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Notations and conventions

The conventions will mainly follow the book of Peskin and Schroeder [78]. We use the metric
tensor

gµν =

































1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

































, (1)

with Greek indices running over 0,1,2,3. We define the antisymmetric tensor so that

ε0123 = +1, ε0123 = −1. (2)

Repeated indices are summed in all cases.

Light-cone vectors

Light-cone vectors will be indicated as

aµ =
[

a−, a+, aT
]

. (3)

The dot-product in light-cone components is

a · b = a+b− + a−b+ − aT · bT (4)

We introduce the projector on the transverse subspace

gµνT =

































0 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 0

































. (5)

The light-cone decomposition of a vector can be written in a Lorentz covariant fashion using two
light-like vectors n+ and n− satisfying n2

± = 0 and n+ · n− = 1 and promoting aT to a four-vector
aµT = [0, 0, aT ] so that

aµ = a+nµ+ + a−nµ− + aµT , (6)
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where

a+ = a · n−,
a− = a · n+,

aT · n+ = aT · n− = 0.
(7)

Note that
aT · bT = −aT · bT (8)

We further have
gαβT = gαβ − nα+n

β
− − nα−n

β
+, (9)

and we can define the transverse antisymmetric tensor

ε
αβ

T = ε
αβρσ n+ρn−σ (10)

Dirac matrices

Dirac matrices will be often expressed in the chiral or Weyl representation, i.e.

γ0 =

(

0 1
1 0

)

, γi =

(

0 −σi

σi 0

)

, γ5 =

(

1 0
0 −1

)

, (11)

and we will make use of the Dirac structure

σµν ≡ i
2

[

γµ, γν
]

. (12)



1
Semi-inclusive DIS

at leading twist

This chapter is based essentially on Refs. 18 and 23.
We consider the process

`(l) + N(P) → `(l′) + h(Ph) + X, (1.1)

where ` denotes the beam lepton, N the nucleon target, and h the produced hadron, and where
four-momenta are given in parentheses. We neglect the lepton mass. We denote by M and Mh

respective masses of the nucleon and of the hadron h. As usual we define q = l − l′ and Q2 = −q2

and introduce the variables

xB =
Q2

2 P · q , y =
P · q
P · l , zh =

P · Ph

P · q . (1.2)

In this chapter, we will systematically neglect all correction of order M/Q, unless otherwise
specified.

The spin vector of the target is denoted by S . Our definition of the azimuthal angles φh and
φS of the outgoing hadron and the target spin is shown in Fig. 1.1 and consistent with the Trento
conventions [22]. The helicity of the lepton beam is denoted by λe. We consider the case where
the detected hadron h has spin zero or where its polarization is not measured. Ph⊥ and S ⊥ are the
transverse parts Ph and S with respect to the photon momentum. S ‖ is the component of S in the
negative z-direction in Fig. 1.1, i.e. positive S ‖ corresponds to the target spin pointing towards the
virtual photon. In this chapter, we will use without distinguishing them S ⊥ ↔ S T and S ‖ ↔ S L.
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Figure 1.1. Definition of azimuthal angles for semi-inclusive deep inelastic scattering in the target rest
frame. Ph⊥ and S ⊥ are the transverse parts of Ph and S with respect to the photon momentum [22].

1.1 Inclusive DIS

1.1.1 Hadronic tensor and structure functions for inclusive DIS

The cross section for polarized electron-nucleon scattering can be written in a general way as the
contraction between a leptonic and a hadronic tensor

d3σ

dxB dy dφS
=

α2

2 s xB Q2 Lµν(l, l′, λe) 2MWµν(q, P, S ), (1.3)

where α = e2/4π.
Considering the lepton to be longitudinally polarized, in the massless limit the leptonic tensor

is given by [76]

Lµν =
∑

λ′e

(

ū̄(l′, λ′e) γµ u(l, λe)
)∗ (

ū̄(l′, λ′e) γν u(l, λe)
)

= −Q2gµν + 2
(

lµl
′
ν + l′µlν

)

+ 2i λe εµνρσ lρl′σ.

