
Probing the transverse spin of quarks
in deep inelastic scattering

Alessandro Bacchetta





Probing the transverse spin of quarks
in deep inelastic scattering



Front cover:The Hermetic Truth of Hadronsby Anders Sandberg, inspired by M.C. Escher’s last
drawing,Snakes(1969). Printed with the permission of the author.

The work described in this thesis is part of the research programme of theStichting voor Funda-
menteel Onderzoek der Materie(FOM), which is financially supported by theNederlandse Orga-
nisatie voor Wetenschappelijk Onderzoek(NWO).



VRIJE UNIVERSITEIT

Probing the transverse spin of quarks
in deep inelastic scattering

ACADEMISCH PROEFSCHRIFT

ter verkrijging van de graad van doctor aan
de Vrije Universiteit Amsterdam,
op gezag van de rector magnificus

prof.dr. T. Sminia,
in het openbaar te verdedigen

ten overstaan van de promotiecommissie
van de faculteit der Exacte Wetenschappen

op vrijdag 4 oktober 2002 om 15.45 uur
in het auditorium van de universiteit,

De Boelelaan 1105

door

Alessandro Bacchetta

geboren te Borgosesia, Italië
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Notations and conventions
All cultural products contain a mixture
of two elements: conventions and inven-
tions.

J. G. Cawelti

The conventions will mainly follow the book of Peskin and Schroeder [147]. We use the metric
tensor

gµν =


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

 ,
with Greek indices running over 0,1,2,3. Repeated indices are summed in all cases. Light italic
roman type will be used for four-vectors, while boldface italic will be used for three-vectors.

Light-cone vectors

Light-cone vectors will be indicated as

aµ =
[
a−, a+, aT

]
=

[
a0 − a3

√
2

,
a0 + a3

√
2

, a1, a2

]
.

The dot-product in light-cone components is

a · b = a+b− + b−a+ − aT · bT

= a+b− + b−a+ − aibi

= a+b− + b−a+ − axbx − ayby

The two-dimensional transverse parts of the vectors will be written in boldface with an indexT
and Latin indices will be used to denote the two transverse components only. Note that

aT = (ax, ay), aµT = [0, 0, aT ], aTµ = [0, 0, −aT ].



vi Notations and conventions

We introduce the projector on the transverse subspace

gµνT =


0 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 0

 ,
We define the antisymmetric tensor so that

ε0123 = +1, ε0123 = −1.

and we define the transverse part of the antisymmetric tensor as

ε
µν
T = ε−+µν = ε03µν.

Dirac matrices

Dirac matrices will be often expressed in the chiral or Weyl representation, i.e.

γ0 =

(
0 1
1 0

)
, γi =

(
0 −σi

σi 0

)
, γ5 =

(
1 0
0 −1

)
,

and we will make use of the Dirac structure

σµν ≡ i
2

[
γµ, γν

]
.



1
Introduction

The most difficult part of a trip is to
cross the doorway.

P. Terentius Varro

In this thesis I will discuss three different ways to observe the transverse spin of quarks inside
the nucleons. Before embarking on such an undertaking, I would like to spend a few pages on
explaining what makes this problem so interesting to justify investing years of research on it. This
introduction is meant especially for nonexperts, since I will review notions well known to the
experts in the field.

1.1 The structure of matter

When we talk aboutquarksinsidenucleonswe are referring to the best paradigm we currently have
to describe theelementarystructure of matter. The comprehension of this elementary structure is
a question that has allured philosophers and scientists since the historical origins of philosophical
thought. It is striking to observe that as early as six hundred years BC, Greek philosophers were
already wondering: are there fundamental elements in nature, what are they and how do they
interact? Today, after more than two millennia, we learned a lot about the structure of matter, but
some of the most important questions still elude our comprehension. We are still engaged in one
of the oldest quests of human mind.

Since 1803, when Dalton suggested his atomic hypothesis [85], we have gradually realized
that almost all matter on earth is made up of atoms. Atoms contain electrons – identified for
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the first time by J. J. Thomson in 1897 [166, 167] – and nuclei – introduced for the first time
by E. Rutherford in 1911 [98, 153]. The efforts to explain precisely the structure of atoms and
the electromagnetic interaction binding together electrons and nuclei lead to two of the major
achievements of physics in the last century: Quantum Mechanics and Quantum Electrodynamics
(QED).

In the meantime, more investigations were carried out to grasp the structure of the nucleus
inside atoms. The smallest known nucleus was identified with a single particle [154], theproton,
while a second constituent of heavier nuclei, theneutron, was eventually observed by J. Chad-
wick [75]. Since they are the constituents of the nucleus, protons and neutrons are referred to as
nucleons. They are kept together by the nuclear force, of which at the moment we have only an
incomplete understanding.

Although the electrons are responsible for the chemical properties of atoms, they account for a
very small fraction of the mass of the atom. The mass of an electron is about 0.511 MeV, while the
mass of a proton is about 938 MeV. Therefore, nucleons make up for more than 99.9% of ordinary
atomic matter. If we want to understand matter, we cannot set aside the problem of explaining the
structure of nucleons. Nucleons belong to the more general class ofhadrons, of which they are
the most abundant specimen. At first, hadrons were classified aselementary particles, i.e. without
any internal substructure. Very soon this appeared to be an unsatisfactory hypothesis, in particular
since there are so many of them (several dozens). Nowadays, the study of the structure of hadrons
represents a field of research on its own, often designated with the name ofhadronic physics. An
up-to-date review of the field can be found in Refs. 48 and 74.

1.2 Hadrons and deep inelastic scattering

To interpret the information available on the properties of hadrons in 1964, M. Gell-Mann [99]
and G. Zweig [172] independently suggested that hadrons are composed of smaller constituents,
the quarks, having spin 1/2, a fractional electric charge and a new degree of freedom, called
flavor. This model is often referred to asconstituent quark model. Gell-Mann himself seemed
not to believe in the existence of quarks as real entities, but rather regarded them as convenient
concepts [99]. One of the reasons to be skeptical about the real existence of quarks was that they
have a charge that is just a fraction of the electron charge, while the charge of all other elementary
particles is an integer multiple of that.

The quark model aimed at describing the mass, charge and spin of the hadrons. For instance,
the proton has a mass of about 1 GeV, a charge+e (the same as the electron, but with opposite
sign) and spin equal to 1/2. According to the model, a proton with its spin, for instance, in the up
direction is made of two quarks with flavorup and charge 2e/3 plus one quark with flavordown
and charge−e/3. Two of the quarks have spin 1/2 in the up direction and one has spin 1/2 in the
down direction. Each of the three quarks carries about one-third of the mass of the proton.

Looking at the “extrinsic” properties of hadrons – like their mass, charge and spin – was not
enough to unravel the details of their structure. To glance at the inside of hadrons, physicists
resorted todeep inelastic scattering(DIS) experiments, as in the pioneering experiments led by
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Friedman, Kendall and Taylor at the Stanford Linear Accelerator Center (SLAC) [49, 66]. In scat-
tering experiments, a focused beam of particles is dispersed by the interaction with a target. The
way this dispersion takes place yields information on the structure of the target. For instance, the
existence of the nucleus was suggested by Rutherford as an explanation to the scattering experi-
ments of Geiger and Marsden [98].

Basically, particle accelerators as the one at SLAC are exploited as microscopes of extremely
high resolution. The experiments at SLAC scattered electrons off hydrogen. The interaction pro-
ceeds via the exchange of a virtual photon with high energy and momentum. A measure of the
resolution of the experiment is given by the four-momentum squared of the virtual photon,Q2, or
rather by the associated wavelength}/Q. The SLAC experiments reached a maximumQ2 of 7.4
GeV2, corresponding to a resolution of the order of 1/10 of the proton size.

The results of the SLAC experiments indicated that the scattering data did not exhibit a (strong)
dependence onQ2. They depended rather on the variable that was later to be namedx-Bjorken,xB,
in honor of J. Bjorken.1 This property, calledscaling, was predicted by Bjorken himself [46] and
explained by R. Feynman [47, 95], who introduced theparton model: the proton was pictured to
be a collection of almostfreepoint-like constituents off which the electrons scatter incoherently.
The constituents of the proton were initially calledpartons, but it soon became clear that they had
a lot in common with the quarks of Gell-Mann and Zweig.

Feynman’s partons have spin 1/2, fractional electric charge and flavor, but they have a very
small mass compared to Gell-Mann’s quarks, a few MeV against about 300 MeV. Consequently,
we call themcurrentquarks, to distinguish them from theconstituentquarks of the quark model.
But this is not the only difference between the two models. In the constituent quark model, the
proton is made up just of three quarks, while in the parton model it turns out that there is a huge
number of quark-antiquark pairs, together with a huge number of electrically neutral particles, later
to be identified asgluons.

Deep inelastic scattering experiments are performed in some of the world’s largest experimen-
tal facilities for high energy physics, such as CERN, SLAC, DESY, BNL. They usually employ
beams of electrons, positrons, muons or, more rarely, neutrinos. They scatter off different kinds
of fixed targets or off a beam of protons, and they operate at different energies and kinematic
coverage.

1.3 Quantum Chromodynamics and confinement

The parton model raised a profound question. We experience that matter, at least in the normal
conditions on earth, is composed of hadrons – it is the so-calledhadronic matter. If quarks are
the hypothetical constituents of hadrons, they must be bound extremely tight to explain why we
have never directly observed a single isolated quark, nor a different state of matter other than
hadronic. This essential feature of quark dynamics is known asconfinement. Yet, deep inelastic
scattering suggests that in the interaction with a high-Q2 virtual photon, quarks behave as if they

1We will properly definexB in Chap. 2.
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Figure 1.1. The running of the electromagnetic coupling constant. The gray area roughly indicates where
perturbation theory is not trustworthy anymore. Note thehugescales necessary to achieve a appreciable
increase of the coupling.

were essentially free. This property is known asasymptotic freedom. The question is then: how is it
possible to devise a theory to reconcile these two opposing properties, confinement and asymptotic
freedom?

A first attempt to implement confinement was done by postulating that quarks have a color
charge and that all detectable objects have to be colorless (cf. Refs. 142,143 and references therein).
By virtue of this assumption, it is impossible to see an isolated, colored quark. On the other hand,
such a point of view is not suited to describe asymptotic freedom. There was the need of a theory
that could describe the binding of colored quarks as a dynamical mechanism.

To shape a new theory of color interactions, it seemed natural to follow the example of Quantum
Electrodynamics, the quantum field theory of electromagnetic interactions. QED is in essence a
perturbativetheory, which works because electromagnetic interactions are weak. In fact, electrons
can be separated quite easily from atoms and observed as free particles. A measure of the strength
of the electromagnetic interaction is given by the value of the electromagnetic coupling constant
α ≈ 1/137. From renormalization of QED, it is known that in realityα is not constant, but it has to
increase as the momentum exchange of the interaction increases, or equivalently as the interaction
takes place over shorter distances. However, the increase of the coupling is so weak (e.g.α ≈ 1/135
at Q2 = 1000 GeV2) that perturbative QED works brilliantly for any electrodynamics experiment
we might do. Fig. 1.1 shows approximately the way the electromagnetic coupling constant changes
with Q2.

A breakthrough in the comprehension of quark interactions came in 1973, when D. Gross and
F. Wilczek [101, 102] and D. Politzer [149] showed thatnon-Abelianquantum field theories can
display the crucial properties of asymptotic freedom, i.e. the interaction they describe is weak
at high momentum transfer (or long distances). This discovery prompted the birth of Quantum
Chromodynamics (QCD), a non-Abelian field theory of color interactions.

The difference between QED and QCD can be likened to the difference between the attraction
forces of two opposite magnetic poles and of two ends of a spring. In the first case, we know that
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Figure 1.2. The running of the strong coupling constant. The gray area roughly indicates where perturbation
theory is not trustworthy anymore.

increasing the distance between the magnets, the attraction diminishes, while, in the second case,
separating the two ends the force will increase more and more.

In field theory language, the electromagnetic coupling constant is reduced at large distances due
to the effect of vacuum polarization, which is responsible for ascreeningof the bare electric charge.
On the contrary, the color coupling constant is reduced at short distances because the vacuum
polarization induces anantiscreeningof the charge, or equivalently an enhancement of the charge
at large distances. The reason for this different behavior is thatgluons, the mediator of the color
interaction, carry color charge themselves, while photons, the mediator of the electromagnetic
interaction, are chargeless. Ref. 147 (p. 541) and Ref. 96 (p. 5) present enlightening discussions
on antiscreening and asymptotic freedom.

QCD is able to justify asymptotic freedom, but what about confinement? At the moment, we
know that QCD is not in contradiction with confinement and might in fact explain it, but we are
not able to demonstrate this statement. As in the case of QED, the strength of color interaction is
measured by the strong coupling constantαs, which has a value of about 0.117 atQ2 = 8.3× 103

GeV2. But at lower energy scales, e.g.Q2 ≈ 1 GeV2, the coupling constant grows and becomes
of the order of 1. The running of the strong coupling constant is illustrated in Fig. 1.2. We might
deduce that the increase of the coupling constant is a sign of the onset of confinement. In reality,
we can only conclude that at low energies we enter a regime where perturbation theory cannot be
trusted. Therefore, even if QCD is in principle a consistent theory at any energy scale, we cannot
use standard techniques to draw conclusions about its behavior in the nonperturbative regime. To a
certain extent, we cannot be sure that QCD is the correct theory in this regime: maybe it is simply
an asymptotic approximation of a more profound theory.

In practice, we have to make a distinction between two major branches of QCD: perturbative
and nonperturbative, or short-distance and long-distance. Perturbative QCD is relatively well un-
derstood. It is essentially similar to QED, it is based on Feynman-diagram approach, although it
often requires larger sets of diagrams to attain the desired accuracy. The theory contains pointlike
and almost massless fermions (the so-calledcurrent quarks) and massless bosons to carry their
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Figure 1.3. One of the greatest achievements of perturbative QCD: world data on the Q2 dependence of the
unpolarized structure function F2, compared to theoretical expectations (solid curves) [138].

interactions (the gluons). Probably one of the most important achievements of perturbative QCD
is the study of the way deep inelastic scattering data change withQ2. The striking agreement be-
tween theory and experiments is shown in Fig. 1.3. On the other hand, nonperturbative QCD is
poorly understood and it is a challenging playground for fundamental physics. At the moment,
our understanding of this theory relies on lattice calculations, effective chiral field theories, and
phenomenological models.

We know that nonperturbative QCD should display confinement as a fundamental property,
at least under normal conditions. Lattice calculations already provide strong evidence that the
quark-quark interaction potential increases linearly, and is therefore a confining potential [39].
It is essential to understand from first principles why this occurs, and it is desirable to explore
how it is possible to achieve a deconfined phase of QCD, maybe under extreme conditions (e.g.
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neutron stars). We also know that in QCD chiral symmetry is approximately valid. On the other
hand, the existence of pions, which are nearly massless, suggests that chiral symmetry should be
spontaneously broken, with pions being Goldstone bosons. Nonperturbative QCD should be able
to explain this feature. Nonperturbative QCD should also explain the transition between massless
current quarks and constituent quarks.

Finally and more generally, nonperturbative QCD should lead to a reliable quantitative descrip-
tion of the structure of hadrons and of hadronic phenomena. The question at the heart of hadronic
physics is: what is the structure of hadrons in terms of their quark and gluon constituents? There-
fore, we might define hadronic physics as the branch of physics that deals with understanding
QCD, and in particular nonperturbative QCD.

1.4 Spin physics and the transversity distribution

One of the key questions in understanding the structure of hadrons is: where does the spin of
the nucleons come from? In the constituent quark model, the spin of the quarks adds up to yield
the total spin of the proton. Deep inelastic scattering experiments, however, show the importance
of other contributions, such as the spin of the gluons and the orbital angular momenta of quarks
and gluons. A measure of the quark spin contribution is given by the distribution functiong1,
often denoted as∆q and usually called thehelicity distribution. In a frame of reference where the
hadron is moving with a very large speed (infinite momentum frame) and if the direction of its spin
is longitudinal to its motion, the helicity distribution describes the number of quarks with their
spin aligned with that of the hadron minus the number of quarks with opposite spin, it is therefore
a measure of thelongitudinal spin of the quarks in the hadron. The quark helicity distribution
has been measured with a good precision, as shown in Fig. 1.4 on page 9. Naively, if the spin
of the hadron is entirely due to the quark spin as in the constituent quark model, we expect to
have a net balance of one quark spinning in the direction of the proton and thus accounting for the
whole proton spin. In reality, it turns out that (the integral of) the helicity distribution accounts
for only about 30% of the proton spin! We expect thus that the missing spin is provided by the
gluon spin and by the orbital angular momentum of quarks and gluons. These two quantities have
not been measured yet. Even worse, we don’t know if it is possible to measure the orbital angular
momentum directly [43, 103, 123]. Tab. 1.1 on the following page shows a list of all polarized
deep inelastic scattering experiments, together with their typical energies and the characteristics of
their beams and targets. The kinematic coverage of each experiment is indicated in the table by
its averageQ2 (GeV2) and xB range. ColumnsPB andPT give the average or typical beam and
target polarizations as quoted by each experimental group. The column labeledL is an estimate
of the total nucleon luminosity (# of nucleons/cm2 times # of beam particles/s) in units of 1032

nucleons/cm2/s for each experiment.
So far we talked about the longitudinal spin of the quarks inside the proton, but what about the

transverse spin? The observable we have to take into consideration is thetransversity distribution.
In the infinite momentum frame with the proton spintransverseto the direction of motion, the
transversity distribution describes the number of quarks with their spin aligned with that of the
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Table 1.1. Summary of polarized deep inelastic measurements [97].

Lab Exp. Year Beam 〈Q2〉 xB PB Target PT L

SLAC E80 75 10-16 GeVe− 2 0.1 – 0.5 85% H-butanol 50% 400

E130 80 16-23 GeVe− 5 0.1 – 0.6 81% H-butanol 58% 400

E142 92 19-26 GeVe− 2 0.03 – 0.6 39% 3He 35% 2000

E143 93 10-29 GeVe− 3 0.03 – 0.8 85% NH3 70% 1000

ND3 25% 1000

E154 95 48 GeVe− 5 0.01 – 0.7 82% 3He 38% 3000

E155 97 48 GeVe− 5 0.01 – 0.9 81% NH3 90% 1000

LiD 22% 1000

E155’ 99 30 GeVe− 3 0.02 – 0.9 83% NH3 75% 1000

LiD 22% 1000

CERN EMC 85 100-200 GeVµ+ 11 0.01 – 0.7 79% NH3 78% 0.3

SMC 92 100 GeVµ+ 4.6 0.006 – 0.6 82% D-butanol 35% 0.3

93 190 GeVµ+ 10 0.003 – 0.7 80% H-butanol 86% 0.6

94-95 81% D-butanol 50% 0.6

96 77% NH3 89% 0.6

DESY HERMES 95 28 GeVe+ 2.5 0.02 – 0.6 55% 3He 46% 1

96-97 55% H 88% 0.1

98 28 GeVe− 55% D 85% 0.2

99-00 28 GeVe+ 55% D 85% 0.2

01-? 28 GeVe− 55% H 85%∗ 0.2

CERN COMPASS 01-? 190 GeVµ+ 10 0.005 – 0.6 80% NH3 90% 3

LiD 40% 3

BNL RHIC 02-? 200 GeVp− p ∼ 100 0.05 – 0.6 70% Collider 70% 2

DESY ZEUS/H1 02-? 28× 800 GeVe− p 22 0.00006 – 0.6 50% Collider 0.2

∗ Transversely polarized target
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Figure 1.4. The helicity distribution of the proton, g1 as a function of the fractional momentum x carried by
quarks [9].

hadron minus the number of quarks with opposite spin, it is therefore a measure of thetransverse
spin of the quarks in the hadron. The transversity distribution looks very similar to the helicity
distribution, as at first sight they seem related by rotational symmetry. However, we cannot forget
the fact that the interpretation of helicity and transversity holds true only in the infinite momentum
frame, where the direction of motion of the hadron breaks rotational symmetry.

In the rest frame of the proton, there is a probability to find quark spins aligned with the proton’s
spin. This probability is obviously the same no matter what the spin orientation is. If we now boost
the proton to a large speed in the direction of its spin, the alignment probability will correspond to
the helicity distribution. If we boost the proton in a direction transverse to its spin, the alignment
probability will correspond to the transversity distribution. In a nonrelativistic situation, Galilean
boosts will not affect the spin distribution and we would still expect helicity and transversity to
be equal to each other and to the spin distribution in the rest frame. But in a relativistic context,
Lorentz boosts can affect the spin distribution and can cause helicity and transversity to be different
from each other and from the rest-frame distribution. The way this difference arises depends on
the inner structure of the nucleon.

The transverse spin of quarks is thus another missing piece in the proton spin puzzle. It can
give new information on the dynamics of quarks inside hadrons, complementary to the helicity
distribution. In spite of this, the transversity distribution escaped notice until 1979, when it was
introduced by J. Ralston and D. Soper [151]. In the last decade, it has been evaluated in models [40,
116, 120, 148] and lattice computations [24]. At this point, an experimental measurement will be
needed to put all these calculations on test, but unfortunately the transversity distribution is an
elusive object to measure. Today, looking for a practical way to observe transversity is still an
open problem. Experimental collaborations are planning its measurement at last [73, 83, 105], and
some of them will resort to the methods discussed in this thesis.
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1.5 Outline of the thesis

The goal of the thesis is to discuss three different ways to observe the quark transversity distribution
in deep inelastic scattering.

To start with, in chapter 2 I will review the formalism of deep inelastic scattering. I will
introduce theparton distribution functionsand I will devote a particular attention to the transversity
distribution function. I will discuss totally inclusive DIS, where only the scattered electron is
detected, and I will show that it is not possible to measure the transversity distribution in this kind
of process.

In chapter 3, I will turn the attention to one-particle inclusive DIS, where one of the outgoing
hadrons is detected in coincidence with the scattered electron. I will introducefragmentation
functionsto describe the production of hadronic fragments. In particular, I will demonstrate that
the presence of the transverse momentum of the outgoing hadron allows the introduction of the
Collins fragmentation function. In the cross section of one-particle inclusive DIS, I will show the
occurrence of the product of the transversity distribution and the Collins function. Therefore, this
suggests a first way to observe the transversity distribution of the quarks.

In chapter 4, I will examine the more complex case of two-particle inclusive DIS, where two
of the outgoing hadrons are detected together with the scattered electron. I will discuss how the
presence of the relative transverse momentum between the two hadrons permits the definition of
a new function,H^1 , to be connected to the transversity distribution. In the same chapter, I will
study what happens when we assume that the two hadrons are produced only ins andp waves. In
addition to the usualswave contributions, I will distinguish the purep-wave contributions and the
spinterference contributions. This will lead to the introduction of two new fragmentation functions
that can be observed in connection with the transversity. They are two distinct components of the
functionH^1 and they generate the second and third way I will consider to access the transversity
distribution.

In chapter 5, I will analyze the formalism needed to deal with spin-one hadrons in deep inelastic
scattering. In the first part of the chapter I will focus on spin-one targets, while in the second part
I will study the production of spin-one hadrons in the final states. This process has something in
common with one-particle inclusive DIS (because the production of a single hadron is addressed),
but also with two-particle inclusive DIS (because the spin-one hadron has to decay into two hadrons
to yield information on its polarization). In particular, I will clarify the connection between spin-
one fragmentation functions and the purep-wave sector of the analysis of two-particle production.

The various options described to measure the transversity distribution all involve the class of
T-oddfragmentation functions.2 To attempt some quantitative assessments on the magnitude of T-
odd fragmentation functions, in chapter 6 I will present a model calculation of the Collins function
and of some of the measurable quantities in which it appears.

2In fact, in the thesis I will not deal with the well known case of spin-half production, which involves a T-even
fragmentation function.



2
Distribution functions

and transversity

You have never given me a transverse look.

A. Chekhov

In this chapter, we will introduce the concept of parton distribution functions. In order to do this,
first of all we will review the general formalism of polarized deep inelastic scattering, starting
from the simplest case of inclusive processes. This subject is covered in detail in books (e.g.
Refs. 134, 147, 152), PhD theses (e.g. Refs. 135 and 164) and reports (e.g. Refs. 21 and 41).
Nevertheless, it is useful to examine the formalism from the point of view we will adopt throughout
the remaining chapters. In the analysis of distribution functions, we will include beam and target
polarization and partonic transverse momentum. We will limit the analysis to leading order in 1/Q
and we will only briefly mentionαs corrections.

A particular attention in this chapter and in the rest of the thesis will be reserved to the quark
transversity distribution. The quark transversity distributionh1 [115] – also called transverse spin
distribution [84] – was first introduced by Ralston and Soper [151] and it is an essential compo-
nent in the description of the nucleon spin. It is a chiral-odd object describing the difference of
probabilities to find in a transversely polarized hadron a quark with spin aligned or antialigned
to the spin of the hadron. The transversity distribution has been upstaged for many years by the
helicity distribution,g1, which is easier to measure. However, some experimental collaborations
are planning to measure it in the next years [73, 83, 105], possibly using one of the techniques we
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Figure 2.1. Inclusive deep inelastic scattering.

will outline in the thesis.

2.1 Inclusive deep inelastic scattering

In deep inelastic scattering, an electron scatters off a nucleon via a large momentum transfer, the
nucleon is destroyed and many hadrons are formed as a consequence of the collision. Ininclusive
events, only the scattered electron is detected, while the hadronic final states are unobserved. A
schematic view of the process is provided by Fig. 2.1.

2.1.1 Kinematics

In electron-nucleon scattering, an electron with momentuml scatters off a nucleon with momentum
P, massM and spinS, via the exchange of a virtual photon with momentumq. The electron final
momentum isl′.

We define the invariants

s = (P + l)2, W2 = (P + q)2, Q2 = −q2 = −(l − l′)2, (2.1)

and we introduce the variables

xB =
Q2

2P · q, y =
P · q
P · l . (2.2)

In deep inelastic scattering it is required thatQ2,P ·q� M2. Usually, theBjorken limitis assumed
(Q2,P · q→ ∞, xB fixed). In particular,Q2 represents thehard scaleof the process. In this thesis,
only the leading terms in an expansion in 1/Q will be retained. In agreement with the working
redefinition oftwist proposed by Jaffe, we will very often identify the expression “leading twist”
with the expression “leading order in 1/Q” [119].
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When working in the Bjorken limit, the vectorsP andq can be conveniently parametrized (in
light-cone coordinates) as

Pµ =

[
xBM2

AQ
√

2
,

AQ

xB

√
2
, 0

]
=

[
M2

2P+
, P+, 0

]
, (2.3)

qµ =

[
Q

A
√

2
, −A Q
√

2
, 0

]
=

[
Q2

2xBP+
, −xBP+, 0

]
. (2.4)

This parametrization holds in any frame of reference where the virtual photon direction is antipar-
allel to thezaxis. Any frame fulfilling this requirement will be simply calledcollinear. The param-
eterA specifies uniquely a specific collinear frame of reference. For instance, forA = MxB/Q we
select the nucleon rest frame, whereP is purely timelike, while forA = 1 we select the so-called
infinite momentum frame, whereq is purely spacelike.

In a 1/Q expansion, it turns out that the plus component ofP plays a dominant role. This
statement holds regardless of the value ofA, i.e. in any collinear frame. In the nucleon rest frame
P+ is of the order of 1, while in the infinite momentum frame it is of the order ofQ. However, if
we take for instance the scalar combinationP · q, we see that the componentP+q− is of the order
of Q2, whereasP−q+ is of the order of 1, independently of the frame. Therefore, we can say that
the plus component of the nucleon’s momentum is therelevantor dominantone, although only in
the infinite momentum frame it is truly dominant.

We are going to define a process assoft if the relevant component of all momenta remains
the same. In contrast, in ahard process, such as the interaction with the hard momentumq, the
relevant component has to change. Similarly, when we describe a momentum as soft with respect
to another, we mean that their relevant component is the same.

In the Bjorken limit, the electron and the proton can be considered to be massless, 2P · l ≈ s
andQ2 = s xB y. The lepton momenta can be parametrized as

lµ =

 Q

Ay
√

2
,

A (1− y)Q

y
√

2
,

√
1− y

y
, 0

 , (2.5a)

l′µ =

 (1− y)Q

Ay
√

2
,

AQ

y
√

2
,

√
1− y

y
, 0

 . (2.5b)

This parametrization implies that we chose they axis of our system as pointing in the direction of
the vector product (−q× l′). Normally, transverse vectors and azimuthal angles will be defined as
lying on a plane perpendicular to the direction of the virtual photon (see Fig. 2.2 on the following
page).

2.1.2 The hadronic tensor

The cross section for polarized electron-nucleon scattering can be written in a general way as the
contraction between a leptonic and a hadronic tensor

d3σ

d xB dy dφS
=

α2

2 s xB Q2
Lµν(l, l

′, λe) 2MWµν(q,P,S), (2.6)
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Figure 2.2. Description of the vectors involved in totally inclusive deep inelastic scattering and of the
azimuthal angleφS.

where the vectorS denotes the spin of the nucleon andφS its azimuthal angle,λe denotes the
helicity of the electrons andα = e2/4π. Fig. 2.2 illustrates the definition of the scattering plane,
thez axis of our collinear frame and the azimuthal angleφS.

Considering the lepton to be longitudinally polarized, in the massless limit the leptonic tensor
is given by [141]

Lµν =
∑
λ′e

(
ū̄ (l′, λ′e) γµ u(l, λe)

)∗ (
ū̄ (l′, λ′e) γν u(l, λe)

)
= −Q2gµν + 2

(
lµl
′
ν + l′µlν

)
+ 2i λe εµνρσ lρl′σ.

(2.7)

The leptonic tensor contains all the information on the leptonic probe, which can be described
by means of perturbative QED, while the information on the hadronic target is contained in the
hadronic tensor

2MWµν(q,P,S) =
1
2π

∑
X

∫
d3PX

(2π)3 2P0
X

(2π)4 δ(4)
(
q + P− PX

)
Hµν(P,S,PX), (2.8)

Hµν(P,S,PX) =
〈
P,S Jµ(0) X〉〈X Jν(0) P,S

〉
. (2.9)

The stateX symbolizes any final state, with total momentumPX. It is integrated over since in
inclusive processes the final state goes undetected. By Fourier transforming the delta function and
translating one of the current operators, we can rewrite the hadronic tensor as

2MWµν(q,P,S) =
1
2π

∫
d4ξ eiq·ξ 〈

P,S Jµ(ξ) Jν(0) P,S
〉
. (2.10)
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In general, the structure of the hadronic tensor cannot be specified further, because this would
require an understanding of its inner dynamics. At most, it can be parametrized in terms ofstruc-
ture functions. However, the phenomenology of DIS taught us that at sufficiently highQ2 we can
assume that the scattering of the electron takes place off a quark of massm inside the nucleon.
The final stateX can be split in a quark with momentumk plus a stateX with momentumPX.
Considering the electron-quark interaction at tree level only, the hadronic tensor can be written as

2MWµν(q,P,S) =
1
2π

∑
q

e2
q

∑
X

∫
d3PX

(2π)3 2P0
X

∫
d3k

(2π)3 2k0
(2π)4 δ(4)

(
P + q− k− PX

)
×

(〈
P,S ψ̄̄i(0) X

〉〈
X ψ j(0) P,S

〉
γ
µ
ik

(
/k + m

)
kl γ

ν
l j

+
〈
P,S ψ j(0) X

〉〈
X ψ̄̄i(0) P,S

〉
γνik

(
/k−m

)
kl γ

µ
l j

)
,

(2.11)

wherek is the momentum of the struck quark, the indexq denotes the quark flavor andeq is the
fractional charge of the quark. Note that, for simplicity, we omitted the flavor indices on the
quark fields. The integration over the phase space of the final-state quark can be replaced by a
four-dimensional integral with an on-shell condition, so that the hadronic tensor can be rewritten
as

2MWµν(q,P,S) =
∑

q

e2
q

∑
X

∫
d3PX

(2π)3 2P0
X

∫
d4k δ

(
k2 −m2

)
θ
(
k0 −m

)
× δ(4)

(
P + q− k− PX

) (〈
P,S ψ̄̄i(0) X

〉〈
X ψ j(0) P,S

〉
γ
µ
ik

(
/k + m

)
kl γ

ν
l j

+
〈
P,S ψ j(0) X

〉〈
X ψ̄̄i(0) P,S

〉
γνik

(
/k−m

)
kl γ

µ
l j

)
.

(2.12)

Next, we Fourier transform the Dirac delta function and we introduce the momentump = k− q to
obtain

2MWµν(q,P,S) =
∑

q

e2
q

∑
X

∫
d3PX

(2π)3 2P0
X

∫
d4p δ

((
p + q

)2 −m2
)

× θ
(
p0 + q0 −m

) ∫ d4ξ

(2π)4
ei (P−p−PX)·ξ

×
(〈

P,S ψ̄̄i(0) X
〉〈

X ψ j(0) P,S
〉
γ
µ
ik

(
/p + /q + m

)
kl γ

ν
l j

+
〈
P,S ψ j(0) X

〉〈
X ψ̄̄i(0) P,S

〉
γνik

(
/p + /q−m

)
kl γ

µ
l j

)
.

