 A^{1/3} q^A(x,Q^2)$$

 $\Delta \langle l_T^2 \rangle_{1/3}$ 

$$= \frac{4\pi^2 \alpha_s(Q^2)}{3} A^{1/3} \lambda^2 \frac{\sum_q e_q^2 q^A(x_B, Q^2) D_{q \to \pi}(2, z_{\min})}{\sum_q e_q^2 q^A(x_B, Q^2)}.$$



Overview of JLab hadronization data, T.Mineeva



#### $\Delta p_T$ observables(2) [Accardi et al., NPA 761(05)67]

## -Medium modification of DGLAP A.Accardi *et al* arvix 0808.0656





Overview of JLab hadronization data, T.Mineeva



 $\Delta p_T$  observables(2) [Accardi et al., NPA 761(05)67]

-Medium modification of DGLAP A.Accardi *et al* arvix 0808.0656



- Quark and gluon saturation B.Z Kopeliovich arxiv.1001.4281v1

 $Q_{qA}^2(b,E) = \Delta p_T^2(b,E),$ 

$$Q_{qA}^{2}(b, E) = 2C_{q}(E, r_{T} = 1/Q_{qA})T_{A}(b).$$
  
$$\Delta p_{T}^{2} = 2T_{A}(b) \left. \frac{d\sigma_{\bar{q}q}^{N}(r_{T})}{dr_{T}^{2}} \right|_{r_{T}=0} = 2T_{A}(b)C_{q}(E, r_{T} = 0).$$

Overview of JLab hadronization data, T.Mineeva



Thursday, April 8, 2010

Jefferson Lab

#### Summary

Extraction of  $\Delta p T^2$  (Q<sub>2</sub>, U, A) and  $R_h(Q_2, U, p_T, z_h)$  from JLab data provides an access to the characteristic time scales of fragmentation and hadronization distances.

Prospectives in the EIC can encompass study of pure partonic energy loss, quark gluon saturation, nuclear modification function, quark gluon correlation, and many more ...



Overview of JLab hadronization data, T.Mineeva





Overview of JLab hadronization data, T.Mineeva





#### N.Armesto hard probes summer school Torino 2005



Overview of JLab hadronization data, T.Mineeva



Multiplicity ratio observables:

- broadening in R for mesons vs baryons (nuclear modification of baryons vs mesons)



Overview of JLab hadronization data, T.Mineeva



#### Transverse momentum broadening





Overview of JLab hadronization data, T.Mineeva



#### z-scaling of $\Delta p_T^2$





Overview of JLab hadronization data, T.Mineeva