(1.4)

The leptonic tensor contains all the information on the leptonic probe, which can be described
by means of perturbative QED, while the information on the hadronic target is contained in the
hadronic tensor

2MWµν(q, P, S ) = 1
2π

∑

X

∫ d3PX
(2π)3 2P0

X
(2π)4 δ(4)

(

q + P − PX
)

Hµν(P, S , PX), (1.5)

Hµν(P, S , PX) =
〈

P, S Jµ(0) X〉〈X Jν(0) P, S
〉

. (1.6)

The state X symbolizes any final state, with total momentum PX. It is integrated over since in
inclusive processes the final state goes undetected.
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In general, the structure of the hadronic tensor can be parametrized in terms of the structure
functions. In the case of inclusive DIS we can introduce four structure functions, leading to the
expression

dσ
dxB dy dφS

=
2α2

xByQ2
y2

2 (1 − ε)

{

FT + εFL + S ‖λe

√
1 − ε2 2xB (g1 − γ2g2)

− |S⊥|λe

√

2 ε(1 − ε) cosφS 2xBγ (g1 + g2)
}

, (1.7)

where the structure functions on the r.h.s. depend on xB and Q2 (i.e. P · Q and q2). We also
introduced the ratio ε of longitudinal and transverse photon flux in

ε =
1 − y

1 − y + 1
2y2

, and γ =
2MxB

Q
(1.8)

Ex. 1.1

Eq. (1.7) does not yet look as the standard results in the literature, e.g., Eq. (2.7) in [71]. Check
the correspondence by expressing the results with respect to the lepton beam direction.

1.1.2 A convenient frame

For the treatment of inclusive DIS, it is convenient to choose a frame where the proton and photon
momenta have no transverse components. In terms of light-cone vectors, it means

Pµ = P+nµ+ +
M2

2P+
nµ− , (1.9)

qµ = −xBP+nµ+ +
Q2

2xBP+
nµ− . (1.10)

The spin vector of the target can then be decomposed as

S µ = S L
(P · n−) nµ+ − (P · n+) nµ−

M
+ S µ

T . (1.11)

It is particularly convenient to work in a reference frame where

xP+ = Q/
√

2. (1.12)

Ex. 1.2
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Derive the following expressions of the involved momenta in the frame we are using

Pµ =

[

xBM2

Q
√

2
,

Q

xB

√
2
, 0

]

(1.13a)

qµ =

[

Q
√

2
, − Q
√

2
, 0T

]

(1.13b)

lµ =















Q

y
√

2
,

(1 − y)Q
y
√

2
,

Q
√

1 − y

y
, 0















, (1.13c)

l′µ =















(1 − y)Q
y
√

2
,

Q

y
√

2
,

Q
√

1 − y

y
, 0















. (1.13d)

1.1.3 Hadronic tensor in the parton model

The phenomenology of DIS taught us that at sufficiently high Q2 we can assume that the scattering
of the electron takes place off a quark of mass m inside the nucleon. The final state X can be split
in a quark with momentum k plus a state X with momentum PX. Considering the electron-quark
interaction at tree level only, the hadronic tensor can be written as

2MWµν(q, P, S ) = 1
2π

∑

q

e2
q

∑

X

∫ d3PX

(2π)3 2P0
X

∫ d3k
(2π)3 2k0 (2π)4 δ(4)

(

P + q − k − PX

)

× 〈

P, S ψ̄̄i(0) X
〉〈

X ψ j(0) P, S
〉

γ
µ

ik

(

/k + m
)

kl γ
ν
l j,

(1.14)

where k is the momentum of the struck quark, the index q denotes the quark flavor and eq is the
fractional charge of the quark. Note that, for simplicity, we omitted the flavor indices on the
quark fields. The integration over the phase space of the final-state quark can be replaced by a
four-dimensional integral with an on-shell condition,

∫ d3k
2k0 −→

∫

d4k δ
(

k2 − m2
)

θ
(

k0 − m
)

, (1.15)

so that the hadronic tensor can be rewritten as

2MWµν(q, P, S ) =
∑

q

e2
q

∑

X

∫ d3PX

(2π)3 2P0
X

∫

d4k δ
(

k2 − m2
)

θ
(

k0 − m
)

× δ(4)
(

P + q − k − PX

)

〈

P, S ψ̄̄i(0) X
〉〈

X ψ j(0) P, S
〉

γ
µ

ik

(

/k + m
)

kl γ
ν
l j.