(2.13)

Finally, we use part of the exponential to perform a translation of the field operators and we use
completeness to eliminate the unobservedX states, so that

2MWµν(q,P,S) =
∑

q

e2
q

∫
d4p δ

((
p + q

)2 −m2
)
θ
(
p0 + q0 −m

) ∫ d4ξ

(2π)4
e−ip·ξ

×
(〈

P,S ψ̄̄i(ξ) ψ j(0) P,S
〉
γ
µ
ik

(
/p + /q + m

)
kl γ

ν
l j

+
〈
P,S ψ j(ξ) ψ̄̄i(0) P,S

〉
γνik

(
/p + /q−m

)
kl γ

µ
l j

)
.

(2.14)
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Figure 2.3. The handbag diagram, describing the hadronic tensor at tree level.

The hadronic tensor can be written in a more compact way by introducing the quark-quark
correlation functionΦ and the antiquark-antiquark correlation functionΦ̄̄

2MWµν(q,P,S) =
∑

q

e2
q

∫
d4p δ

((
p + q

)2 −m2
)
θ
(
p0 + q0 −m

)
× Tr

[
Φ(p,P,S)γµ

(
/p + /q + m

)
γν + Φ̄̄(p,P,S)γν

(
/p + /q−m

)
γµ

] (2.15)

where

Φ ji (p,P,S) =
1

(2π)4

∫
d4ξ e−ip·ξ〈P,S ψ̄̄i(ξ) ψ j(0) P,S

〉
=

∑
X

∫
d3PX

(2π)3 2P0
X

〈
P,S ψ̄̄i(0) X

〉〈
X ψ j(0) P,S

〉
δ(4)

(
P− p− PX

)
,

(2.16a)

Φ̄̄ ji (p,P,S) =
1

(2π)4

∫
d4ξ e−ip·ξ〈P,S ψ j(ξ) ψ̄̄i(0) P,S

〉
=

∑
X

∫
d3PX

(2π)3 2P0
X

〈
P,S ψ j(0) X

〉〈
X ψ̄̄i(0) P,S

〉
δ(4)

(
P− p− PX

)
.

(2.16b)

As the quark fields should carry a flavor index that we omitted, also the correlation functions are
flavor dependent and they should be indicated more appropriately asΦq andΦ̄̄q. For simplicity,Φ̄̄
will be omitted henceforth. It can be accounted for simply by extending the summation over quarks
to a summation over quarks and antiquarks. A graphical representation of the hadronic tensor at
tree level in the parton model is given by the so-calledhandbag diagram, depicted in Fig. 2.3.

We parametrize the quark momentump in the following way

pµ =

[
p2 + |pT |2

2xP+
, xP+, pT

]
. (2.17)

In our approach, we assume that neither the virtuality of the quark,p2, nor its transverse momentum
squared,|pT |2, can be large in comparison with the hard scaleQ2. Under these conditions, the
quark momentum is soft with respect to the hadron momentum and its relevant component isxP+.
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In Eq. (2.15), neglecting terms which are 1/Q suppressed, we can use an approximate expression
for the delta function and

2MWµν(q,P,S) ≈
∑

q

e2
q

∫
d2pT d p− d x

P+

2P · q δ (x− xB) Tr
[
Φ(p,P,S) γµ

(
/p + /q + m

)
γν

]
=

∑
q

e2
q

1
2

Tr

[
Φ(xB,S) γµ

P+

P · q
(
/p + /q + m

)
γν

]
(2.18)

where we introduced the integrated correlation function

Φ ji (x,S) =

∫
d2pT d p− Φ ji (p,P,S)

∣∣∣∣∣
p+=xP+

=

∫
dξ−

2π
e−ip·ξ〈P,S ψ̄̄i(ξ) ψ j(0) P,S

〉∣∣∣∣∣
ξ+=ξT=0

.

(2.19)

Notice that there is a contradiction between the fact that we assumed the transverse momentum
of the quark to be small in comparison to the hard scale, yet we are integrating over the entire
space ofpT . Indeed, when dealing with transverse momentum of perturbative origin (i.e. arising
from the radiation of gluons, see next section), which typically falls down as 1/|pT |2, we have to
impose a cut-off on the maximum value the transverse momentum can reach. This cut-off depends
on the scaleQ2. On the other hand, the transverse momentum of nonperturbative origin, usually
calledintrinsic transverse momentum, is supposed to fall off very rapidly so that there is effectively
almost no intrinsic transverse momentum above a typical scale of 1 GeV2.

Finally, from the outgoing quark momentum,p + q, we can select only the minus component
and obtain the final form for the hadronic tensor at leading twist

2MWµν(q,P,S) ≈
∑

q

e2
q

1
2

Tr
[
Φ(xB,S) γµγ+γν

]
. (2.20)

A few words to justify the last approximation are in order. The dominance of the minus component
is most easily seen in the infinite momentum frame, wherep−+ q− is of the order ofQ, while
p+ + q+ = 0, andpT andm are of the order of 1. However, if we perform a 1/Q expansion of the
full expression, including the correlation functionΦ [starting from Eq. (2.31)], we would be able
to check that in any collinear frame the dominant terms arise only from the combination of plus
component in the correlation function and minus components in the outgoing quark momentum.

2.1.3 One gluon additions

Up to now, we took into consideration only quark-quark correlation functions at tree level. The
addition of a gluon can either lead to the introduction of a quark-gluon-quark correlation function
or can give rise to perturbative corrections to the photon-quark scattering [82]. In this thesis, we
will not take quark-gluon-quark correlation functions into account, since they start contributing
only at the twist-three level, and we will not examine perturbative corrections, since they give
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Φ

Figure 2.4. One gluon addition: gluon coming from the soft blob.

only origin to a logarithmic scale dependence of the quark-quark functions. Nevertheless, for
completeness we will now give a sketchy view of these very important issues.

When the gluons come directly from the soft blob, as in the diagram of Fig. 2.4, longitudinally
polarized gluons (A+) are the dominant ones, while transversely polarized gluons (AT) are subject
to a 1/Q suppression. If we choose a physical gauge whereA+ = 0, then this kind of diagrams
contribute only at twist three and higher and they require the introduction of quark-gluon-quark
correlators [94]. On the other hand, in a different gauge the contributions of longitudinal gluons
is present and is not necessarily suppressed by any power of 1/Q. Then, we have to sum all the
contributions with an arbitrary number of longitudinal gluons. The result of this summation can
be cast in the form of agauge linkto be inserted in the definition of the quark-quark correlation
function

Φ ji (p,P,S) =
1

(2π)4

∫
d4ξ e−ip·ξ〈P,S ψ̄̄i(ξ)L(ξ,0; path)ψ j(0) P,S

〉
(2.21)

where the gauge link is a path-ordered exponential

L(ξ,0; path)= Pexp

(
−igs

∫ ξ

0
d sµAµ(s)

)
. (2.22)

with a straight path along the light-cone minus direction [58, 94].
In A+ = 0 gauges the link is equal to unity (although some subleties have been recently analyzed

in Ref. 71). We will henceforth neglect it and trade off manifest color gauge invariance for a lighter
notation. Finally, we mention that recently it has been suggested that the gauge link could play
an important role in the context of T-odd distribution functions [78] (see Sec. 2.4 on page 29). In
particular, much care should be taken when including partonic transverse momentum. In this case,
the gauge link path cannot simply run along the light-cone but has to have a transverse component
and it might not be reducible to unity anymore [78, 124].

Now we take a brief look to perturbative corrections to the quark-quark correlation function
(see Refs. 96 and 147). They are of two kinds: virtual gluon loop diagrams (Fig. 2.5) and real gluon
bremsstrahlung diagrams (Fig. 2.6). Each virtual diagram contains ultraviolet and infrared diver-
gences. The ultraviolet divergences can be cured using standard renormalization techniques. The
infrared divergences cancel with analogous divergences in the real gluon emission diagrams [96].
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Φ Φ Φ

Figure 2.5. One gluon addition: virtual loop diagrams.

Φ Φ Φ

Figure 2.6. One gluon addition: real loop diagrams.

The remaining parts of the diagrams give actualαs corrections to the tree level result of the
previous section. In particular, collinear divergences give origin to the leading-log part of the
evolution equations, by which the parton distribution functions (see Sec. 2.2 on page 21) acquire a
dependence on the scaleQ2 [12, 88, 100].

2.1.4 Leading twist part and connection with helicity formalism

To identify the leading twist contributions to the cross section, it is convenient to define the pro-
jectors

P+ =
1
2
γ−γ+, P− =

1
2
γ+γ−. (2.23)

Before the interaction with the virtual photon, the relevant components of the quark fields are the
plus components,ψ+ = P+ ψ. They are usually referred to as thegood components.1 Vice versa,
after the interaction with the virtual photon, the relevant components of the outgoing quark fields
are the minus components,ψ− = P− ψ. Therefore, the leading twist part of the hadronic tensor in

1In the infinite momentum frame the good components are truly dominant and we can avoid the distinction between
“quark” and “good quark”.
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P+ P+

P− P−

q q

P P

Φ

Figure 2.7. Graphical representation of the insertion of the good projectors to isolate the leading part of the
hadronic tensor.

Eq. (2.18) can be projected out in the following way (see Fig. 2.7)2

2MWµν(q,P,S) ≈
∑

q

e2
q Tr

[
P+ Φ(xB,S) P− γµ P−

P+

2P · q
(
/p + /q + m

) P+ γ
ν

]
=

∑
q

e2
q Tr

[
P+ Φ(xB,S) γ+ γ−γµ

2
P− P−

P+

2P · q
(
/p + /q + m

)
γ−

γ+γν

2
P+

]
.

(2.24)

The differential cross section defined in Eq. (2.6) takes the form

d3σ

d xB dy dφS

≈
∑

q

α2e2
q

2 s xB Q2
Lµν(l, l

′, λe) Tr

[
P+ Φ(xB,S) γ+ γ−γµ

2
P− P−

P+

2P · q
(
/p + /q + m

)
γ−

γ+γν

2
P+

]

≈
∑

q

(
P+ Φ(xB,S)γ+

)
ji

 α2e2
q

s xB Q2
Lµν(l, l

′, λe)

(
γ−γµ

2
P−

)
il

(
γ+γν

2
P+

)
m j

 (P−2
)

lm

,

(2.25)

where we explicitly showed Dirac indices (repeated indices are summed over). In Sec. 2.2.1 on
page 23, we will see in detail how the insertion of the projectors effectively reduces the four-
dimensional Dirac space into a two-dimensional subspace. Chiral-right and chiral-left good quark
spinors can be used as a basis in this space. Therefore, it is possible to replace the Dirac indices
with chirality indices (of good fields). By doing this, we put particular evidence on the connection
with the helicity/chirality formalism (see e.g. Refs. 112 and 19). In fact, the cross section can be
conveniently rewritten as

d3σ

d xB dy dφS
≈ 1

2

∑
q

(
P+ Φ(xB,S)γ+

)
χ′1χ1

( dσeq

dy

)χ1χ
′
1
, (2.26)

2Note that ¯(ψ+) = ψ̄P− and ¯(ψ−) = ψ̄P+.
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where the elementary electron-quark cross section is

( dσeq

dy

)χ1χ
′
1

=
α2e2

q

sxBQ2
Lµν(l, l

′, λe)

(
γ−γµ

2
P−

)χ1χ2
(
γ+γν

2
P+

)χ′2χ′1
δχ2χ

′
2

=
α2e2

q

sxBy2

A(y) + λeC(y) 0

0 A(y) − λeC(y)

 .
(2.27)

where

A(y) = 1− y +
y2

2
, C(y) = y

(
1− y

2

)
. (2.28)

Finally, we define the matrixF =
(
P+ Φγ+

)T
, i.e. the transpose of the leading-twist part of the

correlation function, and we observe that

F(x,S)χ1χ
′
1

=

∫
dξ−

2π
√

2
e−ip·ξ〈P,S (ψ+)†χ1

(ξ) (ψ+)χ′1(0) P,S
〉∣∣∣∣∣
ξ+=ξT=0

=
1
√

2

∑
X

∫
d3PX

(2π)3 2P0
X

〈
X (ψ+)χ1(0) P,S

〉∗〈X (ψ+)χ′1(0) P,S
〉
δ
((

1− x
)
P+ − P+

X

)
.

(2.29)

Thus, the transpose of the correlation function describes the forward scattering of a good antiquark
off a hadron, or equivalently the forward scattering of an antiquark off a hadron in the infinite
momentum frame. As any scattering matrix, for any antiquark-hadron statea

〉
the expectation

value
〈
a M a

〉
must be positive. In mathematical terms, this means that the matrix ispositive

semidefinite, i.e. the determinant of all the principal minors of the matrix has to be positive or zero.
This property will prove to be essential in deriving bounds on the components of the correlation
function, i.e. the parton distribution functions.

2.2 The correlation function Φ

As shown in Eq. (2.16a), the quark-quark distribution correlation function,Φ, can be expressed in
terms of bilocal operators. At leading order in 1/Q, it contains all the relevant information about
the nonperturbative dynamics of the quarks inside the hadron. Due to its nonperturbative nature,
it is not possible to calculate it from first principles, as we don’t know how the hadronic states are
built up from the elementary quark and gluon fields.

When considering subleading orders in a 1/Q expansion, quark-gluon-quark correlation func-
tions have to be considered, as we briefly mentioned in Sec. 2.1.3 on page 17. In this case, the
general structure of the hadronic tensor becomes richer. In the rest of the thesis, as the analysis
will be concerned only with leading order terms, we will not deal with quark-gluon-quark correla-
tion functions.
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To get more insight into the information contained in the correlation function, which is a Dirac
matrix, we can decompose it in a general way on a basis of Dirac structures. Each term of the
decomposition can be a combination of the Lorentz vectorsp andP, the Lorentz pseudovectorS
(in case of spin-half hadrons) and the Dirac structures

1, γ5, γ
µ, γµγ5, iσµνγ5.

The spin vector can only appear linearly in the decomposition (cf. Eq. (2.43)). Moreover, each
term of the full expression has to satisfy the conditions of Hermiticity and parity invariance

Hermiticity: Φ(p,P,S) = γ0 Φ†(p,P,S) γ0, (2.30a)

parity: Φ(p,P,S) = γ0 Φ(p̃, P̃,−S̃) γ0 (2.30b)

where p̃ν = δνµpµ and so forth for the other vectors. The most general decomposition of the
correlation functionΦ imposing Hermiticity and parity invariance is [141, 151]

Φ(p,P,S) = M A1 1 + A2 /P + A3 /p +
A4

M
σµνP

µpν + iA5 p · S γ5

+ M A6 /S γ5 + A7
p · S
M

/Pγ5 + A8
p · S
M

/pγ5 + iA9σµνγ5S
µPν

+ iA10σµνγ5S
µpν + iA11

p · S
M2

σµνγ5Pµpν + A12
εµνρσγ

µPνpρSσ

M
,

(2.31)

where the amplitudesAi are dimensionless real scalar functionsAi = Ai(p · P, p2).
The correlation function can be separated in aT-evenpart and aT-oddpart, according to the

definition

Φ∗T-even(p,P,S) = iγ1γ3 ΦT-even(p̃, P̃, S̃) iγ1γ3, (2.32a)

Φ∗T-odd(p,P,S) = −iγ1γ3 ΦT-odd(p̃, P̃, S̃) iγ1γ3. (2.32b)

Thus, the terms containing the amplitudesA4, A5 andA12 can be classified as T-odd.
At leading twist, we are interested in the projectionP+ Φ(xB,S)γ+. After inserting the general

decomposition of Eq. (2.31) into Eq. (2.19), we can project out the leading-twist components and
obtain the general expression [32]

P+ Φ(x,S)γ+ =
(
f1(x) + SL g1(x) γ5 + h1(x) γ5 /ST

)P+, (2.33)

where we introduced theparton distribution functions

f1(x) =

∫
d2pT dp2 d(2p · P) δ

(
p2

T + x2M2 + p2 − 2xp · P
)
[A2 + xA3] , (2.34a)

g1(x) =

∫
d2pT dp2 d(2p · P) δ

(
p2

T + x2M2 + p2 − 2xp · P
) [
−A6 −

( p · P
M2
− x

)
(A7 + xA8)

]
,

(2.34b)

h1(x) =

∫
d2pT dp2 d(2p · P) δ

(
p2

T + x2M2 + p2 − 2xp · P
) [
−A9 − xA10 +

p2
T

2M2
A11

]
. (2.34c)
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The function f1 is usually referred to as the unpolarized parton distribution, and it is sometimes
denoted also as simplyf or q (whereq stands for the quark flavor). The functiong1 is the parton
helicity distribution and it can be denoted also as∆ f or ∆q. Finally, the functionh1 is known as
the parton transversity distribution; in the literature it is sometimes denoted asδq, ∆Tq or ∆T f ,
although in the original paper of Ralston and Soper [151] it was calledhT . In this thesis, we will
follow the nomenclature suggested by Jaffe and Ji [116] and later extended in Ref. 141, because it
allows a harmonious connection with the most general cases of transverse momentum dependent
distribution functions, as we shall see later. A thorough discussion on the different naming schemes
is presented in Ref. [41].

The individual distribution functions can be isolated by means of the projection

Φ[Γ] ≡ 1
2

Tr (ΦΓ) , (2.35)

whereΓ stands for a specific Dirac structure. In particular, we see that

f1(x) = Φ[γ+](x), (2.36a)

g1(x) = Φ[γ+γ5](x), (2.36b)

h1(x) = Φ[iσi+γ5](x). (2.36c)

2.2.1 Correlation function in helicity formalism

We will now examine how it is possible to write the correlation function as a matrix in the chirality
space of the good quark fields⊗ the spin space of the hadron. We will work out the steps in a
meticulous way, even if we will incur the risk of introducing some redundant steps.

The correlation function is a 4× 4 Dirac matrix. However, due to the presence of the projector
on the good components of the quark fields, the leading-twist part spans only a 2×2 Dirac subspace.
This is evident if we express the Dirac structures of Eq. (2.33) in the chiral or Weyl representation.
Using this representation, the correlation function reads

(
P+ Φ(x,S)γ+

)
ji

=


f1(x) + SL g1(x) 0 0 (Sx − iSy) h1(x)

0 0 0 0
0 0 0 0

(Sx + iSy) h1(x) 0 0 f1(x) − SL g1(x)

 . (2.37)

As shown by this explicit form, it seems that the four-dimensional Dirac space can be reduced to
a two-dimensional space, retaining only the nonzero part of the correlation function. The relevant
part of the Dirac space is the one corresponding to good quark fields. To show this explicitly,
we introduce the chiral projectorsPR/L = (1 ± γ5)/2 and define the good chiral-right and good
chiral-left quark spinors, i.e. the normalized projections

u+R =
P+PR u
|P+PR u| , u+L =

P+PL u
|P+PL u| . (2.38)
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Then, we can define a new matrix in the chirality space of the good quark fields(
P+ Φ(x,S)γ+

)
χ′1χ1

≡ uj
+ χ′1

(
P+ Φ(x,S)γ+

)
ji

ui
+ χ1

(2.39)

Any contraction with bad quark fields vanishes. Explicit computation of the matrix elements yields(
P+ Φ(x,S)γ+

)
RR

= uj
+R

(
P+ Φ(x,S)γ+

)
ji

u† i
+R = f1(x) + SL g1(x), (2.40a)(

P+ Φ(x,S)γ+
)

LL
= uj

+L

(
P+ Φ(x,S)γ+

)
ji

u† i
+L = f1(x) − SL g1(x), (2.40b)(

P+ Φ(x,S)γ+
)
RL

= uj
+R

(
P+ Φ(x,S)γ+

)
ji

u† i
+L = (Sx − iSy) h1(x), (2.40c)(

P+ Φ(x,S)γ+
)

LR
= uj

+L

(
P+ Φ(x,S)γ+

)
ji

u† i
+R = (Sx + iSy) h1(x). (2.40d)

The correlation matrix in the good quark chirality space is then

(
P+ Φ(x,S)γ+

)
χ′1χ1

=

 f1(x) + SL g1(x) (Sx − iSy) h1(x)

(Sx + iSy) h1(x) f1(x) − SL g1(x)

 . (2.41)

As we could have expected, this result corresponds simply to taking the full Dirac matrix in Weyl
representation, Eq. (2.37), and stripping off the zeros. From the matrix representation in the chi-
rality space it is clear why the functionh1 is defined to bechiral odd.

The correlation function is a matrix in the parton chirality space and depends on the target spin.
By introducing the helicity density matrix of the target

ρ(S)Λ1Λ′1
=

1
2

(1 + S · σ)
Λ1Λ′1

=
1
2

 1 + SL Sx − iSy

Sx + iSy 1− SL

 , (2.42)

we can obtain the correlation function from the trace of the helicity density matrix and a new
matrix in the quark chirality space⊗ the target spin space:(

P+ Φ(x,S)γ+
)
χ′1χ1

= ρ(S)Λ1Λ′1

(
P+ Φ(x)γ+

)Λ′1Λ1

χ′1χ1

. (2.43)

We will refer to the last term of this relation as the matrix representation of the correlation function
or, more simply, as the correlation matrix. Fig. 2.8 shows pictorially the position of the spin
indices.

Starting from Eq. (2.33) and using the relation

ΨU + SLΨL + SxΨx + SyΨy = ρ(S)Λ1Λ′1

ΨU + ΨL Ψx − iΨy

Ψx + iΨy ΨU − ΨL


Λ′1Λ1

(2.44)

we can cast the correlation function in the matrix form

(
P+ Φ(x)γ+

)Λ′1Λ1
=


(
f1(x) + g1(x) γ5

)P+ h1(x)
(
γx − iγy

)
γ5P+

h1(x)
(
γx + iγy

)
γ5P+

(
f1(x) − g1(x) γ5

)P+

 . (2.45)
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Figure 2.8. Illustration of the position of the indices of the correlation matrix.

Finally, by expressing the Dirac structures in Weyl representation and reducing the Dirac space as
done before, we obtain the matrix representation of the correlation function

(
P+ Φ(x)γ+

)Λ′1Λ1

χ′1χ1

=



f1(x) + g1(x) 0 0 0

0 f1(x) − g1(x) 2h1(x) 0

0 2h1(x) f1(x) − g1(x) 0

0 0 0 f1(x) + g1(x)


, (2.46)

where the inner blocks are in the hadron helicity space (indicesΛ′1Λ1), while the outer matrix is in
the quark chirality space (indicesχ′1χ1).

The form of the correlation matrix can also be established directly from angular momentum
conservation (requiringΛ′1 +χ′1 = Λ1 +χ1) and the conditions of Hermiticity and parity invariance.
In matrix language, the condition of parity invariance consists in [119](

P+ Φ(x)γ+
)Λ′1Λ1

χ′1χ1

=
(
P+ Φ(x)γ+

)−Λ′1−Λ1

−χ′1−χ1

. (2.47)

The most general form of the correlation matrix complying with the previous conditions corre-
sponds to Eq. (2.46).

As mentioned at the end of Sec. 2.1.4 on page 19, with transposing the quark chirality indices
of the correlation matrix we obtain the scattering matrix [32, 33]

F(x)
Λ′1Λ1

χ1χ
′
1

=



f1(x) + g1(x) 0 0 2h1(x)

0 f1(x) − g1(x) 0 0

0 0 f1(x) − g1(x) 0

2h1(x) 0 0 f1(x) + g1(x)


. (2.48)

Note that because of the inversion of the quark indices, the lower left block hasχ′1 = R, χ1 = L
and vice versa for the upper right block. Since this matrix must be positive semidefinite, we can
readily obtain the positivity conditions

f1(x) ≥ 0, (2.49a)

|g1(x)| ≤ f1(x), (2.49b)

|h1(x)| ≤ 1
2

(
f1(x) + g1(x)

)
. (2.49c)

The last relation is known as theSoffer bound[159].
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Figure 2.9. Probabilistic interpretation of the unpolarized distribution function f1 (a), and of the helicity
distribution function g1 (b).

2.3 The transversity distribution function

In the previous section, we wrote the forward antiquark-nucleon scattering matrix,F, in the helicity
basis of the hadron and of the good quark (to be more precise, we used the chirality basis for
the quark). Each entry, with indicesχ1Λ

′
1, χ

′
1Λ1 describes the product of the amplitude for the

scattering of an antiquark with helicity (chirality)χ′1 off a hadron with helicityΛ1 going to anything
times the conjugate of the amplitude for antiquark with helicityχ1 off a hadron with helicityΛ′1
going to anything.

F(x)
Λ′1Λ1

χ1χ
′
1

∝
∑

X

∫
d3PX

〈
X (ψ+)χ1 P,Λ′1

〉∗〈X (ψ+)χ′1 P,Λ1
〉
. (2.50)

In this basis, the probabilistic interpretation of the functionsf1 andg1 is manifest, since they occupy
the diagonal elements of the matrix and they are therefore connected to squares of probability
amplitudes (see Fig. 2.9)

f1(x) =
1
2

(
F(x)

1
2

1
2

R R + F(x)
1
2

1
2

L L

)
g1(x) =

1
2

(
F(x)

1
2

1
2

R R− F(x)
1
2

1
2

L L

)
(2.51)

On the other hand, the transversity distribution is off-diagonal in the helicity basis. This means
that it does not describe the square of a probability amplitude, but rather the interference between
two different amplitudes [see Fig. 2.10 (a)]

h1(x) = 1
2F(x)

1
2 −

1
2

R L (2.52)

The transversity distribution recovers a probability interpretation if we choose the so-called
transversity basis, instead of the helicity basis, for both quark and hadron [113, 119]. The transver-
sity basis is formed by the “transverse up” and “transverse down” states. They can be expressed in
terms of chirality eigenstates

u↑ = 1√
2

(uR + uL) , u↓ = 1√
2

(uR− uL) . (2.53)
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Figure 2.10. Probabilistic interpretation of the transversity distribution function h1, in the helicity basis (a)
and in the transversity basis (b).

The same relation holds between the hadron transversity and helicity states.
In the new basis, the scattering matrix takes the form

F(x)
Λ′1Λ1

χ1χ
′
1

=



f1(x) + h1(x) 0 0 g1(x) + h1(x)

0 f1(x) − h1(x) g1(x) − h1(x) 0

0 g1(x) − h1(x) f1(x) − h1(x) 0

g1(x) + h1(x) 0 0 f1(x) + h1(x)


, (2.54)

and clearly the transversity distribution function can be defined as [Fig. 2.10 (b)]

h1(x) =
1
2

(
F(x)↑↑↑↑ − F(x)↑↑↓↓

)
. (2.55)

The transversity distribution has been the object of several model calculations, using e.g. the
bag model [116], the spectator model [120], the chiral soliton model [148] and others [40]. The
integral ofh1 – also known as thetensor chargeof the nucleon – has been evaluated in lattice
QCD [24]. A recent review on the transversity distribution is presented in Ref. 41.

The transversity distribution evolves with the energy scale in a different way as compared to
the helicity distribution, without mixing with gluons [28, 38, 50, 109, 132].

2.3.1 Transversity and Thomas precession

In the literature, it is common to find the statement that the difference between the helicity distri-
bution and the transversity distribution is connected to relativistic effects, since boosts and rotation
do not commute [113, 114, 117, 119]. Relativistic effects influence observable quantities depend-
ing on the dynamics of the system and they can therefore give important information about its
structure. Therefore, the difference between helicity and transversity distributions can shed light
on the structure of the nucleon and its spin.
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Figure 2.11. Thomas precession effect on transversity (a) and helicity (b).

This statement can be understood even in the framework of purely classical relativistic mechan-
ics. We will show how relativistic effects can change an observable in a toy model with just a little
bit of dynamical complexity. Of course, the model is not meant to describe a nucleon. We will
consider “spin” merely as a pseudovector attached to the quark. “Helicity” will be the projection
of the spin along the momentum of the quark and “transversity” will be the projection transverse
to the momentum of the quark. Note that these quantities are onlyreminescentof the real helicity
and transversity.

Suppose we have a system constituted by a quark revolving in a circular orbit with its spin
aligned in the direction of the orbital axis. To have an analogy of the helicity distribution, we
boost the system to a velocityv along the direction of the orbital axis, and we measure what is the
probability of finding the helicity of the quark aligned along the axis direction. For the transversity,
we boost the system to a velocityv transverse to the axis direction, and measure the probability of
finding the transversity of the quark aligned along the axis direction.

To properly deal with this situation in a relativistic way, we have to take into accountThomas
precession, an effect which occurs whenever a frame of reference (in our case joined to the quark)
is moving with a velocityv with respect to the observer and is at the same time subject to an
accelerationa [111, 165]. Thomas precession causes the quark frame of reference (and the spin of
the quark with it) toprecesswith an angular velocity

ωT =
v× a
2c2

. (2.56)

In the infinite momentum frame, the speed of revolution of the quark is negligible with respect
to the overall velocity of the system, so that the quark velocity is approximatelyv. However we
cannot neglect its centripetal accelerationa.

Let us first analyze the situation with transversity [Fig. 2.11 (a)]. The cross product of the
velocity of the quark and the centripetal acceleration is pointing in the transverse direction. Thomas
precession will not influence the orientation of the spin of the quark. The transversity distribution
is just 1.
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The situation is dramatically different for helicity [Fig. 2.11 (b)]. The cross product of the quark
velocity and its acceleration is still pointing in a transverse direction, which is now orthogonal to
the spin of the quark. This causes the spin of the quark to precess around a transverse axis. The
net helicity of the quark will be zero and so will be the helicity distribution.

In a simpler system, for instance if the quark would not have any orbital angular momentum,
helicity and transversity distributions would be the same. In conclusion, from this example we
see that, due to relativistic effects, the difference between two apparently similar observables can
reveal something important about the structure of a system.

2.4 Inclusion of transverse momentum

So far we have been concerned with theintegratedcorrelation function, defined in Eq. (2.19),
the only relevant one in totally inclusive deep inelastic scattering. In the next chapters, we will
analyze also semi-inclusive scatterings, where we will need to consider the transverse-momentum
dependent version of the correlation function, i.e.

Φ ji (x, pT ,S) =

∫
d p− Φ ji (p,P,S)

∣∣∣∣∣
p+=xP+

=

∫
dξ− d2ξT

(2π)3
e−ip·ξ〈P,S ψ̄̄i(ξ) ψ j(0) P,S

〉∣∣∣∣∣
ξ+=0

.

(2.57)

Starting from the general decomposition presented in Eq. (2.31), the leading order part of the
transverse-momentum dependent correlation function becomes

P+ Φ(x, pT ,S)γ+ =

{
f1(x, p2

T) + i h⊥1 (x, p2
T)
/pT

M
+ SL g1L(x, p2

T) γ5 + SL h⊥1L(x, p2
T) γ5

/pT

M

+ f ⊥1T(x, p2
T)
εTρσSρ

T pσT
M

+ g1T(x, p2
T)

pT · ST

M
γ5

+ h1T(x, p2
T) γ5 /ST + h⊥1T(x, p2

T)
pT · ST

M
γ5
/pT

M

}
P+ .

(2.58)

The definition of the parton distribution functions in terms of the amplitudesAi, introduced in
Eq. (2.33), can be found elsewhere [120, 135, 164].

For any transverse-momentum dependent distribution function, it will turn out to be convenient
to define the notation

f (1/2)(x, p2
T) ≡ |pT |

2M
f (x, p2

T), (2.59a)

f (n)(x, p2
T) ≡

(
p2

T

2M2

)n

f (x, p2
T), (2.59b)

for n integer. We also need to introduce the function

h1(x, p2
T) ≡ h1T(x, p2

T) + h⊥(1)
1T (x, p2

T). (2.60)
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The connection with the integrated distribution functions defined in Eq. (2.34) is

f1(x) =

∫
d2pT f1(x, p2

T), (2.61a)

g1(x) =

∫
d2pT g1L(x, p2

T), (2.61b)

h1(x) =

∫
d2pT h1(x, p2

T). (2.61c)

Note that the distribution functionsh⊥1 and f ⊥1T are T-odd. At first, this class of functions was
supposed to vanish due to time-reversal invariance [151]. Sivers [157, 158] was the first one to
consider an observable arising from the T-odd distribution functionf ⊥1T , since then called theSivers
function. The complete analysis of leading-twist T-odd distribution functions and the introduction
of h⊥1 were carried out by Boer and Mulders [53]. A proof of the nonexistence of T-odd distribution
functions was suggested by Collins in Ref. 77, but recently it has been repudiated by the same
author [78] after Brodsky, Hwang and Schmidt [72] explicitly obtained a nonzero Sivers function
in the context of a simple model. The question at the moment awaits clarification, but it is likely
that T-odd distribution functions will stir a lot of interest in the near future, together with T-odd
fragmentation functions, of which we shall abundantly speak in the next chapters.