(1.16)

Next, we Fourier transform the Dirac delta function according to

δ(4)
(

P + q − k − PX

)

−→
∫ d4ξ

(2π)4 ei (P+q−k−PX )·ξ (1.17)
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and we introduce the momentum p = k − q to obtain

2MWµν(q, P, S ) =
∑

q

e2
q

∑

X

∫ d3PX

(2π)3 2P0
X

∫

d4p δ
(

(

p + q
)2 − m2

)

θ
(

p0 + q0 − m
)

×
∫ d4ξ

(2π)4 ei (P−p−PX)·ξ 〈

P, S ψ̄̄i(0) X
〉〈

X ψ j(0) P, S
〉

γ
µ

ik

(

/p + /q + m
)

kl γ
ν
l j.

(1.18)

Finally, we use part of the exponential to perform a translation of the field operators and we use
completeness to eliminate the unobserved X states, so that

2MWµν(q, P, S ) =
∑

q

e2
q

∫

d4p δ
(

(

p + q
)2 − m2

)

θ
(

p0 + q0 − m
)

∫ d4ξ

(2π)4 e−ip·ξ

×
(

〈

P, S ψ̄̄i(ξ) ψ j(0) P, S
〉

γ
µ

ik

(

/p + /q + m
)

kl γ
ν
l j

)

.

(1.19)

The hadronic tensor can be written in a more compact way by introducing the quark-quark
correlation function Φ

2MWµν(q, P, S ) =
∑

q

e2
q

∫

d4p δ
(

(

p + q
)2 − m2

)

θ
(

p0 + q0 − m
)

× Tr [Φ(p, P, S )γµ (/p + /q + m
)

γν
]

(1.20)

where

Φ ji(p, P, S ) = 1
(2π)4

∫

d4ξ e−ip·ξ〈P, S ψ̄̄i(ξ) ψ j(0) P, S
〉

=
∑

X

∫ d3PX

(2π)3 2P0
X

〈

P, S ψ̄̄i(0) X
〉〈

X ψ j(0) P, S
〉

δ(4)
(

P − p − PX

)

,

(1.21)

As the quark fields should carry a flavor index that we omitted, also the correlation functions are
flavor dependent and they should be indicated more appropriately asΦq. A graphical representation
of the hadronic tensor at tree level in the parton model is given by the so-called handbag diagram,
depicted in Fig. 1.2 on the following page.

We parametrize the quark momentum p in the following way

pµ =

[

p2 + |pT |2
2xP+

, xP+, pT

]

. (1.22)

In our approach, we assume that neither the virtuality of the quark, p2, nor its transverse momentum
squared, |pT |2, can be large in comparison with the hard scale Q2. Under these conditions, the
quark momentum is soft with respect to the hadron momentum and its relevant component is xP+.
In Eq. (1.20), neglecting terms which are 1/Q suppressed, we can use an approximate expression
for the delta function

δ
(

(

p + q
)2 − m2

)

≈ δ(p+ + q+) ≈ P+ δ(x − xB) (1.23)
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kk
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pp
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Figure 1.2. The handbag diagram, describing the hadronic tensor for inclusive DIS at Born level.

and replace

d4 p = d2 pT dp− P+ dx (1.24)

and obtain

2MWµν(q, P, S ) ≈
∑

q

e2
q

∫

d2pT dp− dx
P+

2P · q δ (x − xB) Tr
[

Φ(p, P, S ) γµ
(

/p + /q + m
)

γν
]

=
∑

q

e2
q

1
2

Tr
[

Φ(xB, S ) γµ P+

P · q
(

/p + /q + m
)

γν
]

(1.25)

where we introduced the integrated correlation function

Φ ji(x, S ) =
∫

d2pT dp− Φ ji(p, P, S )
∣

∣

∣

∣

∣

p+=xP+

=

∫ dξ−

2π e−ip·ξ〈P, S ψ̄̄i(ξ) ψ j(0) P, S
〉

∣

∣

∣

∣

∣

ξ+=ξT=0
.

(1.26)

Finally, from the outgoing quark momentum, p + q, we can select only the minus component
and obtain the final form for the hadronic tensor at leading twist

2MWµν(q, P, S ) ≈
∑

q

e2
q

1
2

Tr [Φ(xB, S ) γµγ+γν] . (1.27)

A few words to justify the last approximation are in order. The dominance of the minus component
is most easily seen in the infinite momentum frame, where p−+ q− is of the order of Q, while
p++ q+ = 0, and pT and m are of the order of 1. However, if we perform a 1/Q expansion of the
full expression, including the correlation function Φ [starting from Eq. (2.20)], we would be able
to check that in any collinear frame the dominant terms arise only from the combination of plus
component in the correlation function and minus components in the outgoing quark momentum.
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1.2 Semi-inclusive DIS

1.2.1 Hadronic tensor and structure functions for semi-inclusive DIS

The cross section for one-particle inclusive electron-nucleon scattering can be written as

2Eh d6σ

d3Ph dxB dy dφS

=
α2

2sxBQ2 Lµν(l, l′, λe) 2MWµν(q, P, S , Ph), (1.28)

or equivalently as

d6σ

dxB dy dzh dφS d2Ph⊥
=

α2

4zhsxBQ2 Lµν(l, l′, λe) 2MWµν(q, P, S , Ph). (1.29)

To obtain the previous formula, we made use of the relation d3Ph/2Eh ≈ dzh d2Ph⊥/2zh.
The hadronic tensor for one-particle inclusive scattering is defined as

2MWµν(q, P, S , Ph) = 1
(2π)4

∑

X′

∫

d3PX′

2P0
X′

2π δ(4)
(

q + P − PX′ − Ph

)

Hµν(P, S , PX′ , Ph), (1.30)

Hµν(P, S , PX′ , Ph) = 〈

P, S Jµ(0) Ph,X′
〉〈

Ph,X′ Jν(0) P, S
〉

. (1.31)

In semi-inclusive DIS, the hadronic tensor can be parametrized in terms of 18 structure func-
tions [59], see e.g. Refs. [50, 70]

dσ

dxB dy dφS dz dφh dP2
h⊥
=

α2

xBy Q2
y2

2 (1 − ε)

{

FUU,T + εFUU,L +
√

2 ε(1 + ε) cos φh Fcos φh

UU

+ ε cos(2φh) Fcos 2φh

UU + λe

√

2 ε(1 − ε) sinφh Fsin φh

LU

+ S ‖

[

√

2 ε(1 + ε) sinφh Fsin φh

UL + ε sin(2φh) Fsin 2φh

UL

]

+ S ‖ λe

[ √
1 − ε2 FLL +

√

2 ε(1 − ε) cos φh Fcos φh

LL

]

+ |S⊥|
[

sin(φh − φS )
(

Fsin(φh−φS )
UT,T + ε Fsin(φh−φS )

UT,L

)

+ ε sin(φh + φS ) Fsin(φh+φS )
UT + ε sin(3φh − φS ) Fsin(3φh−φS )

UT

+
√

2 ε(1 + ε) sinφS Fsin φS

UT +
√

2 ε(1 + ε) sin(2φh − φS ) Fsin(2φh−φS )
UT

]

+ |S⊥|λe

[√
1 − ε2 cos(φh − φS ) Fcos(φh−φS )

LT +
√

2 ε(1 − ε) cosφS Fcos φS

LT

+
√

2 ε(1 − ε) cos(2φh − φS ) Fcos(2φh−φS )
LT

]}

. (1.32)
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The first and second subscript of the above structure functions indicate the respective polarization
of beam and target, whereas the third subscript in FUU,T and FUU,L specifies the polarization of the
virtual photon. Using the definition (1.8), the depolarization factors can be written in terms of the
y variable as

y2

2 (1 − ε)
=

(

1 − y + y2/2
)

(1.33)

y2

2 (1 − ε) ε = (1 − y) (1.34)

y2

2 (1 − ε)
√

1 − ε2 = y (1 − y/2) (1.35)

y2

2 (1 − ε)
√

2 ε(1 + ε) = (2 − y)
√

1 − y (1.36)

y2

2 (1 − ε)
√

2 ε(1 − ε) = y
√

1 − y (1.37)