As done in the previous section, we can express the transverse momentum dependent corre-
lation function as a matrix in the parton chirality space⊗ target helicity space. To simplify the
formulae, it is useful to identify the T-odd functions as imaginary parts of some of the T-even
functions, which become then complex scalar functions. The following redefinitions are required:3

g1T + i f ⊥1T → g1T , h⊥1L + ih⊥1 → h⊥1L. (2.62)

The resulting correlation matrix is [32, 33]

F(x, pT)
Λ′1Λ1

χ1χ
′
1

=



f1 + g1L
|pT |
M

e−iφp g1T
|pT |
M

eiφp h⊥∗1L 2h1

|pT |
M

eiφp g∗1T f1 − g1L
|pT |2
M2

e2iφp h⊥1T −|pT |
M

eiφp h⊥1L

|pT |
M

e−iφp h⊥1L

|pT |2
M2

e−2iφp h⊥1T f1 − g1L −|pT |
M

e−iφp g∗1T

2h1 −|pT |
M

e−iφp h⊥∗1L −|pT |
M

eiφp g1T f1 + g1L


, (2.63)

where for sake of brevity we did not explicitly indicate thex andp2
T dependence of the distribution

functions and whereφp is the azimuthal angle of the transverse momentum vector.
The distribution matrix is clearly Hermitean. Notice that by introducing the transverse mo-

mentum of the quark, the angular momentum conservation requirement becomes less constraining

3From a rigorous point of view, it would be better to introduce new functions, e.g. ˜g1T and h̃⊥1L, but this would
overload the notation.
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and we can have non zero contributions in all the entries of the scattering matrix. To be more
specific, when an exponential eil′φp appears in the matrix, we have to take into accountl′ units of
angular momentum in the final state. The condition of angular momentum conservation becomes
thenΛ′1 +χ′1 + l′ = Λ1 +χ1. Also the condition of parity conservation is influenced by the presence
of orbital angular momentum and becomes

F(x, pT)
Λ′1Λ1

χ1χ
′
1

= (−1)l
′
F(x, pT)

−Λ′1−Λ1

−χ1−χ
′
1

∣∣∣∣∣
l′→−l′

. (2.64)

The positivity of the matrix is not hampered by the introduction of the transverse momentum
dependence, since

F(x, pT ,S)
Λ′1Λ1

χ1χ
′
1

=

∫
dξ− d2ξT

(2π)3
√

2
e−ip·ξ〈P,Λ′1 (ψ+)†χ1

(ξ) (ψ+)χ′1(0) P,Λ1
〉∣∣∣∣∣
ξ+=0

=
1
√

2

∑
X

∫
d3PX

(2π)3 2P0
X

〈
X (ψ+)χ1(0) P,Λ′1

〉∗〈X (ψ+)χ′1(0) P,Λ1
〉

× δ
((

1− x
)
P+ − P+

X

)
δ(2)

(
pT − PX T

)
.

(2.65)

Bounds to insure positivity of any matrix element can be obtained by looking at the one-dimensional
and two-dimensional subspaces and at the eigenvalues of the full matrix.4 The one-dimensional
subspaces give the trivial bounds

f1(x, p2
T) ≥ 0 ,

∣∣∣g1L(x, p2
T)

∣∣∣ ≤ f1(x, p2
T) . (2.66)

From the two-dimensional subspaces we get

|h1| ≤
1
2

( f1 + g1L) ≤ f1, (2.67a)∣∣∣h⊥(1)
1T

∣∣∣ ≤ 1
2

( f1 − g1L) ≤ f1, (2.67b)∣∣∣g(1)
1T

∣∣∣2 ≤ p2
T

4M2
( f1 + g1L) ( f1 − g1L) ≤

(
f (1/2)
1

)2
, (2.67c)∣∣∣h⊥(1)

1L

∣∣∣2 ≤ p2
T

4M2
( f1 + g1L) ( f1 − g1L) ≤

(
f (1/2)
1

)2
, (2.67d)

where, once again, we did not explicitly indicate thex andp2
T dependence to avoid too heavy a no-

tation. Besides the Soffer bound of Eq. (2.67a), now extended to include the transverse momentum
dependence, new bounds for the distribution functions are found.

The positivity bounds can be sharpened even further by imposing the positivity of the eigen-
values of the correlation matrix. The complete analysis has been accomplished in Ref. 32 (see also
Ref. 33).

4Cf. Ref. 136 for an earlier discussion on positivity bounds for transverse momentum dependentstructure func-
tions.
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2.5 Cross section and spin asymmetries

The cross section for inclusive deep inelastic scattering at leading twist is expressed by Eq. (2.26).
Extracting the target helicity density matrix as done in Eq. (2.43) and using the matrixF, the
equation becomes

d3σ

d xB dy dφS
≈

∑
q

ρ(S)Λ1Λ′1
F(x)

Λ′1Λ1

χ1χ
′
1

( dσeq

dy

)χ1χ
′
1 1
2
. (2.68)

Inserting the expressions of Eq. (2.27), (2.42) and (2.48) into the previous expression leads to the
result

d3σ

d xB dy dφS
≈ 2α2

sxBy2

∑
q

e2
q

[(
1− y +

y2

2

)
f q
1 (xB) + λe SL

(
y− y2

2

)
gq

1(xB)

]
, (2.69)

where the indexq denotes the quark flavor.
The transversity distributiondoes not appearin the cross section for totally inclusive deep in-

elastic scattering at leading twist. The reason is that it is a chiral odd object and in any observable
it must be connected to another chiral odd “probe”. In inclusive deep inelastic scattering, what
probes the structure of the correlation function is the elementary photon-quark scattering, which
conserves chirality. We will see in the next chapters how semi-inclusive deep inelastic scattering
provides the necessary chiral odd partners for the transversity distribution (i.e. chiral odd fragmen-
tation functions).

The r.h.s. of Eq. (2.69) is independent of the azimuthal angleφS, so that we can integrate the
cross section over this angle. The result is

d2σ

d xB dy
≈ 4πα2

sxBy2

∑
q

e2
q

[(
1− y +

y2

2

)
f q
1 (xB) + λeSL

(
y− y2

2

)
gq

1(xB)

]
. (2.70)

If the spin of the target is oriented along the direction of the electron beam, it will have its
longitudinal component oriented along the−zdirection, that isSL will be negative. On the contrary,
orienting the spin of the target in the opposite direction will produce a positiveSL. Summing the
cross sections obtained with opposite polarization, we isolate the unpolarized part of the cross
section

d2σUU ≡
1
2

(
d2σ→← + d2σ→→

)
≈ 4πα2

sxBy2

(
1− y +

y2

2

) ∑
q

e2
q f q

1 (xB). (2.71)

The first subscript indicates the polarization of the beam, while the second stands for the polariza-
tion of the target. The letterU stands for unpolarized. The right arrow means polarization along
the beam direction, the left arrow means the opposite. Subtracting the cross section we obtain the
polarized part

d2σLL ≡
1
2

(
d2σ→← − d2σ→→

)
≈ 4πα2

sxBy2
|λe| |SL|

(
y− y2

2

) ∑
q

e2
q gq

1(xB). (2.72)
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where now the subscriptL specifies that longitudinal polarizations of beam and target are required.
We can define the longitudinal double spin asymmetry

ALL(xB, y) ≡ d2σLL

d2σUU

≈ |λe| |SL|
(1/xBy2)

(
y− y2/2

) ∑
q e2

q gq
1(xB)

(1/xBy2)
(
1− y + y2/2

) ∑
q e2

q f q
1 (xB)

. (2.73)

Note that, since the beam direction does not exactly correspond to the virtual photon direction,
the degree oflongitudinalpolarization of the target will be somewhat smaller than the degree of
polarizationalong the beam direction, while a small transverse polarization will arise [128, 145].
These effects are anyway 1/Q suppressed.

2.6 Summary

In this chapter, we introduced the hadronic tensor, containing the information on the structure of
hadronic targets in deep inelastic scattering [cf. Eq. (2.6)]. We studied the hadronic tensor in the
framework of the parton model at tree level and we came to the introduction of a quark-quark
correlation function [cf. Eqs. (2.19) and (2.20)]. The correlation function can be parametrized in
terms of parton distribution functions. In particular, at leading order in 1/Q (leading twist) we
introduced the unpolarized distribution function,f1, the helicity distribution function,g1, and the
transversity distribution function,h1 [Eq. (2.33)].

We demonstrated how the leading twist part of the correlation function can be cast in the form
of a forward scattering matrix [cf. Eq. (2.48)]. Exploiting the positivity of this matrix, we derived
relations among the distribution functions [Eq. (2.49)]. We also discussed the probabilistic inter-
pretation of the distribution function, with a particular emphasis on the transversity distribution.

We repeated the analysis of the correlation function introducing partonic transverse momen-
tum. In this case the decomposition of the correlation function contains eight distribution func-
tions [Eq. (2.58)]. We have seen that each entry of the corresponding scattering matrix is nonzero
[Eq. (2.63)], indicating that the full quark spin structure in a polarized nucleon is accessible if
transverse momentum is included. The connection with the helicity formalism and consequently
the extraction of positivity bounds on transverse momentum dependent distribution functions are
among the original results of our work.

Finally, we expressed the cross section for inclusive deep inelastic scattering at leading order
in 1/Q in terms of distribution functions [Eq. (2.69)]. We showed that the helicity distribution
can be accessed by measuring the longitudinal double spin asymmetry, but we concluded that the
transversity distribution isnot accessiblein inclusive deep inelastic scattering.

In the next chapter, we are going to see how the transversity distribution can be measured
in one-particle inclusive deep inelastic scattering, in combination with the Collins fragmentation
function.





3
Fragmentation functions
and the Collins function

Gather up the fragments that remain, that
nothing be lost.

John 6:12

In the previous chapter we analyzed totally inclusive deep inelastic scattering as a means to probe
the quark structure of the nucleons. We concluded that some aspects of this structure – notably
the transversity distribution and the transverse momentum distribution – are not accessible in this
kind of measurement. It is therefore desirable to turn the attention to a more complex case, that
of one-particle inclusive deep inelastic scattering, where one of the fragments produced in the
collision is detected. In this case, we will need to introduce some new nonperturbative objects, the
fragmentation functions.

3.1 One-particle inclusive deep inelastic scattering

In one-particle inclusive deep inelastic scattering a high energy electron collides on a target nucleon
via the exchange of a photon with a high virtuality. The target breaks up and several hadrons are
produced. One of the produced hadrons is detected in coincidence with the scattered electron
(see Fig. 3.1 on the next page). As a result of the hardness of the collision, the final state should
consist of two well separated “clusters” of particles, one is represented by the debris of the target,
broken by the collision, and the other is represented by the hadrons formed and ejected by the hard
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Figure 3.1. One-particle inclusive deep inelastic scattering.

interaction with the virtual photon [168]. The former are calledtarget fragmentsand the latter
current fragments. We will take into consideration only events where the tagged final state hadron
belongs to the current fragments.

3.1.1 Kinematics

As for inclusive scattering, we denote withl and l′ the momenta of the electron before and after
the scattering, withP, M andS the momentum, mass and spin of the target nucleon, withq the
momentum of the exchanged photon. Moreover, we introduce the momentumPh and the massMh

of the outgoing hadron.
We define the variables

xB =
Q2

2P · q, y =
P · q
P · l , zh =

P · Ph

P · q . (3.1)

We will assume that the following conditions hold:Q2,P · q,P · Ph � M2,M2
h, andxB, zh fixed.

For a distinction between the current and the target fragments, the rapidity separation should
be taken into account. This separation is quite clear for high values ofzh. For low values ofzh,
separating the two clusters becomes arduous. In events with higherW2, the limit of zh can be
pushed lower [140].

In the frame of reference defined in Sec. 2.1.1 on page 12, the target momentum and the virtual
photon momentum have no transverse components. The outgoing hadron’s momentum can be
parametrized as

Pµ
h =

 zhQ

A
√

2
,

A
(
M2

h + |Ph⊥|2
)

zhQ
√

2
, Ph⊥

 . (3.2)

To avoid the introduction of further hard scales, it is required thatP2
h⊥ � Q2.

The frame of reference we adopted is the more natural one from the experimental point of view,
as the longitudinal direction corresponds (up to order 1/Q) to the beam direction and the hadron’s
transverse momentum corresponds to what it is actually measured in the lab. However, as it will



3.1 One-particle inclusive deep inelastic scattering 37

become clear later, in order to preserve a symmetry between the distribution and fragmentation
functions, it is convenient to use a different frame of reference where the target and outgoing
hadron momenta are collinear, while the photon acquires a transverse component. To distinguish
between the two frames of reference when needed, from now on we will use the subscriptT when
denoting a transverse component in the new frame, while we will use the subscript⊥ to denote
transverse components in the former frame.

In theT frame, the external momenta are

Pµ =

[
xBM2

AQ
√

2
,

AQ

xB

√
2
, 0

]
=

[
M2

2P+
, P+, 0

]
, (3.3a)

Pµ
h =

[
zhQ

A
√

2
,

AM2
h

zhQ
√

2
, 0

]
=

[
P−h ,

M2
h

2P−h
, 0

]
, (3.3b)

qµ =

 Q

A
√

2
, −

A
(
Q2 − |qT |2

)
Q
√

2
, qT

 ≈ [
P−h
zh
, −xBP+, qT

]
, (3.3c)

with P−h ≈ Q2zh/(2P+xB). The connection with the transverse momentum components of the
photon in theT frame and of the outgoing hadron in the⊥ frame is [141]

qT = −Ph⊥

zh
. (3.4)

3.1.2 The hadronic tensor

The cross section for one-particle inclusive electron-nucleon scattering can be written as

2Eh d6σ

d3Ph d xB dy dφS

=
α2

2sxBQ2
Lµν(l, l

′, λe) 2MWµν(q,P,S,Ph), (3.5)

or equivalently as

d6σ

d xB dy dzh dφS d2Ph⊥
=

α2

4zhsxBQ2
Lµν(l, l

′, λe) 2MWµν(q,P,S,Ph). (3.6)

To obtain the previous formula, we made use of the relation d3Ph/2Eh ≈ dzh d2Ph⊥/2zh.
The hadronic tensor for one-particle inclusive scattering is defined as

2MWµν(q,P,S,Ph) =
1

(2π)4

∑
X′

∫
d3PX′

2P0
X′

2π δ(4)
(
q + P− PX′ − Ph

)
Hµν(P,S,PX′ ,Ph), (3.7)

Hµν(P,S,PX′ ,Ph) =
〈
P,S Jµ(0) Ph,X′

〉〈
Ph,X′ Jν(0) P,S

〉
. (3.8)

By integrating over the momentum of the final-state hadron and summing over all possible hadrons,
we recover the hadronic tensor for totally inclusive scattering∑

h

∫
d3Ph

2P0
h

2MWµν(q,P,S,Ph) =
1
2π

∑
X

∫
d3PX
2P0
X

2π δ(4)
(
q + P− PX

)
Hµν(P,S,PX)

≡ 2MWµν(q,P,S),

(3.9)
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Figure 3.2. The bull diagram, describing the hadronic tensor at tree level.

where now the stateX indicates the sum of the statesX′ andh, andPX = PX′ + Ph. Note that
we did not include any dependence of the hadronic tensor on the polarization of the final state
hadron. The reason is that this polarization is usually measured through the decay of the final state
hadron into other hadrons. In this sense, this case falls within the context of two-particle (or even
three-particle) inclusive scattering, as we will show in the next chapter.

In the spirit of the parton model, the virtual photon strikes a quark inside the nucleon. In the
case of current fragmentation, the tagged final state hadron comes from the fragmentation of the
struck quark. The scattering process can then be factorized in two soft hadronic parts connected
by a hard scattering part, as shown in Fig. 3.2.

We need to introduce a parametrization for the vectors

pµ =

[
p2 + |pT |2

2xP+
, xP+, pT

]
, (3.10a)

kµ =

P−h
z
,

z
(
k2 + |kT |2

)
2P−h

, kT

 . (3.10b)

Without expliciting including the antiquark contributions, the hadronic tensor can be written at tree
level as

2MWµν(q,P,S,Ph) =
∑

q

e2
q

∫
d4p d4k δ(4) (p + q− k) Tr (Φ(p,P,S) γµ ∆(k,Ph) γ

ν) , (3.11)

whereΦ is the correlation function defined in Eq. (2.16a) and∆,

∆kl(k,Ph) =
1

(2π)4

∫
d4ξ eik·ξ 〈0 ψk(ξ) Ph

〉〈
Ph ψ̄̄l(0) 0

〉
=

∑
Y

∫
d3PY

(2π)3 2P0
Y

〈
0 ψk(0) Ph,Y

〉〈
Ph,Y ψ̄̄l(0) 0

〉
δ(4)

(
k− Ph − PY

)
,

(3.12)
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is a new correlation function we need to introduce to describe the fragmentation process [81].
Neglecting terms which are 1/Q suppressed, we obtain the compact expression

2MWµν(q,P,S,Ph) = 4zhI
[
Tr (Φ(xB, pT ,S) γµ ∆(zh, kT) γν)

]
, (3.13)

where, as we shall do very often, we used the shorthand notation

I
[
· · ·

]
≡

∫
d2pT d2 kT δ

(2)
(
pT +qT− kT

) [
· · ·

]
=

∫
d2pT d2 kT δ

(2)
(
pT−

Ph⊥

z
− kT

) [
· · ·

]
, (3.14)

and where we introduced the integrated correlation functions

Φ(x, pT ,S) ≡
∫

d p−Φ(p,P,S)
∣∣∣∣
p+=xP+

, (3.15a)

∆(z, kT) ≡ 1
4z

∫
dk+∆(k,Ph)

∣∣∣∣
k−=P−h/z

. (3.15b)

Often in experimental situations the transverse momentum of the outgoing hadron is not mea-
sured. This corresponds to integrating over the outgoing hadron’s transverse momentum,Ph⊥. As
we already pointed out, this transverse momentum squared has to be small compared toQ2. Ex-
perimentally, this can be insured by imposing a cut-off on the data. Due to theδ distribution in
Eq. (3.14), this condition implies also (pT + kT)2 � Q2. Considerations as the one discussed in
Sec. 2.1.2 on page 13, can be applied to the perturbative and intrinsic components of the transverse
momenta.

The integration of the cross section yields

d4σ

d xB dy dzh dφS
=

α2

4zhsxB Q2
Lµν(l, l

′, λe) 2MWµν(q,P,S), (3.16)

where

2MWµν(q,P,S) = 4zh Tr (Φ(xB,S) γµ ∆(zh) γ
ν), (3.17a)

Φ(x,S) ≡
∫

d p− d2pT Φ(p,P,S)
∣∣∣∣
p+=xP+

, (3.17b)

∆(z) ≡ z
4

∫
dk+ d2kT ∆(k,Ph)

∣∣∣∣
k−=P−h/z

. (3.17c)

3.1.3 Leading twist part and connection with helicity formalism

Using the projectorsP+ andP− defined in Eq. (2.23), we can isolate the leading order part of the
hadronic tensor, analogously to what was done in Sec. 2.1.4 on page 19

2MWµν(q,P,S,Ph) ≈ 4zhI
[
Tr (P+ Φ(xB, pT ,S) P− γµ P− ∆(zh, kT) P+ γ

ν)

]
= 4zhI

[
Tr

(
P+ Φ(xB, pT ,S) γ+ γ−γµ

2
P− P− ∆(zh, kT) γ−

γ+γν

2
P+

)]
.

(3.18)
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The differential cross section becomes

d6σ

d xB dy dzh dφS d2Ph⊥

≈
∑

q

α2e2
q

sxBQ2
Lµν(l, l

′, λe) I
[
Tr

(
P+ Φ(xB, pT ,S) γ+ γ−γµ

2
P− P− ∆(zh, kT) γ−

γ+γν

2
P+

)]

≈
∑

q

I
(P+ Φ(xB, pT ,S)γ+

)
i j

α2e2
q

sxBQ2
Lµν(l, l

′, λe)

(
γ−γµ

2
P−

)
jl

(
γ+γν

2
P+

)
mi

(
P− ∆(zh, kT) γ−

)
lm

 .
(3.19)

As we already discussed in Sec. 2.2.1 on page 23, the restriction to the leading order allows us to
reduce the four dimensional Dirac space to the two-dimensional subspace of good fields. Writing
all the components of the cross section in the chirality space of the good fields, we obtain

d6σ

d xB dy dzh dφS d2Ph⊥
= ρ(S)Λ1Λ′1

I
[(
P+ Φ(xB, pT)γ+

)Λ′1Λ1

χ′1χ1

( dσeq

dy

)χ1χ
′
1; χ2χ

′
2
(
P− ∆(zh) γ

−
)
χ′2χ2

]
≡ ρ(S)Λ1Λ′1

I
[
F(xB, pT)

Λ′1Λ1

χ1χ
′
1

( dσeq

dy

)χ1χ
′
1; χ2χ

′
2D(zh, kT)χ′2χ2

]
.

(3.20)

The elementary electron-quark scattering matrix is

( dσeq

dy

)χ1χ
′
1; χ2χ

′
2

=
α2e2

q

sxBQ2
Lµν(l, l

′, λe)

(
γ−γµ

2
P−

)χ1χ2
(
γ+γν

2
P+

)χ′2χ′1

=
2α2e2

q

sxBy2


A(y) + λeC(y) 0 0 −B(y)

0 0 0 0
0 0 0 0
−B(y) 0 0 A(y) − λeC(y)

 ,
(3.21)

where

A(y) = 1− y +
y2

2
, B(y) = (1− y), C(y) = y

(
1− y

2

)
. (3.22)

The internal blocks have indicesχ′1 χ1 and the outer matrix has indicesχ′2 χ2. Notice the difference
between Eq. (3.21) and Eq. (2.27): in the latter, the presence of the Kronecker delta was identifying
two of the chirality indices, thus reproducing a true scattering matrix. Here, we don’t have just a
quark line connecting the two scattering amplitudes, but rather the correlation function∆. For this
reason, we cannot identify the chirality indices of the outgoing quark. Strictly speaking, this is not
a scattering matrix anymore, but a scattering amplitude times the conjugate of a different scattering
amplitude [19]. However, for conciseness we follow the notation of, e.g., Ref. 117.
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The leading order part of the correlation function corresponds to the transition probability
density for the process of a quark decaying into hadrons(
P− ∆(z, kT) γ−

)
χ′2χ2

≡ D(z, kT)χ′2χ2
=

∫
dξ+ d2ξT

(2π)3
√

2
eik·ξ〈0 (ψ−)χ′2(ξ) Ph

〉〈
Ph (ψ−)

†
χ2

(0) 0
〉∣∣∣∣∣
ξ−=0

=
1
√

2

∑
Y

∫
d3PY

(2π)3 2P0
Y

〈
0 (ψ−)χ′2(0) Ph,Y

〉〈
0 (ψ−)χ2(0) Ph,Y

〉∗
× δ

((
1/z− 1

)
P−h − P−Y

)
δ(2) (kT − PYT) .

(3.23)

Analogously to the distribution case, the fragmentation correlation matrix is positive semidefinite,
allowing us to set bounds on the fragmentation functions.

3.2 The correlation function ∆

While the distribution correlation function describe theconfinementof partons inside hadrons, the
fragmentation correlation function describes the way a virtual parton “decays” into a hadron plus
something else, i.e.q∗ → hY. This process is referred to ashadronization. It is a clear man-
ifestation of color confinement: the asymptotic physical states detected in experiment must be
color neutral, so that quarks have to evolve into hadrons.1 Nowadays, we can count on reliable
phenomenological descriptions of hadronization, such as the Lund model. On the other side, un-
derstanding it from first principles, as well as including spin degrees of freedom, is very difficult.

As on the distribution side the quark-quark correlation function is sufficient to describe the
dynamics at leading order in 1/Q, also for fragmentation it is sufficient to consider quark-quark
correlation functions.

The procedure for generating a complete decomposition of the correlation functions closely
follows what has been done on the distribution side in Sec. 2.2 on page 21. It is necessary to
combine the Lorentz vectorsk andPh with a basis of structures in Dirac space, and impose the
condition of Hermiticity and parity invariance. The outcome is

∆(k,Ph) = Mh B1 1 + B2 /Ph + B3 /k +
B4

Mh
σµνP

µ
hkν. (3.24)

The amplitudesBi are dimensionless real scalar functionsBi = Bi(k ·Ph, k2). The T-even and T-odd
part of the correlation function∆ can be defined in analogy to Eqs. (2.32). According to those
definitions, the last term can be classified as T-odd.

At leading twist, we are interested in the projectionP− ∆(z, kT) γ−. The insertion of the de-
composition given in Eq. (3.24) into Eq. (3.15b) and the subsequent projection of the leading-twist
component leads to

P− ∆(z, kT) γ− =
1
2

(
D1(z, z

2k2
T) + i H⊥1 (z, z2k2

T)
/kT

Mh

)
P− , (3.25)

1Note that on the way to the final state hadrons, the color carried by the initial quark can be neutralized without
breaking factorization, for instance via soft gluon contributions.
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where we introduced theparton fragmentation functions

D1(z, z
2k2

T) =
1
2z

∫
dk2 d(2k · Ph) δ

(
k2

T +
M2

h

z2
+ k2 − 2k · Ph

z

) [
B2 +

1
z

B3

]
, (3.26a)

H⊥1 (z, z2k2
T) =

1
2z

∫
dk2 d(2k · Ph) δ

(
k2

T +
M2

h

z2
+ k2 − 2k · Ph

z

)
[−B4] . (3.26b)

The fragmentation functionH⊥1 is known with the name ofCollins function[77].
The individual fragmentation functions can be isolated by means of the projection2

∆[Γ] ≡ Tr (∆Γ) , (3.27)

whereΓ stands for a specific Dirac structure. In particular, we see that

D1(z, z
2k2

T) = ∆[γ−](z, kT), (3.28a)

ε
i j
T kT j

Mh
H⊥1 (z, z2k2

T) = ∆[iσi−γ5](z, kT). (3.28b)

As we have done with the distribution functions, it will be helpful to introduce the notation

D(1/2)(z, z2k2
T) ≡ |kT |

2Mh
D(z, z2k2

T), (3.29a)

D(n)(z, z2k2
T) ≡

(
k2

T

2M2
h

)n

D(z, z2k2
T), (3.29b)

for n integer.

3.2.1 Correlation function in helicity formalism

Expressing the Dirac matrices of Eq. (3.25) in the chiral or Weyl representation, as done in
Sec. 2.2.1 on page 23, we get for the leading twist part of the correlation function the expression

(
P− ∆(z, kT) γ−

)
kl

=
1
2



0 0 0 0

0 D1(z, z2k2
T) ieiφk

|kT |
Mh

H⊥1 (z, z2k2
T) 0

0 −ie−iφk
|kT |
Mh

H⊥1 (z, z2k2
T) D1(z, z2k2

T) 0

0 0 0 0


. (3.30)

Restricting ourselves to the subspace of good quark fields and using the chirality basis, we can
rewrite the correlation function as

D(z, kT)χ′2χ2
=

1
2


D1(z, z2k2

T) ieiφk
|kT |
Mh

H⊥1 (z, z2k2
T)

−ie−iφk
|kT |
Mh

H⊥1 (z, z2k2
T) D1(z, z2k2

T)

 . (3.31)
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χ′
2

χ
2

Figure 3.3. Illustration of the position of the indices of the correlation matrix.

Fig. 3.3 shows diagrammatically the position of the indices of the correlation function. Besides
being Hermitean, the matrix fulfills the properties of angular momentum conservation and parity
invariance. Because of the presence of factors eilφk, we have to take into accountl units of angular
momentum in the initial state, therefore the condition of angular momentum conservation isχ′2 =

χ2 + l and the condition of parity invariance is

D(z, kT)χ′2χ2
= (−1)l D(z, kT)−χ′2 −χ2

∣∣∣∣
l→−l

. (3.32)

Positivity of the correlation matrix implies the bounds

D1(z, z
2k2

T) ≥ 0, (3.33a)∣∣∣H⊥(1)
1 (z, z2k2

T)
∣∣∣ ≤ D(1/2)

1 (z, z2k2
T). (3.33b)

3.3 Cross section and asymmetries

In order to obtain the cross section for one-particle inclusive deep inelastic scattering, the expres-
sions for the spin density matrix of the target, Eq. (2.42), for the distribution correlation matrix,
Eq. (2.48), and for the fragmentation correlation matrix Eq. (3.31) have to be inserted in the for-
mula for the cross section

d6σ

d xB dy dzh dφS d2Ph⊥
=

∑
q

ρ(S)Λ1Λ′1
I

[
F(xB, pT)

Λ′1Λ1

χ1χ
′
1

( dσeq

dy

)χ1χ
′
1; χ2χ

′
2D(zh, kT)χ′2χ2

]
. (3.34)

Instead of presenting the full cross section, we turn directly to sum and differences of polarized
cross sections. As in the previous chapter, we will use the symbols→ to indicate polarization along
the beam direction and← opposite to it. We will also use↑ to indicate transverse polarization in the
direction specified by the angleφS, and↓ opposite to it. The subscriptU will denote unpolarized
particles, whileL andT will denote longitudinally and transversely polarized particles. The first
subscript describes always the beam polarization and the second subscript the target polarization.
Fig. 3.4 on the following page gives a pictorial description of the vectors and angles involved in
one-particle inclusive deep inelastic scattering. The unpolarized cross section reads [57]

2The absence of the factor 1/2 in Eq. (3.27) as compared to Eq. (2.35) is due to the absence of an averaging over
initial states.
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Figure 3.4. Description of the vectors and angles involved in one-particle inclusive deep inelastic scattering.

d6σUU

d xB dy dzh dφS d2Ph⊥
=

2α2

sxBy2

{
A(y)

∑
q

e2
qI

[
f q
1 (xB, p2

T)Dq
1(zh, z

2
hk2

T)
]

− B(y) cos 2φh

∑
q

e2
qI

[
2(pT · P̂h⊥)(kT · P̂h⊥) − pT · kT

MMh
h⊥q

1 (xB, p2
T)H⊥q

1 (zh, z
2
hk2

T)

]}
. (3.35)

In the following equations, we will omit to explicitly indicate the variables in which the cross
section is differential and the variables the distribution and fragmentation functions depend on. We
define the following polarized cross sections differences

d6σLL ≡
1
2

(
d6σ→← − d6σ→→

)
, d6σUL ≡

1
2

(
d6σU← − d6σU→

)
, (3.36a)

d6σLT ≡
1
2

(
d6σ→↑ − d6σ→↓

)
, d6σUT ≡

1
2

(
d6σU↑ − d6σU↓

)
. (3.36b)

for which we obtain the following expressions in terms of distribution and fragmentation func-
tions [57]

d6σLL =
∑

q

2α2e2
q

sxBy2
|λe| |SL|C(y)I

[
gq

1Dq
1

]
, (3.37a)

d6σUL =
∑

q

2α2e2
q

sxBy2
|SL| B(y) sin 2φhI

[
2(pT · P̂h⊥)(kT · P̂h⊥) − pT · kT

MMh
h⊥q

1L H⊥q
1

]
, (3.37b)

d6σLT =
∑

q

2α2e2
q

sxBy2
|λe| |ST | C(y) cos(φh − φS)I

[
pT · P̂h⊥

M
gq

1TDq
1

]
, (3.37c)
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d6σUT =
∑

q

2α2e2
q

sxBy2
|ST |

{
B(y) sin(φh + φS)I

[
kT · P̂h⊥

Mh
hq

1H⊥q
1

]

+ A(y) sin(φh − φS)I
[

pT · P̂h⊥

M
f ⊥q
1T Dq

1

]
+ B(y) sin(3φh − φS)

× I
4(pT · P̂h⊥)2(kT · P̂h⊥) − 2(pT · P̂h⊥)(pT · kT) − p2

T(kT · P̂h⊥)

2M2Mh
h⊥q

1T H⊥q
1

}.
(3.37d)

3.3.1 Transverse momentum measurements

Due to the presence of an observable transverse momentum, i.e. that of the final hadron, one-
particle inclusive deep inelastic scattering gives the possibility of extracting some information on
the transverse momentum of partons. It is convenient to introduce the transverse momentum of
the hadron with respect to the quark,KT = −zkT . In experiments where jets can be identified, it
corresponds to the transverse momentum of the detected hadron with respect to the jet axis. The
simplest quantity to be measured is

〈
P2

h⊥(xB, zh)
〉 ≡ ∫

dφS d2Ph⊥ P2
h⊥ d6σUU∫

dφS d2Ph⊥ d6σUU

=

∑
q e2

q

[
z2

h

〈
p2

T(xB)
〉

+
〈
K2

T(zh)
〉]

f q
1 (xB)Dq

1(zh)∑
q e2

q f q
1 (xB)Dq

1(zh)
,

(3.38)

where

〈
p2

T(xB)
〉 ≡ ∫

d2pT p2
T f q

1 (xB, p2
T)

f q
1 (xB)

,
〈
K2

T(zh)
〉 ≡ ∫

d2KT K2
T Dq

1(zh, K2
T)

Dq
1(zh)

. (3.39)

Assuming that all quark flavors have the same transverse momentum distribution we reach the
result 〈

P2
h⊥(xB, zh)

〉
= z2

h

〈
p2

T(xB)
〉

+
〈
K2

T(zh)
〉
. (3.40)

3.3.2 Transversity measurements

At the end of the previous chapter, we concluded that in inclusive deep inelastic scattering it is
not possible to measure the transversity distribution function,h1. In one-particle inclusive deep
inelastic scattering, we see from Eq. (3.37d) that it is possible for the transversity distribution to
appear in an observable in connection with a chiral-odd fragmentation function, i.e. the Collins
function.