Integration of Eq. (1.32) over the transverse momentum Ph⊥ of the outgoing hadron gives the
semi-inclusive deep inelastic scattering cross section

dσ
dxB dy dφS dz

=
2α2

xByQ2
y2

2 (1 − ε)

{

FUU,T + εFUU,L + S ‖λe

√
1 − ε2 FLL

+ |S⊥|
√

2 ε(1 + ε) sinφS FsinφS

UT + |S⊥|λe

√

2 ε(1 − ε) cos φS Fcos φS

LT

}

, (1.38)

where now the structure functions on the r.h.s. are integrated versions of the previous ones, i.e.

FUU,T (xB, zh,Q
2) =

∫

d2 Ph⊥ FUU,T (xB, zh, P
2
h⊥,Q

2) (1.39)

and similarly for the other functions.
Finally, the connection the result for totally inclusive DIS can be obtained by

dσ(`p→ `X)
dxB dy dφS

=
∑

h

∫

dzh zh
dσ(`p→ `hX)
dz dxB dy dφS

(1.40)

where we have summed over all hadrons in the final state. This leads to the result already give in
Eq. (1.7), once we identify

∑

h

∫

dzh zh FUU,T (xB, zh,Q
2) = 2xBF1(xB,Q

2) = FT (xB,Q
2), (1.41)

∑

h

∫

dzh zh FUU,L(xB, zh,Q
2) = (1 + γ2)F2(xB,Q

2) − 2xBF1(xB,Q
2) = FL(xB,Q

2), (1.42)

∑

h

∫

dzh zh FLL(xB, zh,Q
2) = 2xB

(

g1(xB,Q
2) − γ2g2(xB,Q

2)), (1.43)

∑

h

∫

dzh zh Fcos φS

LT (xB, zh,Q
2) = −2xBγ

(

g1(xB,Q
2) + g2(xB,Q

2)) (1.44)
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in terms of the conventional deep inelastic structure functions. Finally, time-reversal invariance
requires (see, e.g., Ref. [50])

∑

h

∫

dzh zh Fsin φS

UT (xB, zh,Q
2) = 0. (1.45)

1.2.2 Another convenient frame

The choice of a convenient frame to deal with semi-inclusive DIS is less straightforward than for
inclusive DIS, due to the presence of Ph. We have two choices:

• FRAME 1: Keep the photon and proton to be collinear, give a transverse component to Ph.
This means to keep the parametrization of the vectors as given in Eq. (1.13) and simply
adding

Pµ

h =

[

zhQ
√

2
,

M2
h + |Ph⊥|2

zhQ
√

2
, Ph⊥

]

(1.46)

• FRAME 2: Keep the proton and outgoing hadron to be collinear, give a transverse compo-
nent to q. In terms of light-cone vectors this means choosing

Pµ = P+nµ+ +
M2

2P+
nµ− , (1.47)

Pµ

h = P−h nµ− +
M2

h

2P−h
nµ+ . (1.48)

In this frame, the photon momentum has a transverse component. If we further fix

xP+ = P−h/z = Q/
√

2 (1.49)

we can explicitly write the vectors involved as follows

Pµ =

[

xBM2

Q
√

2
,

Q

xB

√
2
, 0

]

(1.50a)

Pµ

h =

[

zhQ
√

2
,

M2
h

zhQ
√

2
, 0

]

(1.50b)

qµ =

















Q
√

2
, −

(

Q2 − |qT |2
)

Q
√

2
, qT

















≈
[

Q
√

2
, − Q
√

2
, qT

]

(1.50c)

The first choice seems to be the most simple one, but in reality from the theoretical point of
view it is better to stick to the second option, in order to preserve a symmetry between P and Ph.

In any case, it turns out that if we neglect subleading twist corrections, all vectors in the two
frames are approximately the same, the only difference is the presence of P⊥ in FRAME 1 and the
presence of qT in FRAME 2, and the two are simply connected by

qT = −zPh⊥. (1.51)

Therefore, in this chapter we are not going to care very much about distinguishing the two frames,
and every time we have qT we can replace it with −zPh⊥ or vice-versa, at our convenience.
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P hP

k

q

h

k

q

PP

p p

Φ

∆

Figure 1.3. The bull diagram, describing the hadronic tensor at tree level.