It is convenient to introduce the angleφ ≡ φh+φS. As specified before, we define the azimuthal
angles with reference to the electron scattering plane. On the other side, it is possible to choose
the transverse component of the target spin as the reference axis for the measurement of azimuthal
angles. When expressing angles with respect to the target spin, we will use a superscriptS. The
relations between the angles in the two different systems isφS = −φS

l , φh = φS
h − φS

l , and, in
particular,φ ≡ φS

h − 2φS
l .
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The relevant quantity to be measured is the azimuthal single transverse spin asymmetry

〈sinφ〉UT (xB, y, zh) ≡
∫

dφS d2Ph⊥ sinφ d6σUT∫
dφS d2Ph⊥ d6σUU

= |ST |
(1/xBy2) B(y)

∑
q e2

q

∫
d2Ph⊥ I

[
(kT · P̂h⊥/2Mh) hq

1H⊥q
1

]
(1/xBy2) A(y)

∑
q e2

q f q
1 (xB) Dq

1(zh)
.

(3.41)

In this expression, the transverse momenta ofh1 and H⊥1 are entangled in a convolution inte-
gral [151]. To simplify the situation, we have to make some assumptions on the transverse mo-
mentum dependence of the distribution and fragmentation function.

The simplest example is to suppose there is no intrinsic transverse momentum of the partons
inside the target [15, 23], i.e.

h1(x, p2
T) ≈ h1(x)

δ
(
p2

T

)
π

. (3.42)

Under this assumption, the pion transverse momentum with respect to the virtual photon is entirely
due to the fragmentation process, i.e.Ph⊥ = KT , and the convolution can be disentangled

〈sinφ〉UT (xB, y, zh) ≈ |ST |
(1/xBy2) B(y)

∑
q e2

q hq
1(xB) H⊥(1/2)q

1 (zh)

(1/xBy2) A(y)
∑

q e2
q f q

1 (xB) Dq
1(zh)

, (3.43)

where the approximation sign reminds us that the equality is assumption dependent.
Another possibility is to assume that the transverse momentum distribution is Gaussian-like in

both the distribution and fragmentation side, i.e.

h1(x, p2
T) ≈ h1(x)

e−p2
T

/
〈p2

T (x)〉
π
〈
p2

T(x)
〉 , H⊥1 (z, K2

T) ≈ H⊥1 (z)
e−K2

T

/
〈K2

T (z)〉
π
〈
K2

T(z)
〉 . (3.44)

The convolution becomes [141]

I
[
kT · P̂h⊥

2Mh
h1H⊥1

]
≈ h1(xB) H⊥1 (zh)

〈
K2

T(zh)
〉〈

P2
h⊥(xB, zh)

〉 |Ph⊥|
zhMh

e−P2
h⊥

/
〈P2

h⊥(xB,zh)〉
π
〈
P2

h⊥(xB, zh)
〉 , (3.45)

where
〈
P2

h⊥
〉

is given by Eq. (3.40). Using the relation〈|aT |〉2 = 〈a2
T〉π/4, valid for Gaussian

distributions, we can carry out the integration overPh⊥ and obtain∫
d2Ph⊥ I

[
kT · P̂h⊥

2Mh
hq

1H⊥q
1

]
=

〈
K2

T

〉〈
P2

h⊥
〉 〈|Ph⊥|

〉
2zhMh

hq
1(xB) H⊥q

1 (zh)

=

〈
K2

T

〉√
π/2

2zhMh

√〈
P2

h⊥
〉 hq

1(xB) H⊥q
1 (zh)

=

〈|KT |
〉

2zhMh

√
1 + z2

h

〈
p2

T

〉/〈
K2

T

〉 hq
1(xB) H⊥q

1 (zh),

(3.46)
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where thexB andzh dependence of the average transverse momenta squared is understood. The
asymmetry becomes

〈sinφ〉UT (xB, y, zh) ≈ |ST |
(1/xBy2) B(y)

∑
q e2

q hq
1(xB) H⊥(1/2)q

1 (zh)
/√

1 + z2
h

〈
p2

T

〉/〈
K2

T

〉
(1/xBy2)A(y)

∑
q e2

q f q
1 (xB) Dq

1(zh)
, (3.47)

where the approximation sign reminds us that the equality is assumption dependent.
If we want to disentangle the convolution integral of Eq. (3.37d) without making any assump-

tion on the intrinsic transverse momentum distribution, we need to weight the integral with the
magnitude of the pion transverse momentum [127]. This procedure results in the azimuthal trans-
verse spin asymmetry

〈 |Ph⊥|
Mh

sinφ
〉

UT
(xB, y, zh) ≡

∫
dφS d2Ph⊥ (|Ph⊥|/Mh) sinφ ( d6σU↑ − d6σU↓)∫

dφS d2Ph⊥( d6σU↑ + d6σU↓)

= |ST |
(1/xBy2) B(y) zh

∑
q e2

q hq
1(xB) H⊥(1)q

1 (zh)

(1/xBy2) A(y)
∑

q e2
q f q

1 (xB) Dq
1(zh)

.

(3.48)

We achieved an assumption-free factorization of thexB dependent transversity distribution and the
zh dependent Collins function. The measurement of this asymmetry requires binning the cross
section according to the magnitude of the pion transverse momentum. On the other side, this
asymmetry represents potentially the cleanest method to measure the transversity distribution to-
gether with the Collins function. Moreover, it turns out that it is possible to study the evolution
of the momentH⊥(1)

1 with the energy scale [104], without incurring complications due to Sudakov
factors [54]. However, the inclusion of transverse momentum raises delicate issues related to color
gauge invariance, factorization and evolution [124, 133].

The Collins function can be measured also ine+e− annihilation into two hadrons belonging
to two different jets [51, 52]. We will only briefly mention this issue at the end of Chap. 6. The
relevance of this measurement is clear, since an independent measurement of the Collins function
would be extremely useful to pin down the transversity distribution, despite the problems with
relating measurements at different energy scales [54].

3.4 Summary

In this chapter we studied one-particle inclusive deep inelastic scattering at leading twist, including
transverse momenta and neglecting the polarization of the final state hadron. To describe the pro-
cessq∗ → hY we introduced the fragmentation correlation function of Eq. (3.12). At leading order
in 1/Q, the correlation function can be decomposed in two terms, containing the unpolarized frag-
mentation functionD1, and the chiral-odd, T-odd Collins fragmentation function,H⊥1 [Eq. (3.24)].

Similarly to what was done in Chap. 2, we cast the correlation function in the form of a forward
decay matrix in the quark chirality space [Eq. (3.31)]. Since the matrix is positive semidefinite, we
were able to suggest for the first time a bound on the Collins function [Eq. (3.33b)].
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The Collins function is extremely important for possible transversity measurements. Being
chiral odd, it appears in the single transverse spin asymmetry of Eq. (3.37d) in a convolution
with the transversity distribution. The convolution can be disentangled by measuring the weighted
azimuthal asymmetry of Eq. (3.48). This is therefore a first way to observe the transversity distri-
bution.

This method to access transversity poses some problems. First of all, at present we have no
convincing information on the magnitude of the Collins function. This is a problem common toall
polarized fragmentation functions, and in particular to T-odd functions. We postpone this discus-
sion to Chap. 6, where we will mention the scarce information we have on the Collins function,
we will attempt to estimate it in a consistent model, and we will address the question if T-odd
fragmentation functions could offer a good chance to tackle the transversity.

The second problem presented by the Collins function is the need of including transverse mo-
mentum in the analysis. The study of transverse momentum dependent distribution and fragmenta-
tion functions isper sea very intriguing subject, but one has to deal with theoretical subtleties (e.g.
Sudakov factors, transverse gauge links, evolution equations), phenomenological difficulties (e.g.
describing the transverse momentum dependence of the functions) and experimental challenges
(e.g. measuring a weighted azimuthal asymmetry).

In the next chapter, we will examine two-particle inclusive DIS and we will show that the
transversity distribution can appear in connection with two different fragmentation functions, even
if the cross section is integrated over the transverse momentum of the outgoing hadron.



4
Two-hadron

fragmentation functions

We often think that when we have com-
pleted our study of one, we know all about
two, because “two” is “one and one”. We
forget that we have still to make a study of
“and”.

Sir A. Eddington

To observe transversity, an alternative process is represented by two-particle inclusive deep inelas-
tic scattering, where we can introduce two-hadron fragmentation functions. The transverse spin
of the target can be correlated via a transversely polarized quark to the relative transverse momen-
tum of the hadronic pair instead of the transverse momentum of the outgoing hadron, as in the
case of the Collins function. This provides a way in which the transversity can be probed without
including partonic transverse momenta, thus avoiding several complications and subtleties.

Two-hadron fragmentation functions and their relevance for transversity measurements have
been partially analyzed in some articles [79, 117, 118]. The most complete treatment of these func-
tions has been carried out by Bianconi et al. in Ref. 44. Model calculations have been performed
in Refs. 45, 80, 150. Two-pion fragmentation functions have been studied also in the context of
e+e− annihilation with a somewhat different formalism [27].

In an apparently independent context, semi-inclusive production of spin-one hadrons (e.g.ρ,
ω, φ) has been also studied and proposed as an alternative method to measure the transversity
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Figure 4.1. Two-particle inclusive deep-inelastic scattering.

distribution [19, 36, 92, 122]. However, to measure the polarization of the outgoing vector meson
(e.g.ρ0) it is necessary to measure the four-momenta of the decay products (e.g.π+π−). Thus, the
reactionep→ eρ0X(ρ0→ π+π−) is just a part of the more general reactionep→ eπ+π−X, namely
the part where the total invariant mass of the pion pair is equal to theρ mass.

In this chapter, we will go along the same route presented in Ref. 44 and we will complement
that treatment with the study of the partial wave expansion of two-hadron fragmentation functions.
This step will prove to be essential to unravel the connection with spin-one fragmentation functions
and interference fragmentation functions.

4.1 Two-particle inclusive deep inelastic scattering

In two-particle inclusive deep inelastic scattering,twoof the hadrons belonging to the current frag-
mentation region are detected in coincidence with the scattered electron, as shown schematically
in Fig. 4.1.

Some experimental results on two pion production are already available [25, 29, 76]. More
recent data are available only on exclusive production of two pions [7, 8, 67–69] and on two-hadron
production ine+e− annihilation [1, 2, 4–6].

If we consider only low invariant masses, hadron pairs are produced mainly in thes-wave
channel, with a typically smooth distribution over the invariant mass, or in thep-wave channel, via
a spin-one resonance, with its typical Breit-Wigner invariant mass distribution. This is the case of
the production of two pions (which can proceed through aρ(770) resonance), two kaons (φ(1020)
resonance), a pion and a kaon (K∗(892) resonance). Fig. 4.2 shows the typical invariant-mass
spectrum of pion pairs in two-particle inclusive DIS.

The situation is different for proton-pion production, where on top of the smooths-wave con-
tinuum the sharp spin-halfΛ(1115) resonance appears. Since theΛ undergoes a parity-violating
weak decay the formalism we will develop in this chapter will prove to be inadequate. Moreover,
the resonance is so sharp that it is more appropriate and easier to study it in the framework of
polarized single hadron production. For these reasons, although polarizedΛ production represents
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Figure 4.2. Typical invariant mass spectrum of pion pairs produced in semi-inclusive DIS [29]. Theρ peak
is visible.

a very nice way to observe the transversity distribution, we will not touch this subject, for which it
is possible to consult a vast literature [13, 14, 16–20, 22, 28, 84, 86].

4.1.1 Kinematics

We assume to detect two hadrons with massesM1 andM2 and momentaP1 andP2. We denote the
center-of-mass momentum asPh and the total invariant mass of the system asMh. We maintain the
parametrization of the vectorsP, Ph andq as given in Eqs. (3.3) and Eqs. (3.10), but we introduce
also the semi-difference of the two hadrons’ momenta,R. We parametrize the new momenta
according to1

Rµ =

[
ζ

2
P−h ,

(
M2

1 − M2
2

)
− ζ

2 M2
h

2P−h
, RT

]
, (4.1a)

Pµ
1 =

Pµ
h

2
+ Rµ =

[ (1 + ζ)
2

P−h ,

(
M2

1 − M2
2

)
+

(1−ζ)
2 M2

h

2P−h
, RT

]
, (4.1b)

Pµ
2 =

Pµ
h

2
− Rµ =

[ (1− ζ)
2

P−h ,

(
M2

1 − M2
2

)
+

(1+ζ)
2 M2

h

2P−h
, −RT

]
. (4.1c)

The total invariant mass squared,M2
h, has to be small compared toQ2. For later convenience, we

compute the scalar quantities

R2 =

(
M2

1 + M2
2

)
2

−
M2

h

4
, (4.2a)

R2
T =

1
2

[ (1− ζ)(1 + ζ)
2

M2
h − (1− ζ)M2

1 − (1 + ζ)M2
2

]
, (4.2b)

1The connection with the variableξ used in Ref. 44 isξ = 1
2(1 + ζ).
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Ph · R =

(
M2

1 − M2
2

)
2

, (4.2c)

Ph · k =
M2

h

2z
+ z

k2 + |kT |2
2

, (4.2d)

k · R =

(
M2

1 − M2
2

)
− ζ

2 M2
h

2z
+ zζ

k2 + |kT |2
4

− kT · RT . (4.2e)

4.1.2 The hadronic tensor

For a process with two outgoing hadrons we can define the cross section

2E1 2E2 d9σ

d3P1 d3P2 d xB dy dφS

=
α2

2sxBQ2
Lµν(l, l

′, λe) 2MWµν(q,P,S,P1,P2), (4.3)

which can be rewritten in terms of the different variables as

d9σ

dζ d M2
h dφR dzh d2Ph⊥ d xB dy dφS

=
α2

32zhsxBQ2
Lµν(l, l

′, λe) 2MWµν(q,P,S,P1,P2). (4.4)

The angleφR is the azimuthal angle of the vectorRT with respect to the lepton plane, measured
in a plane perpendicular to the direction of the outgoing hadron. Neglecting 1/Q corrections, it
can be identified with the azimuthal angle measured in a plane perpendicular to the virtual photon
direction or to the lepton beam. Notice the extra factor 8 in the denominator compared to the
one-particle inclusive case. To obtain the previous formula, we made use of the steps

d3P1 d3P2

2E1 2E2
=

d3Ph d3R

E2
h

(
1− 4E2

R/E
2
h

) ≈ dzh d2Ph⊥ dζ d2RT

z2(1− ζ2)

=
dzh d2Ph⊥ dζ d2RT

2zh(1− ζ2)
=

dzh d2Ph dζ d M2
h dφR

16zh
.

(4.5)

The hadronic tensor for two-particle inclusive scattering is defined as

2MWµν(q,P,S,P1,P2) =
1

(2π)7

∑
X′′

∫
d3PX′′

(2π)3 2P0
X′′

× (2π)4 δ(4)(q + P− PX′′ − P1 − P2
)
Hµν(P,S,PX′′ ,P1,P2),

(4.6)

Hµν(P,S,PX′′ ,P1,P2) =
〈
P,S Jµ(0) P1,P2,X′′

〉〈
P1,P2,X′′ Jν(0) P,S

〉
. (4.7)

With this definition, it is possible to recover the hadronic tensor for one-particle inclusive scattering
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by integration over the second hadron

∑
h2

∫
d3P2

2P0
2

2MWµν(q,P,S,P1,P2)

=
∑
h2

∫
d3P2

(2π)3 2P0
2

∑
X′′

∫
d3PX′′

(2π)3 2P0
X′′

δ(4)(q + P− PX′′ − P2 − P1
)
Hµν(P,S,PX′′ ,P1,P2)

=
∑
X′

∫
d3PX′

(2π)3 2P0
X′
δ(4)(q + P− PX′ − P1

) ∫
d3P2

(2π)3 2P0
2

Hµν(P,S,PX′ − P2,P1,P2)

=
∑
X′

∫
d3PX′

(2π)3 2P0
X′
δ(4)(q + P− PX′ − P1

)
Hµν(P,S,PX′ ,P1) ≡ 2MWµν(q,P,S,P1)

(4.8)

where the stateX′ represents the sum of the statesX′′ plus all possible states of the second hadron,
andPX′ = PX′′ + P2.

In analogy to what we presented in Sec. 3.1.2 on page 37, at leading order in 1/Q the hadronic
tensor can be expressed in terms of correlation functions as

2MWµν(q,P,S,P1,P2) = 32zh I
[
Tr

(
Φ(xB, pT ,S) γµ ∆(zh, kT , ζ,M

2
h, φR) γν

)]
, (4.9)

where the fragmentation correlation function has been generalized to include also the dependence
on the vectorR

∆(z, ζ,M2
h, φR, kT) ≡ 1

32z

∫
dk+∆(k,Ph,R)

∣∣∣∣
k−=P−h/z

. (4.10)

The fully differential cross section might be a little bit too complex for experimental measure-
ments. To simplify the situation, we can perform the integration over the transverse part of the
center-of-mass momentum,Ph⊥. The integrated cross section is

d7σ

dζ d M2
h dφR dzh d xB dy dφS

=
α2

32zhsxBQ2
Lµν(l, l

′, λe) 2MWµν(q,P,S,P1,P2), (4.11)

where

2MWµν(q,P,S,P1,P2) = 32zh Tr
[
Φ(xB,S) γµ ∆(zh, ζ,M

2
h, φR) γν

]
. (4.12a)

∆(z, ζ,M2
h, φR) ≡ z

32

∫
dk+ d2kT ∆(k,Ph,R)

∣∣∣∣
k−=P−h/z

. (4.12b)

To identify the leading twist part of the hadronic tensor and write down the cross section, we
can trivially repeat the steps described in Sec. 3.1.3 on page 39.
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4.2 The correlation function ∆

The most general expansion of the quark-quark correlation matrix∆, respecting Hermiticity and
parity invariance, is [44]2

∆(k,Ph,R) = Mh C1 1 + C2 /Ph + C3 /R+ C4 /k

+
C5

Mh
σµνP

µ
hkν +

C6

Mh
σµνR

µkν +
C7

Mh
σµνP

µ
hRν +

C8

M2
h

γ5ε
µνρσγµPhνRρkσ.

(4.13)

The amplitudesCi are dimensionless real scalar functionsCi = Ci(k ·Ph, k2,R2, k ·R). The last four
terms are T-odd.

We are going to consider first the case when no hadron transverse momentum,Ph⊥, is detected
and postpone the complete case to the second part of the chapter. We insert the general decompo-
sition of Eq. (4.13) into Eq. (3.17c) and extract the leading-twist projection

P− ∆(z, ζ,M2
h, φR) γ− =

1
8π

(
D1(z, ζ,M

2
h) + i H^1 (z, ζ,M2

h)
/RT

Mh

)
P− , (4.14)

The prefactor has been chosen to have a better connection with one-hadron results, i.e. integrated
overζ, M2

h andφR. We introduced thetwo-hadronparton fragmentation functions

D1(z, ζ,M
2
h) =

z
2

∫
d2kT dk2 d(2k · Ph) δ

(
k2

T +
M2

h

z2
+ k2 − 2k · Ph

z

) [
C2 +

ζ

2
C3 +

1
z
C4

]
,

(4.15a)

H^1 (z, ζ,M2
h) =

z
2

∫
d2kT dk2 d(2k · Ph) δ

(
k2

T +
M2

h

z2
+ k2 − 2k · Ph

z

) [
−C7 +

1
z
C6

]
. (4.15b)

The fragmentation functionH^1 is chiral-odd and T-odd. Like the Collins function, it can be used
as a partner for the transversity distribution, as we will see in the next section. Notice that this
function does not require the presence of partonic transverse momentum. Because of this, its
evolution equations could be simpler than the ones of the Collins function. Since this function has
the same operator structure as the transversity, it has been suggested that it could have the same
evolution equations [55, 56, 160]. However, the situation could be complicated by the presence of
the dependence on the variablesζ andM2

h, which are not present in single particle functions [161].

4.2.1 Correlation function in helicity formalism

Once again, expressing the Dirac matrices of Eq. (4.14) in the chiral or Weyl representation, we
obtain

(
P− ∆(z, ζ,M2

h, φR) γ−
)
kl

=
1
8π



0 0 0 0

0 D1(z, ζ,M2
h) ieiφR

|RT |
Mh

H^1 (z, ζ,M2
h) 0

0 −ie−iφR
|RT |
Mh

H^1 (z, ζ,M2
h) D1(z, ζ,M2

h) 0

0 0 0 0


. (4.16)

2Note that we always useMh to render the amplitudes dimensionless, in contrast to what is done in Ref. 44.
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Figure 4.3. Description of the vectors and angles involved in two-particle inclusive deep inelastic scattering.

As already observed before, we can restrict ourselves to the subspace of good quark fields and
adopt the chirality basis, and rewrite the correlation function as

D(z, ζ,M2
h, φR)χ′2χ2

=
1
8π


D1(z, ζ,M2

h) ieiφR
|RT |
Mh

H^1 (z, ζ,M2
h)

−ie−iφR
|RT |
Mh

H^1 (z, ζ,M2
h) D1(z, ζ,M2

h)

 . (4.17)

From the positivity of the previous matrix, we can derive bounds for the two-hadron fragmentation
functions defined above:

D1(z, ζ,M
2
h) ≥ 0, (4.18a)

|RT |
Mh

∣∣∣H^1 (z, ζ,M2
h)
∣∣∣ ≤ D1(z, ζ,M

2
h). (4.18b)

4.3 Cross section and asymmetries

In Fig. 4.3, we give a pictorial description of the vectors and angles involved in one-particle in-
clusive deep inelastic scattering. The differential cross section integrated over the center-of-mass
transverse momentum reads

d7σ

dζ d M2
h dφR dzh d xB dy dφS

=
∑

q

ρ(S)Λ1Λ′1
F(xB)

Λ′1Λ1

χ1χ
′
1

( dσeq

dy

)χ1χ
′
1; χ2χ

′
2 D(zh, ζ,M

2
h, φR)χ′2χ2

.

(4.19)
Inserting into the previous equation the formulae obtained for the distribution correlation matrix,
Eq. (2.48), the elementary cross section, Eq. (3.21), and the two-hadron fragmentation matrix,
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Eq. (4.17), we obtain the following result3

d7σ

dζ d M2
h dφR dzh d xB dy dφS

=
2α2

4πsxBy2

∑
q

e2
q

[
A(y) f q

1 (xB)Dq
1(z, ζ,M

2
h)

+ λe SL C(y) gq
1(xB)Dq

1(z, ζ,M
2
h) + B(y) |S⊥|

|RT |
Mh

sin(φR + φS) hq
1(xB)H^q

1 (z, ζ,M2
h)

]
. (4.20)

4.3.1 Transversity measurements

To access transversity in two-particle inclusive deep inelastic scattering it is required to measure
the azimuthal single transverse spin asymmetry [150]

〈sin(φR + φS)〉UT (xB, y, zh) ≡
∫

dφS dφR dζ d M2
h sin(φR + φS) d7σUT∫

dφS dφR dζ d M2
h d7σUU

= |ST |
(1/xBy2) B(y)

∑
q e2

q hq
1(xB)

∫
dζ d M2

h

|RT |
2Mh

H^q
1 (zh, ζ,M2

h)

(1/xBy2) A(y)
∑

q e2
q f q

1 (xB)
∫

dζ d M2
h Dq

1(zh, ζ,M2
h)

.

(4.21)

The most valuable characteristic of this asymmetry is that it does not require the measurement of
the center of mass transverse momentum, so that the complications connected to the inclusion of
partonic transverse momenta can be avoided. Apart from the usual variablesxB, y, zh, the only
other variable to be measured is the angleφR + φS. In case the transverse spin direction is used as
a reference axis, instead of the lepton scattering plane, then the angle to be measured isφS

R − 2φS
l .

4.4 Partial wave expansion

Up to now, we did not make any study of the inner structure of the two-hadron fragmentation
functions. It is useful to expand them in partial waves, because if we restrict ourselves to systems
with low invariant masses, the dominant contributions come only from the lowest harmonics, i.e.
s andp waves.

4.4.1 Center-of-mass parameters

The partial-wave expansion can be performed only in the frame of reference of the center of mass
of the hadron pair. As a first step, we need to express all vectors in this frame, i.e.

Pµ
h

cm
=

[
Mh√

2
,

Mh√
2
, 0, 0

]
, (4.22a)

3The different prefactor appearing in Ref. 150 is due to the different definition of the hadronic tensor and of the
fragmentation functions.
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Figure 4.4. Description of the polar angleθ, in the center-of-mass frame of the hadron couple.

Rµ cm
=

[ √
M2

1 + |R|2 −
√

M2
2 + |R|2 − 2|R| cosθ

2
√

2
,√

M2
1 + |R|2 −

√
M2

2 + |R|2 + 2|R| cosθ

2
√

2
, |R| sinθ cosφR, |R| sinθ sinφR

]
,

(4.22b)

Pµ
1

cm
=

[ √
M2

1 + |R|2 − |R| cosθ
√

2
,

√
M2

1 + |R|2 + |R| cosθ
√

2
, |R| sinθ cosφR, |R| sinθ sinφR

]
,

(4.22c)

Pµ
2

cm
=

[ √
M2

2 + |R|2 − |R| cosθ
√

2
,

√
M2

2 + |R|2 + |R| cosθ
√

2
, −|R| sinθ cosφR, −|R| sinθ sinφR

]
,

(4.22d)

where

|R| = 1
2

√
M2

h − 2
(
M2

1 + M2
2

)
+

(
M2

1 − M2
2

)2
/
M2

h. (4.23)

The polar angleθ is illustrated in Fig. 4.4. The variableζ is connected to the center-of-mass
variable cosθ in the following way:

ζ ≡ 2R−

P−h

cm
=

1
Mh

(√
M2

1 + |R|2 −
√

M2
2 + |R|2 − 2|R| cosθ

)
. (4.24)

If M1 = M2, notice thatR is purely spacelike and

|R| = −|R| = 1
2

√
M2

h − 4M2
1, ζ = − 1

Mh

√
M2

h − 4M2
1 cosθ. (4.25)
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4.4.2 The correlation function∆ with partial wave-expansion

To perform the partial-wave expansion of the fragmentation functions, let us first express the cor-
relation function∆ in terms of center-of-mass parameters

P− ∆(z, ζ(cosθ),M2
h, φR) γ− =

1
8π

(
D1

(
z, ζ(cosθ),M2

h

)
+ iH^1

(
z, ζ(cosθ),M2

h

)
sinθ

|R|
Mh

/nφR

)
P− ,
(4.26)

wherenµφR
=

[
0, 0, cosφR, sinφR

]
. In general, we can expand the fragmentation functions on the

basis of the Legendre polynomials in the following way

D1
(
z, ζ(cosθ),M2

h

)
=

∑
n

D1n
(
z,M2

h

)
Pn(cosθ) (4.27)

with

D1n
(
z,M2

h

)
=

∫ 1

−1
d cosθ Pn(cosθ) D1

(
z, ζ(cosθ),M2

h

)
. (4.28)

Considering only two-hadron systems with a low invariant mass, we assume we can truncate
the expansion in order to include onlys-wave andp-wave contributions to the correlation function.
The connection between the correlation function∆ in terms of the variableζ and in terms of the
variable cosθ is

∆(z, cosθ,M2
h, φR) =

2|R|
Mh

∆(z, ζ,M2
h, φR), (4.29)

to take into account the fact that dζ = 2|R|/Mh d cosθ. Then we can write the partial-wave
expanded correlation function as

P− ∆(z, cosθ,M2
h, φR) γ− ≈ 1

8π

[
D1,UU

(
z,M2

h

)
+ Dsp

1,UL

(
z,M2

h

)
cosθ + Dpp

1,LL

(
z,M2

h

) 1
4

(
3 cos2 θ − 1

)
+ i

(
H^ sp

1,UT

(
z,M2

h

)
+ H^ pp

1,LT

(
z,M2

h

)
cosθ

)
sinθ

|R|
Mh

/nφR

]
P− ,

(4.30)

The correlation function can be consequently written in matrix form as

D(z, cosθ,M2
h, φR)χ′2χ2

≈

1
8π


D1,UU + Dsp

1,UL cosθ + Dpp
1,LL

1
4

(
3 cos2 θ − 1

)
+i

(
H^ sp

1,UT + H^ pp
1,LT cosθ

)
sinθ

|R|
Mh

eiφR

−i
(
H^ sp

1,UT + H^ pp
1,LT cosθ

)
sinθ

|R|
Mh

e−iφR D1,UU + Dsp
1,UL cosθ + Dpp

1,LL
1
4

(
3 cos2 θ − 1

)
 .

(4.31)

Here, it is not yet clear what are the motivations to assign such names to the functions. It will
become clear after we distinguish thes- and p-wave contributions in the rest of the section and
also after we study spin-one fragmentation functions in Chap. 5.

The information encoded in the correlation function can be expressed in a different way. De-
pending on the angular momentum of the system, the angular distribution of the two hadrons is
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characterized by a specific bilinear combination of spherical harmonics. If the angular momentum
can be only 0 or 1, as in the case of our truncated partial wave expansion, the angular distribution
of the two hadrons can be fully described by the decay matrix

D(θ, φR) jm, j′m′ = Ym
j Ym′ ∗

j′ =

1
4π



1 −
√

3
2 sinθ eiφR

√
3 cosθ

√
3
2 sinθ e−iφR

−
√

3
2 sinθ e−iφR 3

2 sin2 θ − 3√
2

cosθ sinθ e−iφR −3
2 sin2 θ e−2iφR

√
3 cosθ − 3√

2
cosθ sinθ eiφR 3 cos2 θ 3√

2
cosθ sinθ e−iφR√

3
2 sinθ eiφR −3

2 sin2 θ e2iφR 3√
2

cosθ sinθ eiφR 3
2 sin2 θ


. (4.32)

The angular momentum indices,j and j′, run only from 0 to 1. For convenience, we split the
matrix into blocks: the upper-left block (j = j′ = 0) refers to the pures-wave component, the
lower-right block (j = j′ = 1) describes thep-wave component, and it is subdivided according to
the value ofm,m′ = +1,0,−1, Finally, the off-diagonal blocks describe thesp interference.

The original correlation function can now be expressed as the trace of the decay matrix and a
fragmentation matrix in the quark chirality space⊗ the hadronic system angular momentum space

D(z, cosθ,M2
h, φR)χ′2χ2

= D(z,M2
h) j′m′, jm

χ′2χ2

D(θ, φR) jm, j′m′ . (4.33)

The solution for the fragmentation matrix is the 8× 8 matrix

D(z,M2
h) j′m′, jm

χ′2χ2

=
1
8

Aj′m′, jm Bj′m′, jm

B†j′m′, jm Aj′m′, jm

 , (4.34)

where the inner blocks, spanning the hadronic angular momentum space, read explicitly

Aj′m′, jm =



Dss
1,UU 0 2√

3
Dsp

1,UL 0

0 Dpp
1,UU − 1

3Dpp
1,LL 0 0

2√
3
Dsp

1,UL 0 Dpp
1,UU + 2

3Dpp
1,LL 0

0 0 0 Dpp
1,UU − 1

3Dpp
1,LL


, (4.35a)

Bj′m′, jm =



0 0 0 i2
√

2√
3
|R|
Mh

H^ sp
1,UT

−i 2
√

2√
3
|R|
Mh

H^ sp
1,UT 0 −i 2

√
2

3
|R|
Mh

H^ pp
1,LT 0

0 0 0 i2
√

2
3
|R|
Mh

H^ pp
1,LT

0 0 0 0


. (4.35b)
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The choice of the indices in the names of the fragmentation functions is connected to their
position in the matrix. Thessfunctions are typical of unpolarized two-hadron fragmentation. The
spsector describes the interference betweens- andp-wave fragmentation; this is the sector studied
by Jaffe et al. in Refs. 117 and 163. Thepp functions correspond to the spin-one fragmentation
functions studied in Refs. 19,36,122. We will take a look at them from a different point of view in
the next chapter and also the choice of the subscripts will become more transparent.

Note that the matrix fulfills the properties of Hermiticity, conservation of angular momentum
(requiringm+ χ′2 = m′ + χ2) and parity invariance [117]

D j′m′, jm

χ′2χ2

= D j′ −m′, j −m

−χ′2−χ2

. (4.36)

The imaginary entries of the matrix correspond to T-odd functions.

In principle the fragmentation matrix could contain more functions, without violating any sym-
metry, but after tracing it with the decay matrix, they would vanish. In this sense, only part of the
full information contained in the fragmentation matrix can be analyzed through a parity-conserving
process [64]. We shall come back to this issue after we studied spin-one fragmentation functions
in the next chapter.

Finally, if we trace the fragmentation matrix with the decay matrix, we obtain exactly the
correlation function expanded in partial waves, Eq. (4.31) , except for the fact that the unpolarized
fragmentation function turns out to be expressed in terms of pures- andp-wave contributions, i.e

D1,UU
(
z,M2

h

)
=

1
4

Dss
1,UU

(
z,M2

h

)
+

3
4

Dpp
1,UU

(
z,M2

h

)
. (4.37)

In any cross section, these two contributions are merged together and they are kinematically in-
distinguishable, unless a specific behavior of the invariant mass dependence can be assumed. For
instance, thep-wave contribution could be due to the existence of a resonance, emerging over a
background of continuums-wave states [79].

4.4.3 Positivity bounds on partial-wave fragmentation functions

The fragmentation matrix, Eq. (4.34), has to be positive definite, thus allowing us to set positivity
bounds on the two-hadron fragmentation functions. From the positivity of the diagonal matrix
elements, we obtain the bounds

Dss
1,UU(z,M2

h) ≥ 0, (4.38a)

Dpp
1,UU(z,M2

h) ≥ 0, (4.38b)

−3
2

Dpp
1,UU(z,M2

h) ≤ Dpp
1,LL(z,M2

h) ≤ 3Dpp
1,UU(z,M2

h), (4.38c)
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while from the positivity of the two-dimensional minors we get

∣∣∣Dsp
1,UL

∣∣∣ ≤ √
3
4

Dss
1,UU

(
Dpp

1,UU +
2
3

Dpp
1,LL

)
≤ 3

2
D1,UU , (4.39a)

|R|
Mh

∣∣∣H^ sp
1,UT

∣∣∣ ≤ √
3
8

Dss
1,UU

(
Dpp

1,UU −
1
3

Dpp
1,LL

)
≤ 3

2
D1,UU , (4.39b)

|R|
Mh

∣∣∣H^ pp
1,LT

∣∣∣ ≤ 3

2
√

2

√(
Dpp

1,UU +
2
3

Dpp
1,LL

) (
Dpp

1,UU −
1
3

Dpp
1,LL

)
≤ 9

8
D1,UU . (4.39c)

4.4.4 Cross section and asymmetries with partial-wave expansion

Thanks to the partial-wave expansion, the cross section at leading twist can be expressed in a
factorized way [112, 117]

d7σ

d cosθ d M2
h dφR dzh d xB dy dφS

=∑
q

ρ(S)Λ1Λ′1
F(xB)

Λ′1Λ1

χ1χ
′
1

( dσeq

dy

)χ1χ
′
1; χ2χ

′
2D(zh,M

2
h) j′m′, jm

χ′2χ2

D(θ, φR) jm, j′m′ . (4.40)

The unpolarized and polarized parts of the cross section are4

d7σUU =
∑

q

α2e2
q

2πsxBy2
A(y) f1(xB)

×
(
D1,UU

(
zh,M

2
h

)
+ cosθDsp

1,UL

(
zh,M

2
h

)
+

1
4

(
3 cos2 θ − 1

)
Dpp

1,LL

(
zh,M

2
h

)) (4.41a)

d7σLL =
∑

q

α2e2
q

2πsxBy2
λe SL C(y) g1(xB)

×
(
D1,UU

(
zh,M

2
h

)
+ cosθDsp

1,UL

(
zh,M

2
h

)
+

1
4

(
3 cos2 θ − 1

)
Dpp

1,LL

(
zh,M

2
h

)) (4.41b)

d7σUT =
∑

q

α2e2
q

2πsxBy2
B(y) |S⊥|

|R|
Mh

sin(φR + φS) sinθ h1(xB)

×
(
H^ sp

1,UT

(
zh,M

2
h

)
+ cosθH^ pp

1,LT

(
zh,M

2
h

))
.

(4.41c)

From the partial wave analysis we see in particular that the transversity distribution can be matched
with two different chiral-odd, T-odd fragmentation functions, one pertaining to the interference
between thes- and p-wave channels of two-hadron production, the second being a purelyp-
wave effect. This considerations agree with the past literature on interference fragmentation func-
tions [117, 163] and spin-one fragmentation functions [19, 36, 122]. A priori, we don’t know what

4The distribution and fragmentation functions are understood to have a flavor indexq.
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Figure 4.5. Two different models of the invariant mass behavior of the sp interference fragmentation func-
tion: (a) Jaffe et al. [117], (b) Radici et al. [150].

is the magnitude of these functions, nor their behavior with respect to the invariant mass of the
system. Jaffe et al. [117] studied one of the possible mechanisms that could generate ansp inter-
ference fragmentation function inππ production. They separated the production of the pion pair
(which they did not evaluate) from aππ rescattering process, which determines the T-odd character
of the fragmentation function and implies a peculiar behavior with respect to the invariant mass,
shown in Fig. 4.5 (a). A different model was applied by Radici et al. [150]: the expected invariant
mass behavior turns out to be very different, as shown in Fig. 4.5 (b), and the magnitude of the
effect is estimated to be of the order of 1%. For what concernspp fragmentation functions, at
the moment there are no estimates of their magnitude and behavior. However, in generalp-wave
production of two hadrons becomes significant only when they come from the decay of a spin-
one resonance. Because of this, we can expect that the invariant mass shape of these functions
corresponds to a Breit-Wigner curve peaked at the resonance mass.

If we integrate over cosθ, with the polar angle ranging from 0 toπ, the only surviving contri-
butions to the cross sections are

d6σUU =
∑

q

α2e2
q

πsxBy2
A(y) f1(xB) D1,UU

(
zh,M

2
h

)
(4.42a)

d6σLL =
∑

q

α2e2
q

πsxBy2
λe SL C(y) g1(xB) D1,UU

(
zh,M

2
h

)
(4.42b)
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d6σUT =
∑

q

α2e2
q

4sxBy2
B(y) |S⊥|

|R|
Mh

sin(φR + φS) h1(xB) H^ sp
1,UT

(
zh,M

2
h

)
. (4.42c)

It is possible to integrate over cosθ with the polar angle going from−π/2 to π/2. While the first
two cross sections vanish, the transverse cross section would turn out to be

d6σUT =
∑

q

α2e2
q

4sxBy2
B(y) |S⊥ |

|R|
Mh

sin(φR+φS) h1(xB)

(
H^ sp

1,UT

(
zh,M

2
h

)
+

4
3π

H^ pp
1,LT

(
zh,M

2
h

))
. (4.43)

While the asymmetry in Eq. (4.42c) is almost identical to the one discussed in Ref. 117, the last
asymmetry contains a contribution of purep waves that, as already mentioned, will become par-
ticularly relevant when the two hadrons are produced through a spin-one resonance.

4.5 The correlation function ∆ with transverse momentum

We turn now to the correlation functions with the dependence on the transverse momenta, Eqs. (2.57)
and (4.10). Consequently, their general decomposition is richer than before. We already know what
is the form of the correlation functionΦ [Eq. (2.58)]. For what concerns the correlation function
∆, the inclusion of transverse momentum results in

P− ∆(z, ζ,M2
h, φR, kT) γ− =

1
8π

(
D1

(
z, ζ,M2

h, k
2
T , kT · RT

)
+ iH^′1

(
z, ζ,M2

h, k
2
T , kT · RT

) /RT

Mh

+ iH⊥1
(
z, ζ,M2

h, k
2
T , kT · RT

) /kT

Mh
+ G⊥1

(
z, ζ,M2

h, k
2
T , kT · RT

) ε µνT RTµkTν

M2
h

γ5

)
P−. (4.44)

Once again, we can express the correlation function as a matrix in the chirality space of the quark

D(z, ζ,M2
h, φR, kT)χ′2χ2

=
1
8π


D1 +

|kT × RT |
M2

h

G⊥1 i

(
eiφR
|RT |
Mh

H^′1 + eiφk
|kT |
Mh

H⊥1

)
−i

(
e−iφR
|RT |
Mh

H^′1 + e−iφk
|kT |
Mh

H⊥1

)
D1 −

|kT × RT |
M2

h

G⊥1

 .
(4.45)

We can easily obtain positivity bounds on the transverse-momentum dependent functions

|kT × RT |
M2

h

∣∣∣G⊥1 ∣∣∣ ≤ D1, (4.46)

|RT |2

M2
h

(
H^′1

)2
+
|kT |2

M2
h

(
H⊥1

)2
+

2 kT · RT

M2
h

H^′1 H⊥1 ≤ D2
1 −
|kT × RT |2

M4
h

(
G⊥1

)2
, (4.47)

where it is understood that all the functions are dependent on the variablesz, ζ, M2
h, k2

T , kT · RT .
Note that if we integrate overkT , the fragmentation functionG⊥1 will disappear, while parts of

the functionsH^′1 andH⊥1 will merge into a single function,H^1 , and we will recover the results of
Sec. 4.2 on page 54.
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4.6 Cross section and asymmetries with transverse momentum

Prior to integration over the center-of-mass transverse momentum we have the nine-fold cross
section

d9σ

dζ d M2
h dφR dzh d2Ph⊥ d xB dy dφS

=

∑
q

ρ(S)Λ1Λ′1
I

[
F(xB, pT)

Λ′1Λ1

χ1χ
′
1

( dσeq

dy

)χ1χ
′
1; χ2χ

′
2 D(zh, kT , ζ,M

2
h, φR)χ′2χ2

]
, (4.48)

To simplify the notation, we introduce the projectionaT ∧ bT = aiε
i j
T bj. Inserting the formulae

obtained for the distribution correlation matrix, Eq. (2.48), the elementary cross section, Eq. (3.21),
and the two-hadron fragmentation matrix, Eq. (4.45), we obtain the following result5

d9σUU =
∑

q

α2e2
q

2πsxBy2

{
A(y)I [

f1 D1
] − B(y)

|RT |
Mh

cos(φh + φR)I
[

pT · P̂h⊥

M
h⊥1 H^′1

]

+ B(y)
|RT |
Mh

sin(φh + φR)I
[
P̂h⊥ ∧ pT

M
h⊥1 H^′1

]
− B(y) cos(2φh)I

[
2(pT · P̂h⊥)(kT · P̂h⊥) − pT · kT

MMh
h⊥1 H⊥1

]
+ B(y) sin(2φh)I

[
(pT · P̂h⊥)(P̂h⊥ ∧ kT) + (kT · P̂h⊥)(P̂h⊥ ∧ pT)

MMh
h⊥1 H⊥1

]}
,

(4.49)

d9σLU = −
∑

q

α2e2
q

2πsxBy2
|λe| C(y)

|RT |
Mh

{
sin(φh − φR)I

[
kT · P̂h⊥

Mh
f1 G⊥1

]

+ cos(φh − φR)I
[
P̂h⊥ ∧ kT

Mh
f1 G⊥1

]}
,

(4.50)

5TheUU andUT cross sections correspond to the one calculated in Ref. 150 except for a difference in the overall
coefficient – an extra factor 2 in the denominator, due to the use of the variableζ instead ofξ, the lack of a factor
(2π)3 in the denominator, due to the different definition of the hadronic tensor, an extra factor 2/π due to the different
definitions of the fragmentation functions– the use ofMh in the denominators instead ofM1, M2 or M1 + M2, and a
factor 2 difference in the definition of the coefficientC(y).
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d9σUL =
∑

q

α2e2
q

2πsxBy2
|SL|

{
−A(y)

|RT |
Mh

sin(φh − φR)I
[
kT · P̂h⊥

Mh
g1L G⊥1

]
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P̂h⊥ ∧ kT
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]
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M
h⊥1L H^′1
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h⊥1L H^′1

]
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2(pT · P̂h⊥)(kT · P̂h⊥) − pT · kT

MMh
h⊥1L H⊥1

]
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MMh
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]}
,

(4.51)

d9σLL =
∑

q

α2e2
q

2πsxBy2
|λe| |SL| C(y)I [

g1L D1
]
, (4.52)

d9σUT =
∑

q

α2e2
q

2πsxBy2
|ST | A(y)

{
|RT |
Mh

sin(φR− φS)I
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pT · kT
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g1T G⊥1
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h⊥1T H^′1
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(4.53)
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d9σLT =
∑

q

α2e2
q

2πsxBy2
|ST | C(y)

{
cos(φh − φS)I

[
pT · P̂h⊥

M
g1T D1

]

− sin(φh − φS)I
[
P̂h⊥ ∧ pT

M
g1T D1

]
− |RT |

Mh
cos(φR− φS)I

[
pT · kT

2MMh
f ⊥1T G⊥1

]
+
|RT |
Mh

cos(2φh − φR− φS)I
[
2(pT · P̂h⊥)(kT · P̂h⊥) − pT · kT

2MMh
f ⊥1T G⊥1

]
− |RT |

Mh
sin(φR− φS)I

[
(pT · P̂h⊥)(P̂h⊥ ∧ kT) − (kT · P̂h⊥)(P̂h⊥ ∧ pT)

2MMh
f ⊥1T G⊥1

]
+
|RT |
Mh

sin(2φh − φR− φS)I
[
(pT · P̂h⊥)(P̂h⊥ ∧ kT) + (kT · P̂h⊥)(P̂h⊥ ∧ pT)

2MMh
f ⊥1T G⊥1

]}
.

(4.54)

4.7 Partial-wave expansion with transverse momentum

To proceed with the partial wave expansion of transverse-momentum dependent functions, it turns
out to be convenient to rewrite the correlation function in a somewhat different way, i.e.

D(z, ζ,M2
h, φR, kT)χ′2χ2

=
1
8π


D1 +

|kT × RT |
M2

h

G⊥1 ieiφk
|kT |
Mh

H⊥^1

−ie−iφk
|kT |
Mh

(
H⊥^1

)∗
D1 −

|kT × RT |
M2

h

G⊥1

 . (4.55)

The functionsH^1 andH⊥1 have been merged into the complex function

H⊥^1

(
z, ζ,M2

h, k
2
T ,e

i(φk−φR)
)

= H⊥1
(
z, ζ,M2

h, k
2
T , cos(φk − φR)

)
+ ei(φR−φk) H^1

(
z, ζ,M2

h, k
2
T , cos(φk − φR)

)
.

(4.56)

Because of the presence of the azimuthal angles, this function can be expanded in spherical har-
monics, provided we retain only those terms which are consistent with the definition in Eq. (4.56).
If we wish to include only thes- and p-wave contributions, the partial wave expansion of the
functionH⊥^1 takes the form

H⊥^1 = H⊥1,UU + H⊥ sp
1,UL cosθ + H⊥ pp

1,LL

1
4

(
3 cos2 θ − 1

)
+ ei(φk−φR) sinθ

(
H⊥ sp

1,UT + H⊥ pp
1,LT cosθ

)
+ e−i(φk−φR) sinθ

(
H⊥ sp

1,UT + H⊥ pp
1,LT cosθ +

|R|
|kT |

H^ sp′
1,UT +

|R|
|kT |

H^ pp′
1,LT cosθ

)
+ e2i(φk−φR) sin2 θH⊥ pp

1,TT + e−2i(φk−φR) sin2 θ

(
H⊥ pp

1,TT +
|R|
|kT |

H^ pp
1,TT

) (4.57)

Note that the functions on the right-hand side depend only on the variablesz, M2
h, k2

T .
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The expansion of the other two functions,D1 andG⊥1 , is considerably simpler, because they
can depend only on cos(φh − φR)

D1 = D1,UU + Dsp
1,UL cosθ + Dpp

1,LL

1
4

(
3 cos2 θ − 1

)
+ cos(φk − φR) sinθ

(
D⊥ sp

1,UT + D⊥ pp
1,LT cosθ

)
+ cos(2φk − 2φR) sin2 θD⊥ pp

1,TT, (4.58a)

G⊥1 = G⊥ sp
1,UT + G⊥ pp

1,LT cosθ + cos(φk − φR) sinθG⊥ pp
1,TT, (4.58b)

where the functions on the right-hand side depend only on the variablesz, M2
h, k2

T .
As a conclusive remark, note that it would have been possible to expand the functionsH^1 and

H⊥1 in a way similar to what we have done forD1 andG⊥1 , but some care is required to properly
treat the componentH^ pp

1,TT, which is shared by the two functions. This is why we preferred to
take an alternative way. In any case, for completeness we give also the expansions ofH^1 andH⊥1
separately:

H⊥1 = H⊥1,UU + H⊥ sp
1,UL cosθ + H⊥ pp

1,LL

1
4

(
3 cos2 θ − 1

)
+ 2 cos(φk − φR) sinθ

(
H⊥ sp

1,UT + H⊥ pp
1,LT cosθ

)
+ 2 cos(2φk − 2φR) sin2 θH⊥ pp

1,TT − sin2 θ
|R|
|kT |

H^ pp
1,TT , (4.59a)

H^1 = H^ sp′
1,UT + H^ pp′

1,LT cosθ + 2 cos(φk − φR) sinθH^ pp
1,TT . (4.59b)

As before, the functions on the right-hand side depend only on the variablesz, M2
h, k2

T .
As we have done in Sec. 4.4.2 on page 58, it is possible to rewrite the correlation function as a

trace between the decay matrix, Eq. (4.32), and a fragmentation matrix in the quark chirality space
⊗ the hadronic system angular momentum space

D(z, cosθ,M2
h, φR, kT)χ′2χ2

= D(z,M2
h, k

2
T) j′m′, jm

χ′2χ2

D jm, j′m′(θ, φR). (4.60)

Once again, the result is a 8× 8 matrix

D(z,M2
h, k

2
T) j′m′, jm

χ′2χ2

=
1
8

Aj′m′, jm Bj′m′, jm

B†j′m′, jm C j′m′, jm

 . (4.61)

The inner blocks span the space of the orbital angular momentum of the hadronic system and read

Aj′m′, jm =

Dss
1,UU −

√
2
3eiφ

(
D⊥ sp

1,UT+i
|kT ||R|

M2
h

G⊥ sp
1,UT

)
2√
3
Dsp

1,UL

√
2
3e−iφ

(
D⊥ sp

1,UT−i
|kT ||R|

M2
h

G⊥ sp
1,UT

)

−
√

2
3e−iφ

(
D⊥ sp

1,UT−i
|kT ||R|

M2
h

G⊥ sp
1,UT

)
Dpp

1,UU−
1
3 Dpp

1,LL −
√

2
3 e−iφ

(
D⊥ pp

1,LT−i
|kT ||R|

M2
h

G⊥ pp
1,LT

)
− 2

3e−2iφ

(
2D⊥ pp

1,TT−i
|kT ||R|

M2
h

G⊥ pp
1,TT

)
2√
3
Dsp

1,UL −
√

2
3 eiφ

(
D⊥ pp

1,LT +i
|kT ||R|

M2
h

G⊥ pp
1,LT

)
Dpp

1,UU+ 2
3 Dpp

1,LL

√
2

3 e−iφ

(
D⊥ pp

1,LT−i
|kT ||R|

M2
h

G⊥ pp
1,LT

)
√

2
3eiφ

(
D⊥ sp

1,UT+i
|kT ||R|

M2
h

G⊥ sp
1,UT

)
− 2

3e2iφ

(
2D⊥ pp

1,TT+i
|kT ||R|

M2
h

G⊥ pp
1,TT

) √
2

3 eiφ

(
D⊥ pp

1,LT +i
|kT ||R|

M2
h

G⊥ pp
1,LT

)
Dpp

1,UU−
1
3 Dpp

1,LL


,
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Bj′m′, jm = i
|kT |
Mh



eiφH⊥ ss
1,UU − 4√

6
e2iφH⊥ sp

1,UT
2√
3
eiφH⊥ sp

1,UL
4√
6

(
|R|
|kT |

H^ sp′
1,UT +H⊥ sp

1,UT

)
− 4√

6

(
|R|
|kT |

H^ sp′
1,UT +H⊥ sp

1,UT

)
eiφ

(
H⊥ pp

1,UU−
1
3 H⊥ pp

1,LL

)
− 2
√

2
3

(
|R|
|kT |

H^ pp′
1,LT +H⊥ pp

1,LT

)
− 8

3e−iφ
(
|R|
|kT |

H^ pp
1,TT +H⊥ pp

1,TT

)
2√
3
eiφH⊥ sp

1,UL − 2
√

2
3 e2iφH⊥ pp

1,LT eiφ
(
H⊥ pp

1,UU+ 2
3 H⊥ pp

1,LL

)
2
√

2
3

(
|R|
|kT |

H^ pp′
1,LT +H⊥ pp

1,LT

)
4√
6
e2iφH⊥ sp

1,UT − 8
3e3iφH⊥ pp

1,TT
2
√

2
3 e2iφH⊥ pp

1,LT eiφ
(
H⊥ pp

1,UU−
1
3 H⊥ pp

1,LL

)


.

The blockC of the fragmentation matrix can be obtained from the blockA by imposing parity
invariance relations.

Thesssector of the matrix contains functions analogous to the ones we discussed in the previ-
ous chapter in the context of single-particle unpolarized fragmentation. Theppsector corresponds
to the spin-one fragmentation functions studied in Ref. 36. We will discuss them again in the
next chapter. Thesp interference sector has never been studied with the inclusion of transverse
momentum.

Similar considerations to the ones discussed after Eqs. (4.35) hold for the transverse momentum
dependent fragmentation matrix. In particular, the matrix fulfills the properties of Hermiticity,
conservation of angular momentum (m+ χ′2 = m′ + χ2 + l) and parity invariance

D j′m′, jm

χ′2χ2

= (−1)lD j′ −m′, j −m

−χ′2−χ2

. (4.62)

The imaginary parts of the matrix represent T-odd functions. Note that the off-diagonal blocks,
which are chiral-odd, can only contain T-odd functions. The matrix could in principle contain
other functions, but they are lost when tracing with the decay matrix and thus cannot be analyzed
by a parity conserving decay process.

From the fact that the matrixD(z,M2
h, k

2
T) is positive semi-definite, it is possible to obtain

positivity bounds on the fragmentation functions, as we have done already before.

4.8 Summary

In this chapter we analyzed two-particle inclusive deep inelastic scattering, at leading order in
1/Q, without and with partonic transverse momentum. For the description of the fragmentation
side, we introduced a correlation function∆ that depends on the center-of-mass momentum of the
two hadrons and on their relative momentum.

In the first part of the chapter we neglected partonic transverse momentum. We distinguished
one chiral-even T-even and one chiral-odd T-odd fragmentation function [Eq. (4.14)]. They are
complicated objects depending on three variables, whereas single-particle fragmentation functions
depend on one variable only. We derived positivity bounds on these functions [Eqs. (4.18)] and we
computed the cross section of two-particle inclusive scattering [Eq. (4.20)].

Since two-particle systems with a low invariant mass are usually produced in thesandp waves,
we performed a partial wave expansion of the fragmentation functions taking into consideration
only these two lowest modes. We split the chiral-even fragmentation function into three contribu-
tions, pertaining to the pures waves, purep waves andsp interference. We split the chiral-odd
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function into two contributions, typical of purep waves andsp interference. These five new frag-
mentation functions depend only on two variables, namelyz and the invariant mass squared of the
system [Eq. (4.30)]. Employing the usual helicity formalism, we discussed positivity bounds on
the new fragmentation functions [Eqs. (4.38) and (4.39)]. We computed all non vanishing spin
asymmetries of two-particle inclusive DIS at leading twist [Eqs. (4.41)]. In particular, we showed
that in the single transverse spin asymmetry of Eq. (4.41c) the transversity distribution appears in
connection with both chiral-odd fragmentation functions. Integrating the asymmetry over different
ranges of the polar angleθ, we presented two distinct ways to access the transversity distribution.
The first one [Eq. (4.42c)] involves only thesp interference term and corresponds to the one dis-
cussed in Ref. 117, while the second one [Eq. (4.43)] involves also the purep term, which could
have an entirely different physical origin and should be particularly relevant in the presence of
a spin-one resonance. These two asymmetries are in all respects two distinct ways to access the
transversity distribution function. The second one has never been clearly indicated in the literature.

In the rest of the chapter, we repeated the analysis of the correlation function including partonic
transverse momentum and also in this case we applied a partial wave expansion.





5
Spin one

Looks like we’ve made it,
Look how far we’ve come, my baby.
You are still the one that I love,
The only one I dream of.

S. Twain

In the previous chapter we examined the production of two hadrons in thes and p waves. As
we already mentioned, thep-wave sector of the analysis should overlap with the description of
the fragmentation functions for spin-one mesons. The reason is that the polarization of the vector
meson can be analyzed by measuring its decay in two other particles, as in the case of aρ meson
decaying into two pions.

In this chapter, we will take a small detour from the mainstream of the thesis, and we shall deal
with spin-one targets and spin-one fragments. In the first part, we will examine what is necessary
for the description of a spin-one object and what are the differences with the spin-half case. We
will introduce distribution functions for quarks inside spin-one objects, with and without transverse
momentum.

Then we will turn our attention to spin-one hadrons in the final state and we will examine
the fragmentation functions for a quark producing a spin-one hadron. In the end, we will check
whether the connection with two-hadron fragmentation can be established and if there are any
differences between the two situations.
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5.1 Spin-one targets

In recent years some attention has been devoted to distribution functions characterizing spin-one
targets, starting from the work of Hoodbhoy, Jaffe and Manohar [110]. Unfortunately, the only
available spin-one target is the deuteron, which is essentially a weakly bound system of two spin-
half hadrons. In fact, deuteron targets are often used in deep inelastic scattering with the major
purpose of extracting the neutron distribution functions. However, the spin-one structure of the
deuteron in itself can be very interesting [62, 89, 144, 169]. A large amount of work is already
present on deuteron structure functions, especially in Drell-Yan processes [106, 108].

5.1.1 Spin density matrix and spin tensor

The description of particles with spin can be attained by using a spin density matrixρ in the rest
frame of the particle. The parametrization of the density matrix for a spin-J particle is conveniently
performed with the introduction of irreducible spin tensors up to rank 2J. For example, we have
already seen [cf. Eq. (2.42)] that the density matrix of a spin-half particle can be decomposed on a
Cartesian basis of 2× 2 matrices, formed by the identity matrix and the three Pauli matrices,

ρ =
1
2

(
1 + Siσi

)
, (5.1)

where we introduced the (rank-one) spin vectorSi.
To parametrize the density matrix of a spin-one particle we can choose a Cartesian basis of

3 × 3 matrices, formed by the identity matrix, three spin matricesΣi (generalization of the Pauli
matrices to the three-dimensional case) and five extra matricesΣi j . These last ones can be built
using bilinear combinations of the spin matrices. In three dimensions these combinations are no
longer dependent on the spin matrices themselves, as would be for the Pauli matrices. We choose
them to be (see Refs. 64,134 and 42 for a comparison)

Σi j =
1
2

(
ΣiΣ j + Σ jΣi

)
− 2

3
1 δi j . (5.2)

With these preliminaries, we can write the spin density matrix as

ρ =
1
3

(
1 +

3
2

SiΣi + 3T i j Σi j

)
, (5.3)

where we introduced the symmetric traceless rank-two spin tensorT i j . We choose the following
way of parametrizing the spin vector and tensor in the rest frame of the hadron,

S =
(
Sx

T ,S
y
T ,SL

)
, (5.4a)

T =
1
2


SLL + Sxx

TT Sxy
TT Sx

LT

Sxy
TT SLL − Sxx

TT Sy
LT

Sx
LT Sy

LT −2SLL

 . (5.4b)
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The parameterSLL is often calledalignment[64, 91, 93, 134].
Although we introduced the spin vector and tensor in the particle rest frame, it is possible

to introduce covariant generalizations of them, satisfying the conditionsPµSµ = 0 andPµTµν =

0, wherePµ is the momentum of the hadron. In a collinear frame, the parametrizations of the
covariant spin vector and tensor will be

Sµ =

[
−SL

M
2P+

, SL
P+

M
, ST

]
, (5.5a)

Tµν =
1
2



−SLL
M2

2(P+)2 SLL −Sx
LT

M
2P+ −Sy

LT
M

2P+

SLL −2SLL
(P+)2

M2 Sx
LT

P+

M Sy
LT

P+

M

−Sx
LT

M
2P+ Sx

LT
P+

M Sxx
TT + SLL Sxy

TT

−Sy
LT

M
2P+ Sy

LT
P+

M Sxy
TT −Sxx

TT + SLL


. (5.5b)

In the particle rest frame (whereP+ = M/
√

2) they correspond to Eqs. (5.4) (note that here they
are written in light-cone coordinates).

Inserting in Eq. (5.3) the spin vector, Eq. (5.4a), and the spin tensor, Eq. (5.4b), the explicit
form of the spin density matrixρ turns out to be

ρ =


1
3 −

SLL
2 + SL

2
Sx

LT−iSy
LT

2
√

2
+

Sx
T−iSy

T

2
√

2

Sxx
TT−iSxy

TT
2

Sx
LT+iSy

LT

2
√

2
+

Sx
T+iSy

T

2
√

2
1
3 + SLL −Sx

LT−iSy
LT

2
√

2
+

Sx
T−iSy

T

2
√

2
Sxx

TT+iSxy
TT

2 −Sx
LT+iSy

LT

2
√

2
+

Sx
T+iSy

T

2
√

2
1
3 −

SLL
2 −

SL
2

 . (5.6)

The treatment of spin-one particles can be done equivalently by introducing the complex polar-
ization vectorε, and its covariant generalizationε µ. The two formalisms can be related by means
of the formulae [134]

S = Im (ε∗ × ε) , Ti j =
1
3
δi j − Re

(
ε∗i ε j

)
, (5.7)

or for the covariant generalizations

Sµ = −εµαβγPα Im
(
ε∗βεγ

)
, Tµν = − Re

(
ε∗µεν

)
− 1

3

(
gµν −

PµPν

P2

)
δi j . (5.8)

5.1.2 Interpretation of the components of the spin tensor

A particular component of the spin tensor measures a combination of probabilities of finding the
system in a certain spin state (defined in the particle rest frame). As “analyzing” spin states we can
choose the eigenstates of the spin vector operator in a particular direction. We can write the spin
vector operator in terms of polar and azimuthal angles,

Σin̂i = Σx cosϑ cosϕ + Σy cosϑ sinϕ + Σz sinϑ, (5.9)
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and we can denote its eigenstates asm, (ϑ, ϕ)
〉
, m being their magnetic quantum number. The

probability of finding one of these states can be calculated as

P [
m, (ϑ, ϕ)

]
= Tr

{
ρ m, (ϑ, ϕ)

〉〈
m, (ϑ, ϕ)

}
. (5.10)

From the explicit formula of the density matrix, Eq. (5.6), one can compute

SLL = −1
3 P

[
1, (0,0)

] − 1
3 P

[−1, (0,0)
]
+ 2

3 P
[
0, (0,0)

]
, (5.11a)

Sx
LT = P

[
0,

(−π4,0)] − P [
0,

(π
4,0

)]
, Sy

LT = P
[
0,

(−π4, π2)] − P [
0,

(π
4,

π
2

)]
, (5.11b)

Sxx
TT = P

[
0,

(π
2,−

π
4

)] − P [
0,

(π
2,

π
4

)]
, Sxy

TT = P
[
0,

(π
2,

π
2

)] − P [
0,

(π
2,0

)]
. (5.11c)

Below, we suggest a diagrammatic interpretation of these probability combinations. Arrows repre-
sent spin statesm = +1 andm = −1 in the direction of the arrow itself, while dashed lines denote
spin statem = 0 in the direction of the line itself.

x transverse plane

z

y

SLL =
2

3 3

Sx
LT = Sy

LT =

Sxy
TT = Sxx

TT = .

The probabilistic interpretations suggest straightforward bounds on the values the spin tensor
parameters can achieve, namely

−1
3
≤ SLL ≤

2
3
, −1 ≤ Si

LT ≤ 1, −1 ≤ Si j
TT ≤ 1, (5.12)

wherei, j = x, y. Finally, it is possible to define a total degree of polarization

d =

√
3
4

SiSi +
3
2

T i j Ti j

=

{
3
4

[
S2

L + (Sx
T)2 + (Sy

T)2
]

+
3
4

[
3S2

LL + (Sx
LT)2 + (Sy

LT)2 + (Sxx
TT)2 + (Sxy

TT)2
]}1/2

,

(5.13)

whose value ranges between 0 and 1.
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5.2 The correlation function Φ

The correlation functionΦ has to fulfill the condition of Hermiticity and parity invariance. For
spin-one hadrons, they are slightly different from the spin-half case, because of the presence of the
spin tensor

Hermiticity: Φ(p,P,S) = γ0Φ†(p,P,S,T)γ0, (5.14a)

parity: Φ(p,P,S) = γ0Φ(p̃, P̃,−S̃, T̃)γ0 (5.14b)

wherep̃ν = δνµpµ and so forth for the other vectors, andT̃µν = δµσδνρTσρ.
The most general decomposition of the correlation functionΦ for spin-one hadrons is1

Φ(p,P,S,T) = M A1 1 + A2 /P + A3 /p +

(A4

M
σµνP

µpν
)

+ (iA5 p · S γ5)

+ M A6 /S γ5 + A7
p · S
M

/Pγ5 + A8
p · S
M

/pγ5 + iA9σµνγ5S
µPν

+ iA10σµνγ5 Sµpν + iA11
p · S
M2

σµνγ5Pµpν +

(
A12

εµνρσγ
µPνpρSσ

M

)
+

A13

M
pµpνT

µν 1 +
A14

M2
pµpνT

µν/P +
A15

M2
pµpνT

µν /p

+

(A16

M3
pµpνT

µνσρσPρpσ
)

+ A17 pµT
µνγν +

(A18

M
σνρP

ρ pµT
µν
)

+

(A19

M
σνρpρpµT

µν
)

+

(A20

M2
εµνρσγ

µγ5Pνpρ pτT
τσ

)
.