1.2.3 Hadronic tensor in the parton model for semi-inclusive DIS

In the spirit of the parton model, the virtual photon strikes a quark inside the nucleon. In the case
of current fragmentation, the tagged final state hadron comes from the fragmentation of the struck
quark. The scattering process can then be factorized in two soft hadronic parts connected by a hard
scattering part, as shown in Fig. 1.3.

Considering only the Born-level contribution to the hard scattering, the hadronic tensor can be
written as

2MWµν(q, P, S , Ph) =
∑

q

e2
q

∫

d4p d4k δ(4) (p + q − k) Tr (Φ(p, P, S ) γµ∆(k, Ph) γν) , (1.52)

where Φ and ∆ are so-called quark-quark correlation functions and are defined as

Φ ji(p, P, S ) = 1
(2π)4

∫

d4ξ eip·ξ〈P, S ψ̄̄i(0) ψ j(ξ) P, S
〉

=
∑

X

∫ d3PX

(2π)3 2P0
X

〈

P, S ψ̄̄i(0) X
〉〈

X ψ j(0) P, S
〉

δ(4)
(

P − p − PX

)

,

(1.53)

∆kl(k, Ph) = 1
(2π)4

∫

d4ξ eik·ξ 〈0 ψk(ξ) Ph
〉〈

Ph ψ̄̄l(0) 0〉

=
∑

Y

∫ d3PY

(2π)3 2P0
Y

〈

0 ψk(0) Ph, Y
〉〈

Ph, Y ψ̄̄l(0) 0
〉

δ(4)
(

k − Ph − PY

)

.

(1.54)

We need to introduce a parametrization for the vectors

pµ =

[

p2 + |pT |2
2xP+

, xP+, pT

]

, (1.55a)
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kµ =

















P−h
z
,

z
(

k2 + |kT |2
)

2P−h
, kT

















. (1.55b)

Neglecting terms which are 1/Q suppressed, we can write

δ(4) (p + q − k) ≈ δ(p+ + q+) δ(q− − k−) δ(2)
(

pT + qT − kT

)

≈ 1
P+ P−h

δ(x − xB) δ(1/z − 1/zh) δ(2)
(

pT + qT − kT

) (1.56)

and replacing
d4k = d2 kT dk+ P−h

d z
z2 (1.57)

we obtain the compact expression

2MWµν(q, P, S , Ph) = 2zh I
[

Tr(Φ(xB, pT , S ) γµ∆(zh, kT ) γν)
]

, (1.58)

where, as we shall do very often, we used the shorthand notation

I
[

· · ·
]

≡
∫

d2pT d2 kT δ
(2)

(

pT + qT − kT

) [

· · ·
]

=

∫

d2pT d2 kT δ
(2)

(

pT −
Ph⊥

z
− kT

) [

· · ·
]

, (1.59)

and where we introduced the integrated correlation functions

Φ(x, pT , S ) ≡
∫

dp−Φ(p, P, S )
∣

∣

∣

∣

p+=xP+
, (1.60a)

∆(z, kT ) ≡ 1
2z

∫

dk+∆(k, Ph)
∣

∣

∣

∣

k−=P−h /z
. (1.60b)

Integrating the cross section over Ph⊥ we get

d4σ

dxB dy dzh dφS
=

α2

4zhsxB Q2 Lµν(l, l′, λe) 2MWµν(q, P, S ), (1.61)

where

2MWµν(q, P, S ) = 2zh Tr(Φ(xB, S ) γµ∆(zh) γν), (1.62a)

Φ(x, S ) ≡
∫

dp− d2pT Φ(p, P, S )
∣

∣

∣

∣

p+=xP+
, (1.62b)

∆(z) ≡ z
2

∫

dk+ d2kT ∆(k, Ph)
∣

∣

∣

∣

k−=P−h /z
. (1.62c)





2
The correlation functions

2.1 The correlation function Φ for an unpolarized target

To get more insight into the information contained in the correlation function, which is a Dirac
matrix, we can decompose it in a general way on a basis of Dirac structures. Each term of the
decomposition can be a combination of the Lorentz vectors p and P, the Lorentz pseudovector S
(in case of spin-half hadrons) and the Dirac structures

1, γ5, γ
µ, γµγ5, iσµνγ5.