(5.15)

The amplitudesAi are real functionsAi = Ai(p · P, p2). The terms with the amplitudesA4, A5, A12,
A16, A18, A19 andA20 (included between parentheses) constitute the T-odd part of the correlation
function, according to the definition

Φ∗T-odd(p,P,S) = −iγ1γ3 ΦT-odd(p̃, P̃, S̃, T̃ )iγ1γ3. (5.16)

The leading-twist part of the correlation function, parametrized in terms of five distribution
functions, is [36, 37]

P+ Φ(x,S,T)γ+ =
(
f1(x) + g1(x) SL γ5 + h1(x) γ5/ST + b1(x) SLL + i h1LT(x) /SLT

)
P+. (5.17)

The underlined function,h1LT , is T-odd. Apart from the usual distribution functions defined in
Eq. (2.34), we introduced the spin-one parton distribution functions

b1(x) =

∫
d2pT d p2 d(2p · P) δ

(
p2

T + x2M2 + p2 − 2xp · P
)

×
 1

4M2

( p2 + p2
T

Mx
− Mx

)2

− 2p2
T

 (A14 + x A15) −
p2 + p2

T − M2x2

2M2x
A17

 , (5.18a)

h1LT(x) =

∫
d2pT d p2 d(2p · P) δ

(
p2

T + x2M2 + p2 − 2xp · P
)

×
{

1
4M

(
p2 + p2

T

Mx
− Mx

)
(−A18− x A19)

}
.

(5.18b)

1In Ref. 107 a similar decomposition of the correlation function was attempted, but in an incorrect way.
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Note that the distribution functionb1, introduced in Ref. 110, was called in a different way in
Refs. 36 and 37 to follow a more systematic naming of the functions, especially in view of the
inclusion of transverse momentum, as we will do in Sec. 5.2.2. Finally, note that the function
h1LT is T-odd, but does not require the presence of intrinsic transverse momentum, a feature that
is absent in T-odd distribution functions for spin-half targets at leading order in 1/Q. It could
be interesting to study this object in order to clarify the role of intrinsic transverse momentum in
generating T-odd effects in distribution functions [72, 124].

5.2.1 Correlation function in the helicity formalism

The only difference from the analysis of Sec. 2.2.1 on page 23 is that we have to deal with a more
complex spin density matrix and with a 3×3 target spin space. The connection with the correlation
function and its matrix representation is

Ψ(S,T) = ρ(S,T)Λ1Λ′1
ΨΛ′1Λ1, (5.19)

where

Ψ(S,T) = ΨU + SL ΨL − 3SLL ΨLL + 1√
2

(Sx
T + i Sy

T) ΨT + 1√
2

(Sx
T − i Sy

T) Ψ∗T

+ 1√
2

(Sx
LT + i Sy

LT) ΨLT + 1√
2

(Sx
LT − i Sy

LT) Ψ∗LT

+ 1
2 (Sxx

TT + i Sxy
TT) ΨTT + 1

2 (Sxx
TT − i Sxy

TT) Ψ∗TT,

(5.20a)

ΨΛ′1Λ1 =


ΨU + ΨL + ΨLL ΨT + ΨLT ΨTT

Ψ∗T + Ψ∗LT ΨU − 2ΨLL ΨT − ΨLT

Ψ∗TT Ψ∗T − Ψ∗LT ΨU − ΨL + ΨLL


. (5.20b)

Eventually, the 6× 6 leading-twist scattering matrix turns out to be2

F(x)
Λ′1Λ1

χ1χ
′
1

=

f1 + g1 − 1
3 b1 0 0 0

√
2 (h1 − i h1LT) 0

0 f1 + 2
3 b1 0 0 0

√
2 (h1 + i h1LT)

0 0 f1 − g1 − 1
3 b1 0 0 0

0 0 0 f1 − g1 − 1
3 b1 0 0

√
2 (h1 + i h1LT) 0 0 0 f1 + 2

3 b1 0

0
√

2 (h1 − i h1LT) 0 0 0 f1 + g1 − 1
3 b1


,

(5.21)

2Note the difference of sign in the imaginary components of the matrix with respect to Ref. 37.
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where the functions on the right-hand side depend on the variablex only. The matrixF(x) is
Hermitean, parity invariant and conserves angular momentum (Λ′1 + χ′1 = Λ1 + χ1).

From the positivity of the diagonal elements we obtain the bounds:

f1(x) ≥ 0 (5.22a)

−3
2

f1(x) ≤ b1(x) ≤ 3 f1(x) (5.22b)

|g1(x)| ≤ f1(x) − 1
3

b1(x) ≤ 3
2

f1(x), (5.22c)

while positivity of two-dimensional minors gives the bound

(
h1(x)

)2
+

(
h1LT(x)

)2 ≤ 1
2

(
f1(x) +

2
3

b1(x)

) (
f1(x) + g1(x) − 1

3
b1(x)

)
≤ 1

4

(
3
2

f1(x) + g1(x)

)2

≤ 9
8

(
f1(x)

)2
,

(5.23)

This bound is a generalization of the Soffer bound [159] and must be fulfilled by any spin-one
target. If we assume that T-odd distribution functions vanish due to time-reversal invariance, then
the bound can be reduced to

|h1(x)| ≤

√
1
2

(
f1(x) +

2
3

b1(x)

) (
f1(x) + g1(x) − 1

3
b1(x)

)
≤ 1

2

(
3
2

f1(x) + g1(x)

)
≤ 3

2
√

2
f1(x).

(5.24)

5.2.2 Inclusion of transverse momentum

We now consider the correlation function unintegrated over the parton transverse momentum, as
defined in Eq. (2.57). For convenience, the correlation function can be decomposed in several
terms in relation to the polarization state of the target, i.e.Φ = ΦU + ΦL + ΦT + ΦLL + ΦLT + ΦTT.
To leading order in 1/Q, these terms can be decomposed as (T-odd terms are underlined)

P+ ΦU(x, pT ,S,T)γ+ =

{
f1 + ih⊥1

/pT

M

}
P+ , (5.25a)

P+ ΦL(x, pT ,S,T)γ+ = SL

{
g1L γ5 + h⊥1L γ5

/pT

M

}
P+ , (5.25b)

P+ ΦT(x, pT ,S,T)γ+ =

{
g1T

ST · pT

M
γ5 + h1T γ5/ST

+h⊥1T

ST · pT

M
γ5
/pT

M
+ f ⊥1T

εT ρσSρ
T pσT

M

}
P+ ,

(5.25c)

P+ ΦLL(x, pT ,S,T)γ+ = SLL

{
b1 + ih⊥1LL

/pT

M

}
P+ , (5.25d)
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P+ ΦLT(x, pT ,S,T)γ+ =

{
f1LT

SLT · pT

M
+ g1LT ε

ρσ
T SLT ρ

pT σ

M
γ5

+ih′1LT /SLT + ih⊥1LT

SLT · pT

M

/pT

M

}
P+ ,

(5.25e)

P+ ΦTT(x, pT ,S,T)γ+ =

{
f1TT

pT · STT · pT

M2
− g1TT ε

ρσ
T STTσλ

pλT pT ρ

M2
γ5

−ih′1TT γ
σ STTσλ

pλT
M

+ ih⊥1TT

pT · STT · pT

M2

/pT

M

}
P+ .

(5.25f)

All the distribution functions on the right-hand side are understood to depend onx andp2
T .

Similarly to the functionh1, defined in Eq. (2.60), it is convenient to define the functions

h1LT(x, p2
T) = h′1LT(x, p2

T) + h⊥(1)
1LT (x, p2

T), (5.26a)

h1TT(x, p2
T) = h′1TT(x, p2

T) + h⊥(1)
1TT(x, p2

T). (5.26b)

In the rest of this Section, unless otherwise specified, all the functions are understood to depend
on the variablesx andp2

T .
As we have already done in Eq. (2.62), to simplify the notation it is preferable to introduce

new complex functions with a real part, corresponding to a T-even function, and an imaginary part,
corresponding to a T-odd function. To avoid the introduction of new names, we will simply call
the new functions with the name of their real part, in the following way

g1T + i f ⊥1T → g1T , f1LT + i g1LT → f1LT ,

h1 + i h1LT → h1, f1TT + i g⊥1TT → f1TT, (5.27)

h⊥1T + i h⊥1LT → h⊥1T .

Following steps analogous to the previous section, we can reconstruct the complete 6× 6
scattering matrix.

F(x, pT)
Λ′1Λ1

χ1χ
′
1

=

AΛ′1Λ1
BΛ′1Λ1

B†
Λ′1Λ1

CΛ′1Λ1

 . (5.28)

The inner blocks span the target spin space and they are

AΛ′1Λ1
=


f1 + g1 − 1

3 b1

√
2

2
|pT |
M e−iφp (g1T + f1LT) 1

2
|pT |2
M2 e−2iφp f1TT

√
2

2
|pT |
M eiφp

(
g∗1T + f ∗1LT

)
f1 + 2

3 b1

√
2

2
|pT |
M e−iφp (g1T − f1LT)

1
2
|pT |2
M2 e2iφp f ∗1TT

√
2

2
|pT |
M eiφp

(
g∗1T − f ∗1LT

)
f1 − g1 − 1

3 b1

 , (5.29)

BΛ′1Λ1
=


|pT |
M eiφp

[
h⊥1L − i

(
h⊥1 − 1

3h⊥1LL

)] √
2h∗1 −2i |pT |

M e−iφph1TT
√

2
2
|pT |2
M2 e2iφp h⊥∗1T −i |pT |

M eiφp
(
h⊥1 + 2

3h⊥1LL

) √
2h1

−i |pT |3
M3 e3iφp h⊥1TT

√
2

2
|pT |2
M2 e2iφp h⊥1T

|pT |
M eiφp

[
−h⊥1L − i

(
h⊥1 − 1

3h⊥1LL

)]
 .

(5.30)
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This matrix is Hermitean. Conservation of angular momentum is guaranteed (Λ′1+χ′1+l′ = Λ1+χ1).
The matrix is also parity invariant, i.e.

F(x, pT)
Λ′1Λ1

χ1χ
′
1

= (−1)l
′
F(x, pT)

−Λ′1−Λ1

−χ1−χ
′
1

∣∣∣∣∣
l′→−l′

. (5.31)

In fact, blockC of the fragmentation matrix can be obtained from blockA by imposing parity
invariance relations.

Since the matrixF(x, pT) is positive semidefinite, we can extract bounds on the distribution
functions. If we fully exploit the positivity of the scattering matrix, we can write several relations
involving an increasing number of different functions. We feel this to be an excessive task if
compared to the exiguity of information we have on the functions involved. Therefore, here we
choose to focus only on the relations stemming from positivity of the two-dimensional minors of
the matrix.

Because of the symmetry properties of the matrix, only nine independent inequality relations
between the different functions are produced:3

|h1|2 ≤
1
2

(
f1 +

2b1

3

) (
f1 + g1 −

b1

3

)
, (5.32a)

|pT |2
2M2

|g1T + f1LT |2 ≤
(
f1 +

2b1

3

) (
f1 + g1 −

b1

3

)
, (5.32b)

|pT |2
2M2

|g1T − f1LT |2 ≤
(
f1 +

2b1

3

) (
f1 − g1 −

b1

3

)
, (5.32c)

|pT |4
2M4

|h⊥1T |2 ≤
(
f1 +

2b1

3

) (
f1 − g1 −

b1

3

)
, (5.32d)

|pT |6
M6

h⊥1TT
2 ≤

(
f1 − g1 −

b1

3

)2

, (5.32e)

|pT |2
4M2

(
h⊥1 +

2h⊥1LL

3

)2

≤
(
f1 +

2b1

3

)2

, (5.32f)

|pT |2
M2

h2
1TT ≤

1
4

(
f1 + g1 −

b1

3

)2

, (5.32g)

|pT |2
M2

h⊥1L
2

+

(
h⊥1 −

h⊥1LL

3

)2 ≤ (
f1 + g1 −

b1

3

) (
f1 − g1 −

b1

3

)
, (5.32h)

|pT |4
4M4

| f1TT|2 ≤
(
f1 + g1 −

b1

3

) (
f1 − g1 −

b1

3

)
. (5.32i)

5.3 Cross sections and asymmetries for spin-one targets

We will not dwell very much on the analysis of spin-one targets. The only available one is the
deuteron, which is a system of two spin-half hadrons connected by nuclear interaction. In the

3Note the difference in Eq. (5.32g) compared to Eq. (38) of Ref. 37, due to an error in the latter.
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approximation of independent scattering off the nucleons, the distribution functionb1 is expected
to be small. However, calculations ofb1 are available in the literature (see e.g. Ref. 169). Some
calculations show that this function could be sizeable in the low-x region [62, 89, 144], due to
nuclear shadowing effects. New precision measurements of the deuteron structure functions (e.g.
from HERMES) may provide an experimental test of this expectation, as already observed in
several papers [21, 93, 131].

We will focus only on totally inclusive deep inelastic scattering off a spin-one target at leading
twist. As we have seen in Chap. 2, in this type of process we can access only chiral-even, transverse
momentum independent functions. Spin-one targets are characterized by three such functions,f1,
g1 andb1. Therefore, we should be able to define three independent asymmetries. In addition to
the indices� to denote the±1 polarization along the direction of the beam, with the index 0 we
will denote when the target is polarized along the direction of the beambutwith magnetic number
equal to 0.

The total cross section integrated over the azimuthal angleφS is analogous to Eq. (2.70)

d2σ

d xB dy
=

4πα2

sxBy2

∑
q

e2
q

[
A(y)

(
f q
1 (xB) + SLL bq

1(xB)
)

+ λeSL B(y) gq
1(xB)

]
. (5.33)

A few words on the value of the polarization coefficients are needed. When the target is polarized
purely in the±1 state along the beam direction, thenSL = ∓1 andSLL = −1/3 [cf. Eq. (5.11a)].
In case the polarization is not complete, then a possible notation could beSL = ∓|SL| andSLL =

−|S1
LL|/3, with |SL| = |S1

LL| < 1. When the target is polarized purely in the 0 state along the beam,
thenSL = 0 andSLL = 2/3. In case the polarization is not complete, we can use the notation
SLL = 2|S0

LL|/3, where the coefficient |S0
LL| is smaller than 1, and can be different from|S1

LL|. If we
just sum the cross section with opposite vector polarizationSL, in analogy to Eq. (2.71), we will
obtain

1
2

(
d2σ→← + d2σ→→

)
=

4πα2

sxBy2
A(y)

∑
q

e2
q

(
f q
1 (xB) −

|S1
LL|
3

bq
1(xB)

)
, (5.34)

where a contamination of tensor polarization is still present. Thus, the unpolarized part of the cross
section has to be properly defined as

d2σUU ≡
1
3

(
d2σ→← + d2σ→0 + d2σ→→

)
=

4πα2

sxBy2
A(y)

∑
q

e2
q f q

1 (xB). (5.35)

The vector polarized part of the cross section corresponds exactly to Eq. (2.72). We rewrite it here
for convenience

d2σLL ≡
1
2

(
d2σ→← − d2σ→→

)
=

4πα2

sxBy2
|λe| |SL| B(y)

∑
q

e2
q gq

1(xB). (5.36)

Finally, we can define a tensor polarized part of the cross section

d2σU L
L
≡ 1

6

(
2 d2σ→0 − d2σ→← − d2σ→→

)
=

4πα2

sxBy2
|S0

LL|A(y)
∑

q

e2
q bq

1(xB). (5.37)



5.4 Spin-one hadrons in the final state 81

Therefore, the appropriate asymmetry to measure the spin-one distribution functionb1 is

AU L
L
(xB, y) ≡

d2σU L
L

d2σUU

= |S0
LL|

(1/xBy2) A(y)
∑

q e2
q bq

1(xB)

(1/xBy2) A(y)
∑

q e2
q f q

1 (xB)
. (5.38)

5.4 Spin-one hadrons in the final state

Instead of pointing the attention to spin-one targets, it is possible to analyze spin-one final state
hadrons in semi-inclusive deep inelastic scattering or ine+ e− annihilation. This idea was first
considered by Efremov and Teryaev [91] (and more recently rediscussed in Ref. [155]). A system-
atic study was accomplished by Ji [122], who singled out two new fragmentation functions, the
function b̂1, analogous to the distribution functionb1, and the T-odd function̂h1. These new frag-
mentation functions can be observed in the production of vector mesons, e.g.ρ, K∗, φ. However,
these functions require polarimetry on the final-state meson, which can be done by studying the
angular distribution of its decay products (e.g.π+ π− in the case ofρ0 meson). In this sense, vector
meson production represents just a specific contribution to the more general case of two-particle
production near the vector meson mass.

5.4.1 The decay of a spin-one hadron

We want to describe the decay of a spin-one hadron with momentumPh and massMh into two un-
polarized particles with momentaP1, P2, and massesM1, M2. We assume the same parametrization
of the momenta as presented in Chap. 4, in particular Eqs. (4.1). In general, the angular distribution
of the decay products of a spin-one hadron into two unpolarized hadrons is

W(cosθ, φR) = ρΛ′2Λ2D(θ, φR)1Λ2,1Λ′2
, (5.39)

whereθ andφR are the polar and azimuthal angles of the vectorR = (P1 − P2)/2 in the decaying
particle rest frame, as defined in Chap. 4, Eqs. (4.22), and they correspond to the angles usually
measured in experiments [7, 8, 69]. The decay matrix,D, has been defined in Eq. (4.32). In this
chapter, we are only interested in thej = 1 sector, therefore for convenience we define a spin-one
decay matrix

R(θ, φR)Λ2Λ′2
≡ D(θ, φR)1Λ2,1Λ′2

. (5.40)

As can be checked by explicit comparison, this matrix can be rewritten as

R(θ, φR) =
1
4π

[
1 + 3Σi j

(
1
3
δi j − R̂i

cmR̂j
cm

)]
, (5.41)

whereR̂cm = Rcm/|R|. Notice that|R| stands for the modulus of the vectorR in the center-of-mass
frame of reference. We know from Eq. (4.23) or Eq. (4.25) how to express it in terms ofM1, M2

andMh.
In general, the decay matrix can be expressed in terms ofanalyzing powers:

R(θ, φR) =
1
4π

(
1 +

3
2

Σi Ai(θ, φR) + 3Σi j Ai j (θ, φR)

)
, (5.42)
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and the decay distribution can be obtained accordingly as

W(cosθ, φR) =
1
4π

(
1 +

3
2

Si Ai + 3Ti j Ai j

)
. (5.43)

By comparing Eq. (5.41) with Eq. (5.42) we can identify

Ai = 0, Ai j =
1
3
δi j − R̂i

cmR̂j
cm, (5.44)

from which we observe that the vector analyzing powers are zero [64].4

The tensor analyzing power can be written in a covariant form:

Aµν =
1
|R|2 RµRν − 1

3

(
gµν −

Pµ
hPν

h

M2
h

)
. (5.45)

We can use a parametrization of the tensor analyzing power analogous to that of the spin tensor,
Eq. (5.5b), provided we exchange the plus and minus components and we replaceP andM with
Ph andMh. Then, we can write the parameters of the tensor in terms of the anglesθ andφR:

ALL =
1
3

(
3 cos2 θ − 1

)
, (5.46a)

Ax
LT = − sin 2θ cosφR, Ay

LT = − sin 2θ sinφR, (5.46b)

Axx
TT = − sin2 θ cos 2φR, Axy

TT = − sin2 θ sin 2φR. (5.46c)

Substituting the explicit form of the tensor analyzing power in Eq. (5.43), we obtain the decay
distribution (cf. Ref. 156)

W(cosθ, φR) =
3
8π

(
2
3

+ SLL(3 cos2 θ − 1)− Sx
LT sin 2θ cosφR− Sy

LT sin 2θ sinφR

− Sxx
TT sin2 θ cos 2φR− Sxy

TT sin2 θ sin 2φR

)
.

(5.47)

5.5 The correlation function ∆

The decomposition of the correlation function∆ is analogous to that ofΦ, just replacingp, P,
Ai(p ·P, p2) with k, Ph, Bi(k ·Ph, k2) and the spin vector and tensor,Sµ andTµν, with the vector and
tensor analyzing powers,Aµ andAµν. Therefore, the leading-twist part of the correlation functions,
P− ∆(z,A) γ−, can be parametrized in terms of five fragmentation functions

P− ∆(z, cosθ, φR) γ− =
1
8π

(
D1(z) + G1(z) AL γ5 + H1(z) γ5/AT + B1(z) ALL + i H1LT(z) /ALT

)
P−,
(5.48)

The prefactor has been chosen to have a better connection to the unpolarized results, i.e. integrated
over cosθ andφR. We retained the terms containing the vector analyzing powers, although we

4The vector analyzing powers can be different from zero in a decay that does not conserve parity.
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know that they vanish in the case of a parity-conserving decay. The functionH1LT is T-odd and
corresponds to the function̂h1 of Ref. 122. This function evolves with the energy scale in the same
way as the transversity fragmentation function [160].

The matrix representation of the leading part of∆(z) can be obtained almost directly from the
result of the matrixF(x), shown in Eq. (5.21), provided we apply the correct replacements. The
result is

D(z)
Λ′2Λ2

χ′2χ2

=

1
6



D1 + G1 − 1
3 B1 0 0 0

√
2 (H1 + i H1LT) 0

0 D1 + 2
3 B1 0 0 0

√
2 (H1 − i H1LT)

0 0 D1 −G1 − 1
3 B1 0 0 0

0 0 0 D1 −G1 − 1
3 B1 0 0

√
2 (H1 − i H1LT) 0 0 0 D1 + 2

3 B1 0

0
√

2 (H1 + i H1LT) 0 0 0 D1 + G1 − 1
3 B1


.

(5.49)

Conservation of angular momentum in the fragmentation process requiresΛ2 + χ′2 = Λ′2 + χ2.
At this point, we can compare the matrix we obtained with the purep-wave sector of the

matrix D(z,M2
h) in Eq. (4.34). We notice that the two matrix have an almost identical form, after

we identify

D1 =
3
4

Dpp
1,UU , (5.50a)

B1 =
3
4

Dpp
1,LL, (5.50b)

H1LT =
3
4

(
−2

3
|R|
Mh

H^ pp
1,LT

)
. (5.50c)

There are, however, a couple of differences. The first difference is that two-hadron fragmentation
functions depend also on the total invariant mass squared, while spin-one fragmentation functions
do not, since they are supposed to be nonzero only at the mass of the hadron we are observing.
More appropriately, since we are usually observing a resonance we should assume that spin-one
fragmentation functions have to be multiplied by an invariant mass distribution, e.g. a Breit-Wigner
curve peaked at the resonance mass.

The second difference is that in the analysis of two-hadron fragmentation we missed the com-
ponentsG1 andH1, typical of vector polarization. The reason is that a parity violating decay is
required to analyze these components. In fact, if we trace the matrix of Eq. (5.49) with a decay
matrix such as the one defined in Eq. (5.40), the vector polarization functions,G1 andH1, would
not appear in the decay distribution. When studying two-hadron fragmentation, we imposed parity
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invariance from the very beginning – from Eq. (4.13) – thus missing any contribution of vector
polarization.

We are not going to analyze the features of the correlation function∆ when partonic transverse
momentum is included, as they essentially reproduce those of the correlation functionΦ, studied
in Sec. 5.2.2 on page 77, modulo the replacements we discussed at the beginning of this section.

5.5.1 Positivity bounds on spin-one fragmentation functions

The bounds stemming from the positivity of the fragmentation matrix are very similar to the ones
we discussed for spin-one distribution functions in Sec. 5.2.1 on page 76. From the diagonal
elements we get

D1(z) ≥ 0, (5.51a)

−3
2

D1(z) ≤ B1(z) ≤ 3D1(z), (5.51b)

|G1(z)| ≤ D1(z) −
1
3

B1(z) ≤
3
2

D1(z). (5.51c)

Eqs. (5.51a) and (5.51b) correspond to the Eqs. (4.38b) and (4.38c). From positivity of the two-
dimensional minors we get

(
H1LT(z)

)2
+

(
H1(z)

)2 ≤ 1
2

(
D1(z) +

2
3

B1(z)

) (
D1(z) + G1(z) −

1
3

B1(z)

)
. (5.52)

Because of the lack of information on vector polarized fragmentation functions, the bound in
Eq. (5.51c) does not have a direct relevance for experiments, but it can be very useful to test
the consistency of model calculations. The bound in Eq. (5.52) can be used in a less restrictive
version [37]

|H1LT(z)| ≤

√(
D1(z) +

2
3

B1(z)

) (
D1(z) −

1
3

B1(z)

)
≤ 3

2
√

2
D1(z), (5.53)

corresponding to Eq. (4.39c).

5.6 Cross section and asymmetries for spin-one production

We consider one-particle inclusive DIS events where the target consists of a spin-half hadron and
the fragment is a spin-one hadron. We assume the polarization of the final state hadron is ana-
lyzed by means of a two-particle, parity-conserving decay. It is worthwhile to mention that the
experimental analysis of spin-one final state polarization has been already performed forexclusive
leptoproduction of vector mesons [7, 8, 67–69] and ine+e− annihilation [1, 2, 4–6]. Fig. 5.1 on the
next page shows a typical distribution of the energy absorbed by the target inρ production events.
The peak represents the exclusive events, while the rest of the distribution contains deep inelastic
events, which have always been excluded from data analyses.
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Figure 5.1. Distribution of the energy absorbed by the target inρ production events [7].

Let us first analyze the cross section integrated over the transverse momentum of the outgoing
hadron. It will be differential in six variables

d6σ

d cosθ dφR dzh d xB dy dφS
= ρ(S)Λ1Λ′1

F(xB)
Λ′1Λ1

χ1χ
′
1

( dσeq

dy

)χ1χ
′
1; χ2χ

′
2D(zh)

Λ′2Λ2

χ′2χ2

R(θ, φR)Λ2Λ′2
,

(5.54)
whereθ andφR are the decay angles discussed in Sec. 5.4.1 on page 81.

The unpolarized and polarized parts of the cross section are

d6σUU =
∑

q

α2e2
q

2πsxBy2
A(y) f q

1 (xB)
(
Dq

1(zh) +
1
3

(
3 cos2 θ − 1

)
Bq

1(zh)
)
, (5.55a)

d6σLL =
∑

q

α2e2
q

2πsxBy2
λe SL C(y) gq

1(xB)
(
Dq

1(zh) +
1
3

(
3 cos2 θ − 1

)
Bq

1(zh)
)
, (5.55b)

d6σUT = −
∑

q

α2e2
q

2πsxBy2
B(y) |S⊥| sin 2θ sin(φR + φS) hq

1(xB) Hq
1LT(zh). (5.55c)

The unpolarized cross section corresponds to Eq. (58) of Ref. 36 (there the unpolarized fragmenta-
tion function has been neglected), while Eq. (5.55b) corresponds to Eq. (61) of Ref. 36 integrated
over the hadron transverse momentum and finally Eq. (5.55c) corresponds to Eq. (63) of Ref. 36.5

At the same time, note the correspondence with thepp sector of Eqs. (4.41), after we apply the
identifications of Eqs. (5.50).

The asymmetry of Eq. (5.55c) contains the transversity distribution multiplied with the chiral-
odd T-odd functionH1LT . This observable is just a part of the one we presented in Eq. (4.41c), but
this is a good point to stress once more a couple of details. The functionH1LT is different from
the sp interference fragmentation functionH^ sp

1,UT . Although a proper analysis of this function has
to be done in the framework of two-particle fragmentation, it is important to realize that it enjoys
the characteristics of a single-particle function. For instance, there is little doubt about the fact
that it will be strongly peaked at the mass of some spin-one resonance. On the contrary, we don’t

5An overall minus sign is missing in Eq. (63) of Ref. 36
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know what is the invariant mass behavior ofspinterference fragmentation functions. Moreover, its
physical origin could be more similar to that of the Collins function than to that ofsp interference
fragmentation functions. Since we have some indications that the Collins function is possibly
sizable, there is hope that alsoH1LT will turn out to be large, maybe larger thansp interference
fragmentation functions. However, it must be remembered thatH1LT does not depend on partonic
transverse momentum.

If we don’t integrate over the transverse momentum of the outgoing hadron, the the cross
section will be differential in eight variables

d8σ

d cosθ dφR dzh d2Ph⊥ d xB dy dφS

=

ρ(S)Λ1Λ′1
I

[
F(xB, pT)

Λ′1Λ1

χ1χ
′
1

( dσeq

dy

)χ1χ
′
1; χ2χ

′
2D(zh, kT)

Λ′2Λ2

χ′2χ2

]
R(θ, φR)Λ2Λ′2

. (5.56)

Obviously, the cross sections are much more complex than before. The following formulae cor-
respond to the ones listed in Ref. 36, if we replace the tensor polarization components with the
analyzing powers of Eqs. (5.46). However, here we show also the unpolarized contributions and
we examine also the terms with T-odd distribution functions.6

Unpolarized lepton beam and unpolarized target

d8σUU =
∑

q

α2e2
q

2πsxBy2
A(y)

{
I [

f1 D1
]
+

1
3

(
3 cos2 θ − 1

)
I [

f1 B1
]

− sin 2θ cos(φh − φR)I
[
kT · P̂h⊥

Mh
f1 D1LT

]
− sin2 θ cos(2φh − 2φR)

× I
2(kT · P̂h⊥)2 − k2

T

M2
h

f1 D1TT

} +
∑

q

α2e2
q

2πsxBy2
B(y)

{
−1

3

(
3 cos2 θ − 1

)
cos 2φh

× I
[
2(pT · P̂h⊥)(kT · P̂h⊥) − pT · kT

MMh
h⊥1 H⊥1LL

]
+ sin 2θ cos(φh + φR)

× I
[

pT · P̂h⊥

M
h⊥1 H1LT

]
+ sin2 θ cos 2φRI

[
pT · kT

MMh
h⊥1 H1TT

]
+ sin 2θ cos(3φh − φR)

× I
4(kT · P̂h⊥)2(pT · P̂h⊥) − 2(kT · P̂h⊥)(pT · kT) − k2

T(pT · P̂h⊥)

2MM2
h

h⊥1 H⊥1LT


+ sin2 θ cos(4φh − 2φR)I

[([k2
T − 4(kT · P̂h⊥)2

] [
pT · kT − 4(kT · P̂h⊥)(pT · P̂h⊥)

]
2MM3

h

− 8(kT · P̂h⊥)3(pT · P̂h⊥)

2MM3
h

)
h⊥1 H⊥1TT

]}
,

(5.57)

6Moreover, in Ref. 36 there are a few typos and there is a systematic error sign whenever the factors|ShLT| and
|ShTT| are used.
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Polarized lepton beam and unpolarized target

d8σLU = −
∑

q

α2e2
q

2πsxBy2
λeC(y)

{
sin 2θ sin(φh − φR)I

[
kT · P̂h⊥

Mh
f1 G1LT

]

+ sin2 θ sin(2φh − 2φR)I
2(kT · P̂h⊥)2 − k2

T

M2
h

f1 G1TT

}, (5.58)

Unpolarized lepton beam and longitudinally polarized target

d8σUL = −
∑

q

α2e2
q

2πsxBy2
|SL| A(y)

{
sin 2θ sin(φh − φR)I

[
kT · P̂h⊥

Mh
g1L G1LT

]

+ sin2 θ sin(2φh − 2φR)I
2(kT · P̂h⊥)2 − k2

T

M2
h

g1L G1TT

}
−

∑
q

α2e2
q

2πsxBy2
|SL| B(y)

{
−1

3

(
3 cos2 θ − 1

)
sin 2φh

× I
[
2(pT · P̂h⊥)(kT · P̂h⊥) − pT · kT

MMh
h⊥1L H⊥1LL

]
+ sin 2θ sin(φh + φR)

× I
[

pT · P̂h⊥

M
h⊥1L H1LT

]
+ sin2 θ sin 2φRI

[
pT · kT

MMh
h⊥1L H1TT

]
+ sin 2θ sin(3φh − φR)

× I
4(kT · P̂h⊥)2(pT · P̂h⊥) − 2(kT · P̂h⊥)(pT · kT) − k2

T(pT · P̂h⊥)

2MM2
h

h⊥1L H⊥1LT


+ sin2 θ sin(4φh − 2φR)I

[([k2
T − 4(kT · P̂h⊥)2

] [
pT · kT − 4(kT · P̂h⊥)(pT · P̂h⊥)

]
2MM3

h

− 8(kT · P̂h⊥)3(pT · P̂h⊥)

2MM3
h

)
h⊥1L H⊥1TT

]}
,

(5.59)

Polarized lepton beam and longitudinally polarized target

d8σLL =
∑

q

α2e2
q

2πsxBy2
λe |SL| C(y)

{
I [

g1L D1
]
+

1
3

(
3 cos2 θ − 1

)
I [

g1L B1
]

− sin 2θ cos(φh − φR)I
[
kT · P̂h⊥

Mh
g1L D1LT

]
− sin2 θ cos(2φh − 2φR)I

2(kT · P̂h⊥)2 − k2
T

M2
h

g1L D1TT

},
(5.60)
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Unpolarized lepton beam and transversely polarized target

d8σUT =
∑

q

α2e2
q

2πsxBy2
|ST | A(y)

{
sin 2θ sin(φR− φS)I

[
(pT · kT)
2MMh

g1T G1LT

]

− sin 2θ sin(2φh − φR− φS)I
[
2(pT · P̂h⊥)(kT · P̂h⊥) − pT · kT

2MMh
g1T G1LT

]
− sin2 θ sin(φh − 2φR + φS)I

2(kT · P̂h⊥)(pT · kT) − k2
T(pT · P̂h⊥)

2MM2
h

g1T G1TT


− sin2 θ sin(3φh − 2φR− φS)I

[(
4(kT · P̂h⊥)2(pT · P̂h⊥) − 2(kT · P̂h⊥)(pT · kT)

2MM2
h

−
k2

T(pT · P̂h⊥)

2MM2
h

)
g1T G1TT

]
+ sin(φh − φS)I

[
pT · P̂h⊥

M
f ⊥1T D1

]
+

1
3

(
3 cos2 θ − 1

)
× sin(φh − φS)I

[
pT · P̂h⊥

M
f ⊥1T B1

]
− sin 2θ sin(φR− φS)I

[
(pT · kT)
2MMh

f ⊥1T D1LT

]
− sin 2θ sin(2φh − φR− φS)I

[
2(pT · P̂h⊥)(kT · P̂h⊥) − pT · kT

2MMh
f ⊥1T D1LT

]
+ sin2 θ sin(φh − 2φR + φS)I

2(kT · P̂h⊥)(pT · kT) − k2
T(pT · P̂h⊥)

2MM2
h

f ⊥1T D1TT


− sin2 θ sin(3φh − 2φR− φS)I

[(
4(kT · P̂h⊥)2(pT · P̂h⊥) − 2(kT · P̂h⊥)(pT · kT)

2MM2
h

−
k2

T(pT · P̂h⊥)

2MM2
h

)
f ⊥1T D1TT

]}
+

∑
q

α2e2
q

2πsxBy2
B(y)

{
1
3

(
3 cos2 θ − 1

)
sin(φh + φS)

× I
[
kT · P̂h⊥

Mh
h1 H⊥1LL

]
− sin 2θ sin(φR + φS)I [h1 H1LT ] + sin2 θ (5.61)

× sin(φh − 2φR− φS)I
[
kT · P̂h⊥

Mh
h1 H1TT

]
− sin 2θ sin(2φh − φR + φS)

× I
2(kT · P̂h⊥)2 − k2

T

2M2
h

h1 H⊥1LT

 − sin2 θ sin(3φh − 2φR + φS)

× I
4(kT · P̂h⊥)3 − 3k2

T(kT · P̂h⊥)

2M3
h

h1 H⊥1TT

 +
1
3

(
3 cos2 θ − 1

)
sin(3φh − φS)

× I
4(pT · P̂h⊥)2(kT · P̂h⊥) − 2(pT · P̂h⊥)(pT · kT) − p2

T(kT · P̂h⊥)

2M2Mh
h⊥1T H⊥1LL


− sin 2θ sin(2φh + φR− φS)I

2(pT · P̂h⊥)2 − p2
T

2M2
h⊥1T H1LT


− sin2 θ sin(φh + 2φR− φS)I

2(pT · kT)(pT · P̂h⊥) − (kT · P̂h⊥)p2
T

2M2Mh
h⊥1T H1TT


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+ sin 2θ sin(4φh − φR− φS)I
[( k2

T

[
2(pT · P̂h⊥)2 − p2

T

]
4M2M2

h

− 2(kT · P̂h⊥)

×

[
4(pT · P̂h⊥)2(kT · P̂h⊥) − 2(pT · P̂h⊥)(pT · kT) − p2

T(kT · P̂h⊥)
]

4M2M2
h

)
h⊥1T H⊥1LT

]

+ sin2 θ sin(5φh − 2φR− φS)I
[(2k2

T(kT · P̂h⊥)
[
2(pT · P̂h⊥)2 − p2

T

]
4M2M3

h

+
[
k2

T − 4(kT · P̂h⊥)2
]

×

[
4(pT · P̂h⊥)2(kT · P̂h⊥) − 2(pT · P̂h⊥)(pT · kT) − p2

T(kT · P̂h⊥)
]

4M2M3
h

)
h⊥1T H⊥1TT

]}
,

Polarized lepton beam and transversely polarized target

d8σLT =
∑

q

α2e2
q

2πsxBy2
λe |ST | C(y)

{
cos(φh − φS)I

[
pT · P̂h⊥

M
g1T D1

]
+

1
3

(
3 cos2 θ − 1

)
× cos(φh − φS)I

[
pT · P̂h⊥

M
g1T B1

]
− sin 2θ cos(φR− φS)I

[
(pT · kT)
2MMh

g1T D1LT

]
− sin 2θ cos(2φh − φR− φS)I

[
2(pT · P̂h⊥)(kT · P̂h⊥) − pT · kT

2MMh
g1T D1LT

]
− sin2 θ cos(φh − 2φR + φS)I

2(kT · P̂h⊥)(pT · kT) − k2
T(pT · P̂h⊥)

2MM2
h

g1T D1TT


− sin2 θ cos(3φh − 2φR− φS)I

[(
4(kT · P̂h⊥)2(pT · P̂h⊥) − 2(kT · P̂h⊥)(pT · kT)

2MM2
h

−
k2

T(pT · P̂h⊥)

2MM2
h

)
g1T D1TT

]
− sin 2θ cos(φR− φS)I

[
(pT · kT)
2MMh

f ⊥1T G1LT

]
+ sin 2θ cos(2φh − φR− φS)I

[
2(pT · P̂h⊥)(kT · P̂h⊥) − pT · kT

2MMh
f ⊥1T G1LT

]
− sin2 θ cos(φh − 2φR + φS)I

2(kT · P̂h⊥)(pT · kT) − k2
T(pT · P̂h⊥)

2MM2
h

f ⊥1T G1TT


+ sin2 θ cos(3φh − 2φR− φS)I

[(
4(kT · P̂h⊥)2(pT · P̂h⊥) − 2(kT · P̂h⊥)(pT · kT)

2MM2
h

−
k2

T(pT · P̂h⊥)

2MM2
h

)
f ⊥1T G1TT

]}
.

(5.62)

The previous formulae describe thepp sector of two-hadron production with transverse mo-
mentum and partial-wave expansion, which we did not compute in Chap. 4.
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5.7 Summary

In this chapter, we examined the description of spin-one hadrons, both in the role of targets and of
final-state fragments.

To describe spin-one targets, we introduced a rank-two spin tensor in the decomposition of the
spin density matrix. The presence of the spin tensor made the decomposition of the correlation
function Φ more complex than the spin-half case. Neglecting partonic transverse momentum,
we could describe the leading twist part of the correlation function by means of five distribution
functions [Eq. (5.17)]. Besides the familiar three functions of the spin-half case (f1, g1 andh1), we
needed to introduce the functionb1 and the T-odd functionh1LT . The latter was never discussed
in the literature before and it is the first leading-twist T-odd distribution function that survives the
integration over partonic transverse momentum.

We studied the correlation function in the framework of the helicity formalism and we obtained
for the first time positivity bounds on spin-one distribution functions [Eqs. (5.22) and (5.23)]. In
particular, we demonstrated that the bounds on the helicity and transversity distribution functions
are different from the spin-half case. We carried out the analysis of the correlation function includ-
ing also transverse momentum, leading to the decomposition of the correlation function shown in
Eqs. (5.25), together with the positivity bounds of Eqs. (5.32).

We briefly discussed the cross section for inclusive deep inelastic scattering on spin-one targets,
emphasizing the contribution of the distribution functionb1 [Eqs. (5.34), (5.35) and (5.37)].

We devoted the second half of the chapter to the analysis of spin-one hadron as current frag-
ments. We explained how it is possible to probe the polarization of an outgoing hadron if it un-
dergoes a two-particle decay. After studying the correlation function∆, in Sec. 5.6 we listed all
the spin asymmetries occurring at leading order in 1/Q in spin-one deep inelastic leptoproduction,
with or without integration over the outgoing hadron’s transverse momentum. In particular, we
highlighted the single transverse spin asymmetry of Eq. (5.55c). Even though this asymmetry was
already included in the discussion of two-hadron fragmentation functions, in this chapter we made
clear that it has the characteristics of asingle-particlefragmentation function and it is not related
to the two-hadronsp interference functionH^ sp

1,UT .
In the next chapter, we are going to study how it is possible to generate T-odd single-particle

fragmentation functions in the framework of a field theoretical approach.



6
A model estimate

of the Collins function

Models are to be used, not believed.

H. Teil

In the previous chapters, we extensively discussed how it is possible to observe the transversity
distribution function in connection with T-odd chiral-odd fragmentation function, in particular the
Collins functionH⊥1 , the two-hadron interference functionH^ sp

1,UT or the spin-one fragmentation
function H1LT . Unfortunately, at the moment we have scarce or no information about these func-
tions. Therefore, we need to address the important issue of estimating them and check whether they
could be measurable. Beside giving an indication of the magnitude of unknown fuctions, model
evaluations, however rough or naive, serve some useful purposes: they show whether a nonzero
function can be obtained in the framework of known theories, they pave the way for future im-
proved estimates, they shed light on some crucial properties, and they analyze the consequences
of the assumptions of the model. In this chapter, we focus on the Collins function, which could be
regarded as the prototype of a T-odd function, and present an estimate of it.

In spite of the apparent difficulty in modeling T-odd effects, a nonvanishing Collins function can
be obtained through a consistent one-loop calculation, in a description where massive constituent
quarks and pions are the only effective degrees of freedom and interact via a simple pseudoscalar
coupling, as we have shown in Ref. [34]. We point out that Collins himself suggested the idea of
dressing the quark propagator as a possible mechanism to produce a nonzeroH⊥1 [77] and a more
specific way to achieve this goal was mentioned by Suzuky in Ref. 162. The model discussed
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in our early work was admittedly unfit to reproduce the phenomenology of the Collins function.
Here, we show the result of a recent calculation [35], which gives a more reasonable estimate.

At present, only one attempt to theoretically estimate the Collins function for pions exists [26],
and little phenomenological information is available from experiments. The HERMES Collabora-
tion reported the first measurements of single spin asymmetries in semi-inclusive DIS [10, 11], giv-
ing an indication of a possibly nonzero Collins function. Preliminary results have been presented
by the SMC collaboration as well [65]. The Collins function has also been invoked to explain large
azimuthal asymmetries inpp↑ → πX [23, 60]. However, all these analyses are plagued by large
uncertainties, and hence do not allow any conclusive statement yet. Recently, a phenomenologi-
cal estimate of the Collins function has been proposed [90], combining results from the DELPHI,
SMC and HERMES experiments. However, in spite of all the efforts to pin down the Collins
function, the knowledge we have at present is still insufficient.

In this chapter we calculate the Collins function for pions in a chiral invariant approach at a low
energy scale, as we have done in Ref. 35. We use the model of Manohar and Georgi [139], which
incorporates chiral symmetry and its spontaneous breaking, two important aspects of QCD at low
energies. The spontaneous breaking of chiral symmetry leads to the existence of (almost massless)
Goldstone bosons, which are included as effective degrees of freedom in the model. Quarks appear
as further degrees of freedom as well. However, in contrast with the current quarks of the QCD
Lagrangian, the model uses massive constituent quarks – a concept that has been proven very
successful in many phenomenological models at hadronic scales. With the exception of Ref. 121,
the implications of a chiral invariant interaction for fragmentation functions into Goldstone bosons
at low energy scales remain essentially unexplored.

Although the applicability of the Manohar-Georgi model is restricted to energies below the
scale of chiral symmetry breakingΛχ ≈ 1 GeV, this might be sufficient to calculate soft objects.
In this kinematical regime, the chiral power counting allows setting up a consistent perturbation
theory [170]. The relevant expansion parameter is given byl/Λχ, wherel is a generic external
momentum of a particle participating in the fragmentation. To guarantee the convergence of the
perturbation theory, we restrict the maximum virtualityµ2 of the decaying quark to a soft value.
We mostly consider the caseµ2 = 1 GeV2.

The outline of the chapter is as follows. We first give the details of our model and present the
analytical results of our calculation. Next, we discuss our results and compare them with known
observables, indicating the choice of the parameters of our model. Then, we present the features of
our prediction for the Collins function and its moments. Finally, using the outcome of our model,
we estimate the leading order asymmetries containing the Collins function in semi-inclusive DIS
and ine+e− annihilation into two hadrons.

6.1 Calculation of the Collins function

Considering the fragmentation process of a quark into a pion,q∗(k) → π(p)Y, we use the expres-
sions of the unpolarized fragmentation functionD1 and the Collins functionH⊥1 given in Eq. (3.28).
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For convenience, we reproduce that definition in a more explicit way:1

D1(z, z
2k2

T) =
1
4z

∫
dk+ Tr[∆(k, p) γ−]

∣∣∣∣∣
k−=

p−
z

, (6.1a)

ε
i j
T kT j

mπ

H⊥1 (z, z2k2
T) =

1
4z

∫
dk+ Tr[∆(k, p) iσi−γ5]

∣∣∣∣∣
k−=

p−
z

, (6.1b)

with mπ denoting the pion mass and∆ being the correlation function defined in Eq. (3.12).
We now use the chiral invariant model of Manohar and Georgi [139] to calculate the matrix

elements in the correlation function. Neglecting the part that describes free Goldstone bosons, the
Lagrangian of the model reads

L = ψ̄ (i/∂ + /V −m+ gA/Aγ5)ψ . (6.2)

In Eq. (6.2) the pion field enters through the vector and axial vector combinations

Vµ =
i
2

[u†, ∂µu] , Aµ =
i
2
{u†, ∂µu} , (6.3)

with u = exp(iτ · π/2Fπ), where theτi are the generators of the SU(2) flavor group andFπ =

93 MeV represents the pion decay constant. In absence of resonances, the pion decay constant
determines the scale of chiral symmetry breaking viaΛχ = 4πFπ. The quark massm and the axial
coupling constantgA are free parameters of the model that are not constrained by chiral symmetry.
The values of these parameters will be specified in Sec. 6.2. Although we limit ourselves here to
the SU(2) flavor sector of the model, the extension to strange quarks is straightforward, allowing in
particular the calculation of kaon fragmentation functions. For convenience we write down explic-
itly those terms of the interaction part of the Lagrangian (6.2) that are relevant for our calculation.
To be specific we need both the interaction of a single pion with a quark and the two-pion contact
interaction, which can easily be obtained by expanding the nonlinear representationu in terms of
the pion field:

Lπqq = − gA

2Fπ

ψ̄ γµγ5 τ · ∂µπψ , (6.4a)

Lππqq = − 1
4F2

π

ψ̄ γµ τ · (π × ∂µπ)ψ . (6.4b)

Performing the numerical calculation of the Collins function, it turns out that the contact interaction
(6.4b), which is a direct consequence of chiral symmetry, plays a dominant role.

At tree level, the fragmentation of a quark is modeled through the processq∗ → πq, where
Fig. 6.1 on the next page represents the corresponding unitarity diagram. Using the Lagrangian in
Eq. (6.4a), the correlation function at lowest order reads

∆(0)(k, p) = −
g2

A

4F2
π

1
(2π)4

(/k + m)
k2 −m2

γ5 /p (/k− /p + m) /pγ5
(/k + m)
k2 −m2

2π δ
(
(k− p)2 −m2

)
. (6.5)

1Note that this definition ofH⊥1 slightly differs from the original one given by Collins [77].
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k

p

Figure 6.1. Lowest-order cut diagram describing the fragmentation of a quark into a pion.

This correlation function allows to compute the unpolarized fragmentation functionD1 by means
of Eq. (6.1a), leading to

D1(z, z
2k2

T) =
1
z

g2
A

4F2
π

1
16π3

(
1− 4

1− z
z2

m2 m2
π

[k2
T + m2 + (1− z)m2

π/z2]2

)
. (6.6)

Note that the expression in Eq. (6.6) is only weakly dependent on the transverse momentum of
the quark. In fact,D1 is constant as a function ofkT , if mπ = 0 and (or)m = 0. Because our
approach is limited to the soft regime, we will impose an upper cutoff on thekT integration, as will
be discussed in more detail in Sec. 6.2. This in turn leads to a finiteD1(z) after integration over the
transverse momentum.

The SU(2) flavor structure of our approach implies the relations

Du→π0

1 = Dū→π0

1 = Dd→π0

1 = Dd̄→π0

1 = D1 , (6.7a)

Du→π+

1 = Dd̄→π+

1 = Dū→π−
1 = Dd→π−

1 = 2D1 , (6.7b)

whereD1 is the result given in Eq. (6.6). In the case of unfavored fragmentation processesD1

vanishes at tree level, but will be nonzero as soon as one-loop corrections are included. Accord-
ing to the chiral power counting, one-loop contributions toD1 are suppressed by a factorl2/Λ2

χ

compared to the tree level result. The maximum momentum up to which the chiral perturbation
expansion converges numerically can be determined only by an explicit calculation of the one-loop
corrections.

As in the case of a pseudoscalar quark-pion coupling [34], the Collins functionH⊥1 turns out to
be zero in Born approximation. To obtain a nonzero result, we have to resort to the one-loop level.
In Fig. 6.2 the corresponding diagrams are shown, where we have displayed only those graphs
that contribute to the Collins function. The explicit calculation ofH⊥1 is similar to our previous
work [34]. The relevant ingredients of the calculation are the self-energy and the vertex correction
diagrams. These ingredients are sketched in Fig. 6.3 and can be expressed analytically as

−iΣ(k) =
g2

A

4F2
π

∫
d4 l

(2π)4

/l (/k− /l −m)/l
[(k− l)2 −m2] [ l2 −m2

π]
, (6.8a)

Γ1(k, p) = −i
g3

A

8F3
π

γ5

∫
d4 l

(2π)4

/l (/k− /p− /l + m)
[(k− p− l)2 −m2]

/p (/k− /l −m)/l
[(k− l)2 −m2][ l2 −m2

π]
, (6.8b)

Γ2(k, p) = −i
gA

8F3
π

γ5

∫
d4 l

(2π)4

(/l + /p) (/l − /k + m)/l
[(k− l)2 −m2)][ l2 −m2

π]
, (6.8c)
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(a) (b)

+ h.c.

(c)

Figure 6.2. One-loop corrections to the fragmentation of a quark into a pion contributing to the Collins
function. The Hermitean conjugate diagrams (h.c.) are not shown explicitly.

p

Γ k,p(     )1 2

k

Σ (  )i- k

kk
p

Γ k,p(     )

Figure 6.3. One-loop self-energy, and vertex corrections.

where flavor factors have been suppressed. For later purpose, we give here the most general
parametrization of the functionsΣ, Γ1 andΓ2,

Σ(k) = A/k + B m, (6.9a)

Γ1(k, p) =
gA

2Fπ

γ5

(
C1 + D1 /p + E1 /k + F1 /p/k

)
, (6.9b)

Γ2(k, p) =
gA

2Fπ

γ5

(
C2 + D2 /p + E2 /k + F2 /p/k

)
. (6.9c)

The real parts of the functionsA, B, C1, D1 etc. could be UV divergent and require in principle
a proper renormalization. Here, we do not need to deal with the question of renormalization at
all, since only the imaginary parts of the loop diagrams are important when calculating the Collins
function [34].

Taking now flavor factors properly into account, the contributions to the correlation function
generated by the diagrams (a), (b) and (c) in Fig. 6.2 are given by

∆
(a)
(1)(k, p) = −3

g2
A

4F2
π

1
(2π)4

(/k + m)
k2 −m2

γ5 /p (/k− /p + m)

× /pγ5
(/k + m)
k2 −m2

Σ(k)
(/k + m)
k2 −m2

2π δ
(
(k− p)2 −m2

)
, (6.10a)

∆
(b)
(1)(k, p) =

gA

2F2
π

1
(2π)4

(/k + m)
k2 −m2

γ5 /p (/k− /p + m)
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× Γ1(k, p)
(/k + m)
k2 −m2

2π δ
(
(k− p)2 −m2

)
, (6.10b)

∆
(c)
(1)(k, p) = −2

gA

2F2
π

1
(2π)4

(/k + m)
k2 −m2

γ5 /p (/k− /p + m)

× Γ2(k, p)
(/k + m)
k2 −m2

2π δ
(
(k− p)2 −m2

)
. (6.10c)

The correlation functions of the Hermitean conjugate diagrams follow from the Hermiticity condi-
tion ∆H.c.

(1) (k, p) = γ0∆
†
(1)(k, p) γ0.

Summing the contributions of all diagrams and inserting the resulting correlation function in
Eq. (6.1b), we eventually obtain the result

H⊥1 (z, z2k2
T) =

g2
A

32π3F2
π

mπ

1− z
1

k2 −m2

(
− 3m Im

(
A + B

) − Im
(
C1 −mE1 + (k2 −m2)F1

)
+ 2 Im

(
C2 −mE2 + (k2 −m2)F2

)) ∣∣∣∣∣
k2= z

1−zk2
T+ m2

1−z+
m2
π
z

. (6.11)

Thus, the Collins function is entirely given by the imaginary parts of the coefficients defined in
Eqs. (6.9). We can compute these imaginary parts by applying Cutkosky rules to the self-energy
and vertex diagrams of Fig. 6.3 on the page before. Explicit calculation leads to

Im
(
A + B

)
=

g2
A

32π2F2
π

(
2m2

π −
k2 −m2

2

(
1− m2 −m2

π

k2

))
I1 , (6.12a)

Im
(
C1 −mE1 + (k2 −m2)F1

)
=

g2
A

32π2F2
π

m(k2 −m2)
(3k2 + m2 −m2

π

2k2
I1 (6.12b)

+ 4m2 k2 −m2 + m2
π

λ(k2,m2,m2
π)

(
I1 + (k2 −m2 − 2m2

π) I2

))
,

Im
(
C2 −mE2 + (k2 −m2)F2

)
=

1
32π2F2

π

m(k2 −m2)
(
1− m2 −m2

π

k2

)
I1 , (6.12c)

where we have introduced the so-called Källen function,λ(k2,m2,m2
π) = [k2− (m+ mπ)2][k2− (m−

mπ)2], and the factors

I1 =

∫
d4 l δ

(
l2 −m2

π

)
δ
(
(k− l)2 −m2

)
=

π

2k2

√
λ(k2,m2,m2

π) θ
(
k2 − (m+ mπ)

2
)
, (6.13a)

I2 =

∫
d4 l

δ
(
l2 −m2

π

)
δ
(
(k− l)2 −m2

)
(k− p− l)2 −m2

= − π

2
√
λ(k2,m2,m2

π)
ln

∣∣∣∣∣∣1 +
λ(k2,m2,m2

π)
k2m2 − (m2 −m2

π)2

∣∣∣∣∣∣ θ (k2 − (m+ mπ)
2
)
. (6.13b)

These integrals are finite and vanish below the threshold of quark-pion production, where the self-
energy and vertex diagrams do not possess an imaginary part.

Thus, Eq. (6.11) in combination with Eqs. (6.12) gives the explicit result for the Collins func-
tion in the Manohar-Georgi model to lowest possible order. Because of its chiral-odd nature, the
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Collins function would vanish in this model if we set the mass of the quark to zero. The same phe-
nomenon has been observed in the calculation of a chiral-odd twist-3 fragmentation function [121].
The result in Eq. (6.11) corresponds, e.g., to the fragmentationu → π0. The expressions for the
remaining favored transitions are obtained in analogy to Eqs. (6.7). Unfavored fragmentation pro-
cesses in the case of the Collins function appear only at the two-loop level.

6.2 Estimates and phenomenology

6.2.1 Unpolarized fragmentation function and the choice of parameters

We now present our numerical estimates, where all results for the fragmentation functions in this
subsection refer to the transitionu→ π+. To begin with we calculate the unpolarized fragmentation
functionD1(z), which is given by

D1(z) = π

∫ K2
T max

0
d K2

T D1(z, K2
T), (6.14)

whereKT = −zkT denotes the transverse momentum of the outgoing hadron with respect to the
quark direction. The upper limit on theK2

T integration is set by the cutoff on the fragmenting quark
virtuality, µ2, and corresponds to

K2
T max = z(1− z) µ2 − z m2 − (1− z) m2

π . (6.15)

In addition tomandgA, the cutoff µ2 is the third parameter of our approach that is not fixeda priori.
However, as will be explained below, the possible values ofµ2 can be restricted when comparing
our results to experimental data. Unless otherwise specified, we always use the values

m = 0.3 GeV, gA = 1, µ2 = 1 GeV2 . (6.16)

At the relevant places, the dependence of our results on possible variations of these parameters
will be discussed. A few remarks concerning the choice in Eq. (6.16) are in order. The value of
m is a typical mass of a constituent quark. The choice for the axial coupling can be seen as a kind
of average number of what has been proposed in the literature. For instance, in a simple SU(6)
spin-flavor model for the proton one findsgA ≈ 0.75 in order to obtain the correct value for the
axial charge of the nucleon [139]. On the other hand, largeNc arguments favor a value of the order
of 1 [171], while, according to a recent calculation in a relativistic point-form approach [59], a
gA slightly above 1 seems to be required for describing the axial charge of the nucleon. Finally,
our choice forµ2 ensures that the momenta of the outgoing pion and quark, in the rest frame of
the fragmenting quark, remain below values of the order 0.5 GeV. In this region we believe chiral
perturbation theory to be applicable, meaning that our leading order result can provide a reliable
estimate.

In Fig. 6.4 on page 99 we show the result for the unpolarized fragmentation functionDu→π+

1 .
Notice that in general the fragmentation functions vanish outside the kinematical limits, which in
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our model are given by

zmax,min =
1
2


(
1− m2 −m2

π

µ2

)
±

√(
1− m2 −m2

π

µ2

)2

− 4
m2
π

µ2

 , (6.17)

corresponding to the situation when the upper limit of theK2
T integration becomes equal to zero.

We consider our tree level result as a pure valence-type part ofDu→π+

1 . The sea-type (unfavored)
transitionū→ π+ is strictly zero at leading order. Therefore, we compare the model result to the
valence-type quantityDu→π+

1 −Dū→π+

1 , where the fragmentation functions have been taken from the
parametrization of Kretzer2 [129] at a scaleQ2 = 1 GeV2. Obviously, thez dependence of both
curves is in nice agreement, which is a nontrivial result. For example, in the pseudoscalar model
that we used in our previous work [34],D1 behaves quite differently and peaks at an intermediate
z value.

On the other hand, we underestimate the parametrization of Ref. 129 by about a factor of 2.
Some remarks are in order at this point. Although a part of the discrepancy might be attributed
to the uncertainty in the value ofgA, the most important point is to address the question as to
what extent we can compare our estimate with existing parametrizations. The parametrization
of [129] serves basically as input function of the perturbative QCD evolution equations, used to
describe high-energye+e− data, and displays the typical logarithmic dependence on the scaleQ2.
A value ofQ2 = 1 GeV2 is believed to be already beyond the limit of applicability of perturbative
QCD calculations. On the other hand, our approach displays, to a first approximation, a linear
dependence on the cutoff µ2. It is supposed to be valid at low scales and it is also stretched to
the limit of its applicability forµ2 = 1 GeV2. In this context it should also be investigated to
what extent the inclusion of one-loop corrections, which allow for the additional decay channel
q∗ → ππq, will increase the result forD1 at µ2 = 1 GeV2. Finally, we want to remark that to our
knowledge there exists no strict one-to-one correspondence between the quark virtualityµ2 and
the scale used in the evolution equation of fragmentation functions, which in semi-inclusive DIS is
typically identified with the photon virtualityQ2. For all these reasons, a smooth matching of our
calculation and the parametrization of [129] cannot necessarily be expected. Despite these caveats,
the correctzbehavior displayed by our result forD1 suggests that the calculation can well be used
as an input for evolution equations at a low scale. In the next subsection we will elaborate more on
this point in connection with the Collins function.

The best indication of the appropriate value of the cutoff µ2 may be obtained when comparing
our calculation to experimental data of the average transverse momentum of the outgoing hadron
with respect to the quark, which we evaluate according to

〈|KT |(z)〉 =
π

D1(z)

∫ K2
T max

0
d K2

T |KT |D1(z, K2
T) . (6.18)

In Fig. 6.5 on the next page we show the result of this observable as a function ofz for three
different choices of the parameterµ2. As a comparison, we also show a fit (taken from Ref. 23) to

2Other parametrizations [63, 125, 130] use a starting energy scaleQ2 ≥ 2 GeV2, which is too high to allow a
comparison with our results. Moreover, the valence parts of these other parametrizations would have to be obtained
with some extra assumptions and seems too arbitrary.
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Figure 6.4. Model result for the unpolarized quark fragmentation function Du→π+

1 (solid line) and compari-
son with the parametrization of Ref. [129] (gray line).
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Figure 6.5. Model result for the average hadron transverse momentum for different choices of the cutoff:
µ2 = 0.5 GeV2 (dotted line),µ2 = 1 GeV2 (solid line),µ2 = 1.5 GeV2 (dashed line) and comparison with a
fit to experimental results from DELPHI [3] (gray line).
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Figure 6.6. Model result for the Collins function for different values of the constituent quark mass: m= 0.2
GeV (dotted line), m= 0.3 GeV (solid line), m= 0.4 GeV (dashed line).

experimental data obtained by the DELPHI Collaboration [3]. As in the case ofD1(z), the shape of
our result is very similar to the experimental one, which we consider as an encouraging result. For
µ2 = 1 GeV2 our curve is about 30% below the data. Such a disagreement is not surprising, keeping
in mind that at LEP energies higher order perturbative QCD effects (e.g. gluon bremsstrahlung,
unfavored fragmentations, etc.) play an important role, leading in general to a broadening of theKT

distribution. For experiments at lower energies, however, where perturbative QCD contributions
can be neglected in a first approximation, it may be possible to exhaust the experimental value for
〈|KT |(z)〉 with genuine soft contributions as described in our model. This in turn would determine
the appropriate value of the cutoff µ2. For example, such a method of matching our calculation
with experimental conditions could be applied at HERMES kinematics, even though the method
is somewhat hampered sinceKT is not directly measured in semi-inclusive DIS. In this case, one
rather observes the transverse momentum of the outgoing hadron with respect to the virtual photon,
Ph⊥, which depends on bothKT and the transverse momentum of the partons inside the targetpT ,
as shown in Eq. (3.40).

6.2.2 Collins function

We now turn to the description of our model result for the Collins function. In Fig. 6.6,H⊥1 is
plotted for three different values of the constituent quark mass,m = 0.2, 0.3, 0.4 GeV. In a largez
range, the function does not depend strongly on the precise value of the quark mass, if we choose
it within reasonable limits. That is why we can confidently fixm = 0.3 GeV for our numerical
studies. It is very interesting to observe that the behavior of the unpolarized fragmentation function
D1 is quite distinct from that of the Collins function: while the former is decreasing asz increases,
the latter is growing. The different behavior of the two functions becomes even more evident when
looking at their ratio, shown in Fig. 6.7. At present, there exists some evidence ofzbehavior of the
Collins function and it is in agreement with our results. We briefly discuss this subject in Sec. 6.3
on page 107.

The ratios of the Collins function or any of its moments withD1 are almost independent of the
coupling constantgA. The reason is that the one-loop correction containing the contact interaction
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Figure 6.7. Model result for H⊥1 /D1.

is only proportional tog2
A, as D1 is, and is dominating over the others. Furthermore, the ratio

H⊥1 /D1 is nearly independent of the cutoff µ2. In conclusion, the prediction shown in Fig. 6.7 is
almost independent of the choice of parameters in our approach.

At this point we would like to add some general remarks concerning thez behavior of our
results. It turns out that the shape of all the results does not vary much when changing the pa-
rameters within reasonable limits. In particular, variations ofgA and of the cutoff µ2 only change
the normalization of the curves but not their shape. In this sense our calculation of fragmentation
functions has a good predictive power for thezbehavior of the function. This has a direct practical
consequence if one uses, for instance, our result of the Collins function as input in an evolution
equation: thez dependence of the input function can be adjusted to the shape of ourH⊥1 , while its
normalization can be kept free in order to account for uncertainties in the values ofgA andµ2.

In Fig. 6.8 on the next page we plot the ratio

H⊥(1/2)
1 (z)

D1(z)
≡ π

D1(z)

∫
dK2

T

|KT |
2zmπ

H⊥1 (z,K2
T) , (6.19)

which enters the transverse single spin asymmetry of Eq. (3.43). This quantity rises roughly lin-
early within a largez range, leading to a similarz behavior of the transverse spin asymmetry.
H⊥(1/2)

1 /D1 is no longer independent of the cutoff µ2, but rather the same dependence as in the case
of 〈|KT |〉 (Fig. 6.5 on page 99) can be assumed. In Fig. 6.8 on the next page, this ratio is compared
to the expression

〈|KT |(z)〉
2zmπ

H⊥1 (z)

D1(z)
= π

H⊥1 (z)

D2
1(z)

∫
dK2

T

|KT |
2zmπ

D1(z,K
2
T) . (6.20)

A very close agreement between the two different curves can be observed, indicating that the
model predicts a quite similar transverse momentum dependence of both the Collins function and
D1. In the literature, this feature is sometimes assumed in phenomenological parametrizations of
H⊥1 . Note, however, that in our approach deviations from this simple behavior can be expected, if
D1 is also calculated consistently to the one-loop order.

The Collins function has to fulfill the positivity bound of Eq. (3.33b), which can be rewritten
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Figure 6.8. Model result for H⊥(1/2)
1 /D1 (solid line) and comparison with the product(〈|KT |〉/2zmπ) (H⊥1 /D1)

(dashed line). Note that the positivity bound requires the ratio to be smaller than0.5.

as
|KT |
2zmπ

H⊥1 (z,K2
T) ≤ 1

2
D1(z,K

2
T). (6.21)

Integration overK2
T gives the simplified expression

H⊥(1/2)
1 (z)

D1(z)
≤ 1

2
, (6.22)

which is satisfied by our model calculation. It is clear, however, that increasing the value ofµ2 will
eventually result in a violation of the positivity condition. To avoid such a violation, we should
calculateD1 andH⊥1 consistently at the same order, i.e., the one-loop corrections toD1 should be
included. By doing so, the positivity bound will be fulfilled even at larger values ofµ2, for which
our numerical results are no longer trustworthy.