The spin vector can only appear linearly in the decomposition (cf. Eq. (2.27)). Moreover, each
term of the full expression has to satisfy the conditions of Hermiticity and parity invariance

Hermiticity: Φ(p, P, S ) = γ0Φ†(p, P, S ) γ0, (2.1a)
parity: Φ(p, P, S ) = γ0Φ(p̃, P̃,−S̃ ) γ0 (2.1b)

where p̃ν = δνµpµ and so forth for the other vectors.
For an unpolarized target, the most general decomposition is

Φ(p, P) = M A1 1 + A2 /P + A3 /p +
A4

M
σµνP

µpν (2.2)

where the amplitudes Ai are real scalar functions Ai = Ai(p · P, p2) with dimension 1/[m]4.
If we keep only the leading terms in 1/P+ (which means also leading in 1/Q, i.e. leading twist)

Φ(p, P) ≈ P+ (A2 + xA3) /n+ + P+
i

2M
[

/n+, /pT
]

A4, (2.3)
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which implies

Φ(x, pT ) ≡
∫

dp−Φ(p, P) = 1
2

{

f1/n+ + ih⊥1
[

/pT , /n+
]

2M

}

. (2.4)

Here we introduced the parton distribution functions

f1(x, p2
T ) = 2P+

∫

dp− (A2 + xA3) , h⊥1 (x, p2
T ) = 2P+

∫

dp− (−A4) . (2.5)

To make clear what variables the functions depend on, it is better to introduce the symbols τ = p2

and σ = 2p · P, which are related by [see e.g. Eq. 1.22]

τ = xσ − x2M2 − p2
T , (2.6)

we can then rewrite

f1(x, p2
T ) =

∫

dσ dτ δ(τ − xσ + x2M2 + p2
T ) [A2(σ, τ) + xA3(σ, τ)] (2.7)

h⊥1 (x, p2
T ) =

∫

dσ dτ δ(τ − xσ + x2M2 + p2
T ) [−A4(σ, τ)]. (2.8)

The correlation function can be separated in a T-even part and a T-odd part, according to the
definition

Φ∗T-even(p, P, S ) = iγ1γ3ΦT-even(p̃, P̃, S̃ ) iγ1γ3, (2.9a)
Φ∗T-odd(p, P, S ) = −iγ1γ3ΦT-odd(p̃, P̃, S̃ ) iγ1γ3. (2.9b)

Note that the distribution functions h⊥1 is T-odd. At first, this class of functions was supposed
to vanish due to time-reversal invariance [81]. The introduction of h⊥1 was carried out by Boer and
Mulders [28]. A proof of the nonexistence of T-odd distribution functions was suggested by Collins
in Ref. 46, but recently it has been repudiated by the same author [47] after Brodsky, Hwang and
Schmidt [38] explicitly obtained a nonzero T-odd function in the context of a simple model, as we
will see in the next chapter.
Ex. 2.1

Check the the term with the amplitude A4 is T-odd.

The leading-twist part of the correlator Φ can be projected out using the projector

P+ =
1
2 γ−γ+, (2.10)

Before the interaction with the virtual photon, the relevant components of the quark fields are the
plus components, ψ+ = P+ ψ. They are usually referred to as the good components. It turns out
that

(

P+Φγ+
)

=

{

f1 + ih⊥1
/pT

M

}

P+. (2.11)
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Finally, it is useful to define the matrix F =
(

P+Φγ+
)T

, i.e. the Dirac transpose of the leading-
twist part of the correlation function, and observe that

F(x, pT )i j =

∫ dξ− d2ξT

(2π)3
√

2
e−ip·ξ〈P (ψ+)†i (ξ) (ψ+) j(0) P

〉

∣

∣

∣

∣

∣

ξ+=0

=
1
√

2

∑

X

∫ d3PX

(2π)3 2P0
X

〈

X (ψ+)i(0) P
〉∗〈X (ψ+) j(0) P

〉

× δ
(

(

1 − x
)

P+ − P+X
)

δ(2)
(

pT − PX T

)

.