From our results, we expect an increasing behavior of the azimuthal asymmetry inp↑p→ πX
as function ofxF, qualitatively similar to what has been predicted in Ref. 26 in the context of the
Lund fragmentation model. At this point, it is also interesting to discuss the comparison of our
results with the ones obtained using the so-called “Collins guess”. On the basis of very general
assumptions, Collins suggested a possible behavior for the transverse spin asymmetry containing
H⊥1 [77]. This suggestion has been used in the literature (see, e.g., Refs. 87, 128, 137, 145) to
propose the following shape for the Collins function:

H⊥(1/2)
1 (z) ≈ π

∫
dK2

T

|KT |
2z

MC

M2
C + K2

T/z
2

D1(z,K
2
T), (6.23)

with the parameterMC ranging between 0.3 and 0.7 GeV.3 Using our model outcome for the
unpolarized fragmentation function, we apply Eq. (6.23) to estimateH⊥(1/2)

1 , and in Fig. 6.9 we
show how this compares to Eq. (6.19). There is a rough qualitative agreement with the Collins

3Note that even this particular form does not correspond precisely to what proposed in Ref. 77, even if it is often
referred to as “Collins ansatz”.
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Figure 6.9. Model result for H⊥(1/2)
1 /D1 (solid line) and comparison with the same ratio, where H⊥(1/2)

1 is
calculated according to Eq.(6.23)with MC = 0.3 GeV (dashed line) and MC = 0.7 GeV (dotted line).
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ansatz for the lowest value of the parameterMC, although it is not growing fast enough compared
to Eq. (6.19). On the other hand, in the Manohar-Georgi model there is no agreement with the
Collins ansatz for high values of the parameterMC, which might indicate that the relation suggested
in Eq. (6.23) should be handled with care.

Finally, in Fig. 6.10 we display the quantity

H⊥(1)
1 (z)

D1(z)
≡ π

D1(z)

∫
dK2

T

K2
T

2z2m2
π

H⊥1 (z,K2
T) , (6.24)

because this ratio appears in the weighted asymmetries of Eq. (3.48). In Fig. 6.10, the expression

〈K2
T〉(z)

2z2m2
π

H⊥1 (z)

D1(z)
= π

H⊥1 (z)

D2
1(z)

∫
dK2

T

K2
T

2z2m2
π

D1(z,K
2
T) (6.25)

is also shown for comparison. Once again, there is a remarkable agreement between the two
different expressions, confirming the quite similarKT behavior ofH⊥1 andD1.
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6.2.3 Asymmetries in semi-inclusive DIS ande+e− annihilation

We turn now to estimates of possible observables containing the Collins function. We will take
into consideration one-particle inclusive DIS, where the Collins function appears in connection
with the transversity distribution of the nucleon, ande+e− annihilation into two hadrons belonging
to two different jets.

In the first case, we show predictions for both transverse spin asymmetries defined in Eqs. (3.43)
and (3.48). Different calculations can be found in the literature, e.g., in Refs. 22,126,137. To esti-
mate the magnitude of the asymmetries, we need inputs for the distribution functions, in particular
for the transversity distribution. Several model calculations of this function are available at present
(see [41] for a comprehensive review). We refrain from considering many different examples and
rather restrict the analysis to two limiting situations. In the first case we adopt the “nonrelativistic”
assumptionh1 = g1, while in the second case we exhaust the upper bound on the transversity dis-
tribution, i.e.,h1 = 1

2( f1 + g1) [159]. We use the simple parametrization ofg1 and f1 suggested in
Ref. 70. At the moment, more sophisticated parametrizations are available, taking scale evolution
into account also. However, all these parametrizations are compatible with each other to the extent
of our purpose here, which is to give an estimate of the asymmetries for a low scale. We focus on
the production ofπ+, where the contribution of down quarks is negligible, not only because of the
presence of unfavored fragmentation functions, but also because the transversity distribution for
down quarks appears to be much smaller than for up quarks in model calculations.

In Fig. 6.11 we present the azimuthal asymmetry defined in Eq. (3.43) as a function ofxB, after
integrating numerator and denominator over the variablesy andzh, for the two cases described
above. In Fig. 6.12, we present the same asymmetry as a function ofzh, after integrating overy and
xB. As already mentioned before, our prediction is supposed to be valid at a low energy scale of
about 1 GeV2. Neglecting evolution effects, it could be utilized for comparison with experiments
at a scale of a few GeV2. We assume the value of the transverse polarization to be|ST | = 0.75.
In performing the integrations, we apply the kinematical cuts typical of the HERMES experiment,
as described in [10]. Therefore, our prediction is particularly significant for HERMES, which
is expected to be the first experiment to measure this asymmetry. In principle, the simultaneous
study of thexB andzh dependence of the asymmetry yields separate information on the distribution
and fragmentation parts and allows one to extract both up to a normalization factor [126]. Note,
however, that this procedure relies on the assumption of up-quark dominance and is valid only if
the xB dependence of the asymmetry can be ascribed entirely to the distribution functions and the
zh dependence entirely to the fragmentation functions. Kinematical cuts could partially spoil this
situation. We would like to stress that our calculation predicts an asymmetry up to the order of
10%, which should be within experimental reach, and suggests the possibility of distinguishing
between different assumptions on the transversity distribution.

Using the same procedure as before, we have estimated the asymmetry defined in Eq. (3.48),
containing the weighting with|Ph⊥|/mπ. The results are shown in Fig. 6.13 as a function ofxB and
in Fig. 6.14 on page 106 as a function ofzh. The magnitude of this asymmetry is higher than in the
unweighted case, which is partially due to the fact that the weighting enhances the asymmetry by
about a factor of 2.
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Figure 6.11. Azimuthal transverse spin asymmetry〈sinφ〉UT as a function of xB. Solid line: assuming
h1 = g1. Dashed line: assuming h1 = 1

2( f1 + g1). The functions f1 and g1 are taken from [70].
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Figure 6.12. Azimuthal transverse spin asymmetry〈sinφ〉UT as a function of zh. Solid line: assuming
h1 = g1. Dashed line: assuming h1 = 1

2( f1 + g1). The functions f1 and g1 are taken from [70].
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Figure 6.13. Azimuthal spin asymmetry〈|Ph⊥|/mπ sinφ〉UT as a function of xB. Solid line: assuming h1 = g1.
Dashed line: assuming h1 = 1

2( f1 + g1). The functions f1 and g1 are taken from [70].



106 6. A model estimate of the Collins function

〈|P
h⊥
|

m
π

si
n
φ
〉 U

T

zh

0.2 0.3 0.4 0.5 0.6 0.7

0.05

0.1

0.15

0.2

0.25

Figure 6.14. Azimuthal spin asymmetry〈|Ph⊥|/mπ sinφ〉UT as a function of zh. Solid line: assuming h1 = g1.
Dashed line: assuming h1 = 1

2( f1 + g1). The functions f1 and g1 are taken from [70].

In addition to appearing in semi-inclusive DIS in connection with the transversity distribution
of the nucleon, the Collins function can be independently extracted from another process, i.e.
electron-positron annihilation into two hadrons belonging to two back-to-back jets [51, 52]. We
restrict ourselves to the case of photon exchange only. In this process, one of the two hadrons (say
hadron 2) defines the scattering plane together with the leptons and determines the direction with
respect to which the azimuthal angles must be measured. The cross section is differential in five
variables, e.g.z1, z2, y, |Ph⊥|, φ. The variablesz1 andz2 are the longitudinal fractional momenta of
the two hadrons. In the center of mass framey = (1 + cosθ)/2, whereθ is the angle of hadron
2 with respect to the momentum of the incoming leptons. The vectorPh⊥ denotes the transverse
component of the momentum of hadron 1 andφ is its azimuthal angle with respect to the scattering
plane. For a more detailed description of the kinematical variables we refer to [51, 52].

We define the azimuthal asymmetry〈
P2

h⊥ cos 2φ
〉

e+e−
(θ, z1, z2) =

∫
d2 Ph⊥ |Ph⊥|2 cos 2φ d5σe+e−∫

d2 Ph⊥ |Ph⊥|2 d5σe+e−

=
2 sin2 θ

1 + cos2 θ

H⊥(1)
1 (z1) H̄⊥(1)

1 (z2)(
D1(z1) D̄(1)

1 (z2) + D(1)
1 (z1) D̄1(z2)

) , (6.26)

where summations over quark flavors are understood. The weighting with a second power of|Ph⊥|
in the numerator is necessary to obtain a deconvoluted expression. We prefer to use the same
weighting in the denominator as well, to avoid a modification of the asymmetry just caused by the
weighting.

In Fig. 6.15 on the next page we present the estimate of the asymmetry defined above, entirely
based on our model. The asymmetry has been integrated overz2 andθ, leaving the dependence on
z1 alone. We have extended theθ integration interval all the way to [0, π], to obtain a conservative
estimate. In fact, limiting the interval to [π/4,3π/4] will enhance the asymmetry by a factor of
2, approximately. Because the Collins function increases with increasingz, we also get a larger
asymmetry by restricting the integration range forz2. As an illustration of this feature, in Fig. 6.15
on the facing page we present two results, obtained from two different integration ranges. Our
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Figure 6.15. Azimuthal asymmetry〈P2
h⊥ cos 2φ〉e+e− for e+e− annihilation into two hadrons, integrated over

the range0.2 ≤ z2 ≤ 0.8 (solid line), and over the range0.5 ≤ z2 ≤ 0.8 (dashed line).

prediction is supposed to be valid only at low energy scales and should be evolved for comparison
with higher energy experiments. It is important to note that we estimate the asymmetry to be of
the order of about 5%, and thus it should observable in experiments.

6.3 Comparison with existing data

The HERMES collaboration recently measured the singlelongitudinalspin asymmetry

〈sinφh〉UL ∝
1
Q

[(
c1 hL(x) + c2 h1(x)

)
H⊥(1/2)

1 (z) + other terms
]
. (6.27)

On purpose, we avoid entering the details of the formula. It is difficult to extract information on the
Collins function and on the transversity distribution from this asymmetry [61]. In a recent analysis
of this asymmetry, Efremov et al. [90] extracted a behaviorH⊥1 /D1 ∝ z for z≤ 0.7, although some
questionable assumptions were used to obtain this result.

If we assume that theother termsin (6.27) are small, then thezh dependence of the asymmetry
should be almost entirely due to the Collins function. To compare this behavior with our model
estimate, as a first step we parametrize our result for the ratioH⊥(1/2)

1 /D1 with a simple analytic
form

H⊥(1/2)
1 (z)

D1(z)
≈ 0.316z+ 0.0345

1
1− z

− 0.00359
1

(1− z)2
. (6.28)

Fig. 6.16 on the next page shows the result of our model together with this parametrization (note
that we extended the plot to higher values ofz compared to Fig. 6.8 on page 102).

In Fig. 6.17 we compare our parametrization with HERMES data on〈sinφh〉UL [11] and pre-
liminary data on the same asymmetry from the CLAS collaboration at JLAB [30]. Note that we
arbitrarily normalized our curve to take into account the unknown distribution functions and pref-
actors. The agreement of thezh shape is remarkable.
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Figure 6.16. Model result for the ratio H⊥(1/2)
1 /D1 as a function of z and the simple analytic parametrization

of Eq.(6.28).
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6.4 Summary

We have estimated the Collins fragmentation function for pions at a low energy scale by means of
the Manohar-Georgi model. This model contains three essential features of nonperturbative QCD:
massive quark degrees of freedom, chiral symmetry and its spontaneous breaking (with pions as
Goldstone bosons). Because of the chiral invariant interaction between pions and quarks, the frag-
mentation process can be evaluated in a perturbative expansion. The constituent quark mass, the
axial pion-quark couplinggA and the maximum virtualityµ2 of the fragmenting quark are free
parameters of our approach. The quark mass andgA are constrained within reasonable limits. To
ensure the convergence of the chiral perturbation expansion,µ2 cannot exceed a typical hadronic
scale. We have mostly considered the valueµ2 = 1 GeV2, which guarantees that the momenta of
the particles produced in the fragmentation process stay well below the scale of chiral symmetry
breaking,Λχ ≈ 1 GeV. To determine the appropriate value ofµ2, the average transverse momen-
tum of a data set could be used. In any case, we observed that variations of the free parameters
within reasonable limits have only a minor influence on the shape of the results, implying that our
approach has a good predictive power for thez behavior of the various functions.

We have found that the Manohar-Georgi model reproduces reasonably well the unpolarized
pion fragmentation function and the average transverse momentum of a produced hadron as a
function ofz, supporting the idea of describing the fragmentation process by such a chiral invariant
approach.

Compared to the unpolarized fragmentation function, modeling the Collins function is con-
siderably more difficult, mainly because of its chiral-odd and T-odd nature. In our approach, the
helicity flip required to generate a chiral-odd object is caused by the mass of the constituent quark,
while the T-odd behavior is produced via one-loop corrections. The Collins function exhibits a
quite distinct behavior from the unpolarized fragmentation function. In particular, the ratioH⊥1 /D1

is strongly increasing with increasingz.
On the basis of our results, we have calculated the transverse single-spin asymmetry in semi-

inclusive DIS where the Collins function appears in combination with the transversity of the nu-
cleon. This observable will be measured in the near future at HERMES and could also be inves-
tigated at COMPASS, Jlab (upgraded) and EIC. For typical HERMES kinematics the asymmetry
is of the order of 10%, giving support to the intention of extracting the nucleon transversity in
this way. We believe that our estimate of the Collins function, despite its uncertainties, can be
very useful for this extraction. Finally, we found an encouraging agreement between the shape
of our estimate and the trend of the single spin asymmetry measured by the HERMES collabora-
tion [10, 11], although it is not clear if this asymmetry is originated solely by the Collins function.

More information on the Collins function from the experimental side is required. In this re-
spect, the most promising experiment seems to bee+e− annihilation into two hadrons, whereH⊥1
appears squared in an azimuthal cos 2φ asymmetry. According to our calculation, an asymmetry
of the order of 5% can be expected, which should be measurable at high luminosity accelerators,
such as BABAR and BELLE [146]. Dedicated measurements of the Collins function would be ex-
tremely important for the extraction of the transversity distribution. Moreover, they could answer
the question whether a chiral invariant Lagrangian can be used to model the Collins function.





7
Conclusions and outlook

I was born not knowing and
have had only a little time to
change that here and there.

R. Feynman

The main focus of this thesis was to present some ways of accessing the transversity distribution
of quarks inside hadrons,h1. This was the main motivation to perform a thorough analysis of
one-particle and two-particle inclusive deep inelastic scattering at leading order in 1/Q, with a
particular attention to T-odd fragmentation functions. This thesis is certainly not the first work on
this important subject, however it complements the existing literature in many respects.

7.1 Conclusions

Several observables containing the transversity distribution appear all along the thesis, but three of
them are particularly promising and have been highlighted. The first method presented to access
transversity is the measurement of the azimuthal single spin asymmetry described in Eq. (3.48), or
the similar asymmetry described in Eq. (3.43). In these asymmetries, the transversity distribution
appears in combination with the Collins fragmentation function, which provides the chirality flip
necessary to compensate the chiral-odd nature ofh1.

The Collins function was introduced in Ref. 77 as early as 1993. However, it was looked at
with some skepticism because it is a single-particle T-odd fragmentation function. It was conjec-
tured to be small or to vanish altogether [117]. In this thesis, we tackled the question by calculating
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directly the Collins function in a consistent and time-reversal invariant field theoretical approach.
Our model calculation dispels the doubts about the vanishing of the Collins function and, more
in general, of T-odd fragmentation functions. Moreover, our calculation aspires to describe the
Collins function in a qualitative and quantitative way. At the moment, there is no unquestionable
experimental information on the Collins function. However, the single longitudinal spin asymme-
try measured by the HERMES collaboration [10, 11] can be originated by the Collins function. We
tested our model on this experimental results and we found an encouraging agreement between the
shape of our estimate and the trend of the data.

It would be of remarkable importance to collect extra information on the Collins function, not
only to allow the extraction of the transversity distribution, but also to open a new window on
polarization in hadronization processes. New measurements could consider different asymmetries
in deep inelastic scattering (HERMES, COMPASS, CLAS, EIC),pp scattering (RHIC) ande+e−

annihilation into two hadrons belonging to two jets (BABAR, BELLE).
The second observable containing the transversity presented in this thesis is the asymmetry

of Eq. (4.42c), involving a chiral-odd T-odd fragmentation function generated by the interference
between the production of two hadrons in thesandp waves. This asymmetry was indicated for the
first time by Jaffe, Jin and Tang in 1998 [117]. However, their analysis suffered two limitations:
it did not present a complete treatment of two-hadron fragmentation functions and it relied just
on one specific mechanism to give some phenomenological indications. An improved analysis of
two-hadron fragmentation was presented by Bianconi, Boffi, Jakob and Radici [44], together with
different models of the interference fragmentation function [45, 150]. In this thesis, we comple-
mented their formalism by performing a partial-wave decomposition of two-hadron fragmentation
functions, with and without including partonic transverse momentum.1 We were able to separate
the contribution of thes and p waves and we recovered the results of Jaffe, Jin and Tang in the
transverse momentum integratedsp interference sector.

Besides rediscussing the interference fragmentation function in a more exhaustive framework,
another interesting asymmetry came out of the analysis, as shown in Eq. (4.43). This asymme-
try contains a chiral-odd T-odd function pertaining to the purep-wave sector of two-hadron pro-
duction. Such a contribution was already mentioned by Collins, Heppelmann and Ladinsky in
1994 [79] and identified more formally by Ji in the same year [122]. However, our work is the first
one to clearly distinguish thep-wave from thesp-interference part in the single transverse spin
asymmetry. It is useful to stress once more that thep-wave contribution should not be overlooked.
It vanishes when integrating over the full range of the polar angleθ, unlike thesp interference
term. On the other hand, it might be larger than the latter – especially in the presence of a spin-one
resonance –thus offering an excellent way to access the transversity distribution.

We looked more carefully atp-wave two-hadron fragmentation functions from a different point
of view, i.e. comparing them with spin-one fragmentation functions, introduced for the first time
by Ji [122]. In the thesis, we carried out the analysis of spin-one functions in a more detailed
way compared to the original work of Ji. We showed that they overlap almost exactly with pure
p-wave two-hadron fragmentation functions, except for the lack of a dependence on the invariant

1The results of the partial-wave expansion are presented here for the first time and still await publication.
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mass squared. We included partonic transverse momentum and we presented the complete cross
section of spin-one leptoproduction at leading order in 1/Q. As in the case of the Collins function,
spin-one functions could provide us with fresh information on spin effects in hadronization.

An important achievement of the thesis is the connection between the formalism of correlation
functions and of helicity matrices. The two approaches were known to be equivalent at leading
order in 1/Q, but the connection had to be worked out more explicitly. We expressed in the he-
licity matrix formalism all the partonic functions we considered – spin-half and spin-one distribu-
tion functions, without and with transverse momentum, and one-hadron, two-hadron and spin-one
fragmentation functions, without and with transverse momentum. A significant outcome of this
examination was the derivation of positivity bounds for all of them. Positivity bounds can be valu-
able tools, as they provide guidance to estimate unknown functions and they test the consistency
of model calculations.

7.2 Outlook

The formalism of two-hadron and spin-one fragmentation functions has to be completed by analyz-
ing all the azimuthal asymmetries containing the transversity distribution function, in case partonic
transverse momentum is included. The only step in this direction was presented in Ref. 31 and was
limited to the spin-one contributions. Subleading twist contributions have been neglected in the
thesis and they deserve further survey.

Another very useful extension would be to calculate the cross section ofe+e− annihilation into
two couples of hadrons belonging to two different jets, including in the analysis the distinction of
the s- and p-wave contributions. A measurement of two-hadron fragmentation functions in this
process would be extremely interesting first of all because – as already mentioned – they contain
valuable information on the role of polarization in fragmentation processes, and secondly because
– as in the case of the Collins function – an independent measurement of these functions would be
very important for a clear extraction of the transversity distribution.

For what concerns our model calculation of T-odd functions, an immediate application would
be to use our results to estimate other asymmetries containing the Collins function. Furthermore,
the shape of our results could be used to choose a specific analytical form to parametrize the Collins
function and fit future experimental data.

Another possible development is to use a similar approach to estimate T-odd interference frag-
mentation functions and T-odd spin-one fragmentation functions. The analysis is complicated by
the presence of a vector meson, which is beyond the reach of our model as formulated at present.
In principle, it is possible to extend the model. In any case, even without any extension it would be
already possible to explore the effect of one-loop corrections on “incoherent” two-pion production,
and compare the relative importance ofsp interference and purep-wave contributions, even in the
absence of a resonance (e.g. inπ+π+ production).

From a more formal point of view, the use of a chiral invariant approach for describing fragmen-
tation functions at low energy scales should be investigated further. First of all, we should check
if the chiral perturbation expansion is reliable. Secondly, we should try to describe fragmentation
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functions entirely, and not their “valence” part only. Finally, it would be interesting to explore the
connection between our one-loop corrections and the recent models of T-odd effects [72], which
are also based on one-loop effects.
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Samenvatting

Dit proefschrift behandelt drie verschillende manieren om de transversale spin waar te nemen van
quarks in nucleonen. Dit vraagstuk is verbonden met een van de onbeantwoorde vragen van de
hedendaagse natuurkunde: wat is de inwendige structuur van protonen en neutronen?

Een van de manieren om deze vraag te onderzoeken is het bestuderen vandiep-inelastische
verstrooiing, waarbij een nucleon wordt beschoten met een gefocusseerde bundel elektronen (of
andere leptonen) bij zeer hoge energieën. De elektronen dringen door in het nucleon en de manier
waarop ze worden verstrooid levert informatie op over de inwendige structuur van het nucleon.
Een analogie is het schieten op een auto met een machinegeweer, zodat de kogels de carrosserie
doorzeven, en bij te houden hoe de kogels afketsen van de inwendige onderdelen – de motor, de
versnellingsbak en dergelijke.

Diep-inelastische verstrooiing levert ons momentopnamen van het nucleon met hoge resolu-
tie, enkele procenten van de afmetingen van het proton. Het hieruit verkrijgen van de relevante
gegevens over de structuur van het nucleon is een ingewikkeld karwei en vergt een grote theo-
retische inspanning. Vanwege de hoge energieën en grote impulsen die een rol spelen, maken we
gebruik van de technieken van dequantumveldentheorie, die zowel de relativiteitstheorie en de
quantummechanica omvat. Bij lage resolutie – in experimenten bij lage energie – lijken nucleonen
onsplijtbare deeltjes met een bepaalde massa, elektrische lading en spin. Bij hoge resolutie – in
diep-inelastische verstrooiing – vertonen nucleonen een bijzonder ingewikkelde structuur, met een
zeer groot aantal kleinere deeltjes:quarksen gluonen. Op dit moment zijn we niet in staat om
deze twee beelden te verenigen, met andere woorden, we zijn niet in staat te verklaren hoe quarks
en gluonen wisselwerken en de eigenschappen van het nucleon bepalen.

Een belangrijk aspect van het begrijpen van het nucleon is het verklaren van de opbouw van
de spin van het nucleon in termen van de quarks en gluonen waaruit het is opgebouwd. Tot op
heden hebben we een goede kennis verworven van deheliciteitsverdelingvan quarks in targets
met longitudinalespin. Het in kaart brengen van de transversale spinverdeling (oftransversaliteit)
van quarks in targets mettransversalespin kan ons een nieuw perspectief bieden op de dyna-
mica binnen het nucleon. Tot op zekere hoogte vertegenwoordigen de heliciteitsverdeling en de
transversale spinverdeling een voor- en een zijaanzicht van de spin van het nucleon.

Het waarnemen van de transversaliteit van quarks is een moeilijk karwei. Verschillende be-
naderingen zijn in de theorie gesuggereerd, maar geen daarvan is nog toegepast. In dit proefschrift
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worden drie manieren om de transversaliteit te onderzoeken eruit gelicht en geanalyseerd. Er zijn
zeker meer methoden, maar deze drie lijken veelbelovend en zouden kunnen worden gebruikt in
experimenten in de nabije toekomst. Alle methoden vereisen dat we in het diep-inelastische ver-
strooiingsproces niet alleen naar het verstrooide elektron kijken, maar ook naar een of twee van
de fragmenten die vrijkomen bij het uiteenvallen van het nucleon. Het detecteren van deze frag-
menten biedt de mogelijkheid om meer details te weten te komen over de structuur van het target,
maar de prijs die we betalen is dat we niet alleen meer te maken hebben met de manier waarop de
quarks in het nucleon zijn geordend, maar ook met de manier waarop de uiteindelijke fragmenten
worden gevormd, d.w.z. metfragmentatiefuncties.

Gezien vanuit een meer technisch gezichtspunt, begint dit proefschrift met het bespreken van
het formalisme dat nodig is voor diep-inelastische verstrooiing. Departon distributiefuncties
worden geintroduceerd, zij beschrijven de manier waarop quarks en gluonen binnen het nucleon
verdeeld zijn. Inclusieve diep-inelastische verstrooiing, waar alleen het verstrooide elektron waar-
genomen wordt, wordt behandeld als de eerste en eenvoudigste manier om distributiefuncties waar
te nemen. Om een manier voor het meten van de transversaliteit van het quark te vinden, ana-
lyseert dit proefschrift een- en twee-deeltjes inclusieve diep-inelastische verstrooiing, waar een
of twee van de uitgaande hadronen tegelijkertijd met het elektron gedetecteerd worden. Deze
processen vragen om de introductie vanparton fragmentatiefuncties, die de manier beschrijven
waarop een quark evolueert tot een hadron in de eindtoestand. Dit proefschrift laat zien dat in
de boven beschreven processen de transversaliteit gemeten kan worden in samenhang met drie
verschillende fragmentatiefuncties: de eerste vereist waarnemig van enn ongepolarizeerd hadron
met transversaal impuls in de eindtoestand, de tweede vraagt om waarneming van de interferen-
tie tussens- en p-golven van twee geproduceerde hadronen, de derde vraagt om waarneming van
zuiverep-golf twee-hadron productie, of equivalent om waarneming van een spin-1 resonantie. Al
deze fragmentatiefuncties vallen in de categorie vanT-onevenfragmentatiefuncties: ze vragen de
aanwezigheid van interacties in de eindtoestand en anders zijn ze verboden vanwege invariantie
van tijdsomkeer. Het laatste gedeelte van dit proefschrift bekijkt de mogelijkheid om een model
voor T-oneven fragmentatiefuncties op te stellen en te onderzoeken of zij groot genoeg zijn om de
transversaliteit te kunnen meten.



Summary

This thesis discusses three different ways to observe the transverse spin of quarks inside the nucle-
ons. This problem relates to one of the unanswered questions of present day physics: what is the
internal structure of protons and neutrons?

One of the ways to investigate such a question is to study the process ofdeep inelastic scatter-
ing, in which a nucleon is bombarded with a focused beam of electrons (or other leptons) at very
high energies. The electrons penetrate inside the nucleon and the way they are scattered yields
information on its inner structure. A down-to-earth analogy would be shooting at a car with a ma-
chine gun, penetrating its hood and recording the way bullets bounce on its internal components –
engine, gear box and all.

Deep inelastic scattering provides us with snapshots of the nucleon at high resolution, a few
percents of the proton size. Extracting the relevant information on the structure of the nucleon
is a complex task and requires a lot of theoretical effort. Due to the high energies and high mo-
menta involved, we resort to the techniques ofquantum field theory, which incorporates relativity
and quantum mechanics. At low resolution – in low energy experiments – nucleons appear to be
unbreakable particles with a certain mass, electric charge and spin. At high resolution – in deep in-
elastic scattering – nucleons display an extremely intricate structure, involving a very high number
of smaller particles,quarksandgluons. At present, we are not able to match these two pictures,
in other words we are not able to explain how quarks and gluons interact to give origin to the
characteristics of the nucleons.

A key issue in understanding the nucleon is to explain the composition of its spin in terms of
the underlying quark and gluon structure. So far, we acquired a good knowledge of thehelicity
distribution of quarks inside targets with alongitudinal spin. The exploration of thetransverse
spin distribution (ortransversity) of quarks in targets with atransversespin would give us a new
perspective on the dynamics inside the nucleon. To a certain extent, the helicity and the transverse
spin distributions represent a front and a side view of the nucleon spin.

Observing the transversity of quarks is an arduous task. Several approaches have been sug-
gested in theory, but none of them has been put into practice yet. In this thesis, three ways to probe
the transversity are highlighted and analyzed. They are far from exhausting all possible methods,
but they seem to be promising and could be adopted in experiments in the near future. All of them
require that in the deep inelastic process we keep track not only of the scattered electron, but also
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of one or two of the fragments coming from the disintegration of the nucleon. The detection of the
fragments offers the opportunity to unravel more details of the structure of the target, but the price
to pay is that we have to deal not only with the way the quarks are arranged in the nucleon, but
also with the way they produce the final fragments, i.e. withfragmentation functions.

From a more technical point of view, this thesis starts with reviewing the formalism to deal
with deep inelastic scattering. Theparton distribution functionsare introduced, describing the
way quarks and gluons are disposed inside the nucleon. Totally inclusive deep inelastic scattering,
where only the scattered electron is detected, is discussed as the first and simplest way to observe
distribution functions. To identify some way to measure the quark transversity, this thesis analyzes
one-particle and two-particle inclusive deep inelastic scattering, where one and two of the outgoing
hadrons are detected in coincidence with the electron. These processes require the introduction of
parton fragmentation functions, describing the way a quark evolves into final state hadrons. This
thesis shows that transversity can be measured in the above processes, in connection with three
different fragmentation functions: the first one requires the observation of an unpolarized final
state hadron with transverse momentum, the second requires the observation of the interference
between thes- and p-wave production of two hadrons, the third requires the observation of pure
p-wave two-hadron production, or equivalently of a spin-one resonance. All these fragmentation
functions fall in the category ofT-oddfragmentation functions: they require the presence of final
state interactions, or else they are forbidden by time-reversal invariance. The last part of the thesis
looks at the possibility of modeling this kind of fragmentation functions and investigates whether
they can be large enough to allow the extraction of transversity.



Acknowledgments

Thank you providence
Thank you disillusionment
Thank you nothingness
Thank you clarity
Thank you, thank you silence.

A. Morisette

A word of gratitude goes to my supervisor, Piet Mulders: thanks to him I had the chance to work
in a stimulating and dynamical environment, open to international contacts, receptive to ideas and,
last but not least, very friendly. Apart from the expertise of Piet, I enjoyed all I learnt and discussed
with the rest of the Theoretical Subatomic Physics group: Elena Boglione, Alex Henneman, Ra-
jen Kundu, Daniel Boer, Elliot Leader, Ben Bakker, Miranda van Iersel, Fetze Pijlman, Harmen
Warringa, Guilherme Milhano and Boris Krippa. For sure, the person I learnt the most from – and
not only within physics – has been Andreas Metz: Andreas, thank you for your discrete and expert
support.

I am grateful to the reading commission, Mauro Anselmino, Gerard van der Steenhoven, Rainer
Jakob and Daniel Boer, for their fast and careful evaluation of the manuscript.

I wish to thank all the members of the Department of Theoretical Physics – secretaries in-
cluded. They proved to be agezelligegroup of people to share lunches,borrelsand parties with.
All the members of the department confirm my first-order conviction that physicists are nice and
interesting people.

Next, I want to thank Tino and Calina. They are special persons to me because we have
been next to each other almost every day in these four years.ShokranTino! Life with you in
the apartment has been pleasant and familiar. Your patience with my constant delays at dinner,
your contagious laughters, your sincerity and openness made me feel reallyat homein our small
apartment.Mersi multCalina! With you I shared most of the troubles and gratifications of a PhD
and of living abroad. You made the working environment always friendly. I whish you the best for
your future, whatever will be.

A special thought goes to my dearest Italian fellow-emigrants. Let me start from Marina,
Sergio, Lorenzo and Ludovica: I owe you the birth of a precious friendship that made my life in



132 Acknowledgments

Amsterdam different. Next to them, I would like to thank Luca, Elena, Gianluca, Chiara, Chiaretta,
Luisa, Davide and Michela, Alberto and Chiara, Gaia, Marinella, Stefania, Alan and Veronica,
Eugenia and Tom (and Felice!). With you, I not only shared cozy evenings, bottles of Port wine
and delicious dinners, but also serious discussions and sincere prayers. At this point, I cannot
forget our Italianshonoris causa, Wolf and Calina, living proofs of how it is possible to be similar
despite the difference of nationality.

Thank you to the families which have been closer to me here in Amsterdam: Paola and Adriaan,
with their (many!) daughters, Enrico and Fiorella, with their two sons. Thank you for the support
I got from you and for sponsoring here and there my dietary needs.

Pap̀a, mamma, Andrea, Anna and Luisa: it was tough to learn to live far from you all, but it
was sweet to feel always your encouragment and affection.

Lucia, you accepted four long years of forced distance. I often asked myself if it was worth-
while to made you suffer for my PhD, and I still don’t know the answer. . . This page is too short to
thank you: will the rest of our life be long enough?