(2.12)

For any Dirac spinor a
〉

, the expectation value
〈

a F a
〉

must be positive (it a modulus squared).
In mathematical terms, this means that the matrix is positive semidefinite, i.e. the determinant
of all the principal minors of the matrix has to be positive or zero. This property will prove
to be essential in deriving bounds on the components of the correlation function, i.e. the parton
distribution functions.

2.1.1 Correlation function in helicity formalism

We will now examine how it is possible to write the correlation function as a matrix in the chirality
space of the good quark fields.

The correlation function is a 4 × 4 Dirac matrix. However, due to the presence of the projector
on the good components of the quark fields, the leading-twist part spans only a 2×2 Dirac subspace.
This is evident if we express the Dirac structures of Eq. (2.11) in the chiral or Weyl representation.
Using this representation, the correlation function reads

(

P+Φ(x, pT )γ+
)

ji
=















































f1 0 0 ieiφp
|pT |
M

h⊥1
0 0 0 0
0 0 0 0

−ie−iφp
|pT |
M

h⊥1 0 0 f1















































. (2.13)

As shown by this explicit form, it seems that the four-dimensional Dirac space can be reduced to
a two-dimensional space, retaining only the nonzero part of the correlation function. The relevant
part of the Dirac space is the one corresponding to good quark fields. To show this explicitly,
we introduce the chiral projectors PR/L = (1 ± γ5)/2 and define the good chiral-right and good
chiral-left quark spinors, i.e. the normalized projections

u+R =
P+PR u
|P+PR u| , u+L =

P+PL u
|P+PL u| . (2.14)

Then, we can define a new matrix in the chirality space of the good quark fields
(

P+Φγ+
)

χ′1χ1
≡ u j

+χ′1

(

P+Φγ+
)

ji
ui
+χ1

(2.15)
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Any contraction with bad quark fields vanishes. Explicit computation of the matrix elements yields
(

P+Φγ+
)

RR
= u j

+R

(

P+Φγ+
)

ji
u† i
+R = f1, (2.16a)

(

P+Φγ+
)

LL
= u j

+L

(

P+Φγ+
)

ji
u† i
+L = f1, (2.16b)

(

P+Φγ+
)

RL
= u j

+R

(

P+Φγ+
)

ji
u† i
+L =

i
M

(px + ipy) h⊥1 , (2.16c)
(

P+Φγ+
)

LR
= u j

+L

(

P+Φγ+
)

ji
u† i
+R = −

i
M

(px − ipy) h⊥1 . (2.16d)

The correlation matrix in the good quark chirality space is then

(

P+Φγ+
)

χ′1χ1
=

























f1 ieiφp
|pT |
M

h⊥1

−ie−iφp
|pT |
M

h⊥1 f1

























. (2.17)

As we could have expected, this result corresponds simply to taking the full Dirac matrix in Weyl
representation, Eq. (2.13), and stripping off the zeros. From the matrix representation in the chi-
rality space it is clear why the function h⊥1 is defined to be chiral odd.

The distribution matrix is clearly Hermitean. When an exponential eil′φp appears in the matrix,
we have to take into account l′ units of angular momentum in the final state. The condition of
angular momentum conservation then requires χ′1 + l′ = χ1. The condition parity conservation is

F(x, pT )
χ1χ

′
1
= (−1)l′ F(x, pT )−χ1 −χ

′
1

∣

∣

∣

∣

∣

l′→−l′
. (2.18)

The fact that the matrix has to be positive definite allows us to derive the positivity bound

|pT |
M
|h⊥1 (x, p2

T )| ≤ f1(x, p2
T ). (2.19)

2.2 The integrated correlation functionΦ for a polarized target

In the presence of target spin, the most general decomposition of the correlation function Φ im-
posing Hermiticity and parity invariance is [76, 81]

Φ(p, P, S ) = M A1 1 + A2 /P + A3 /p +
A4

M
σµνP

µpν + iA5 p · S γ5

+ M A6 /S γ5 + A7
p · S
M

/P γ5 + A8
p · S
M

/p γ5 + iA9 σµνγ5S µPν

+ iA10 σµνγ5S µpν + iA11
p · S
M2 σµνγ5Pµpν + A12

εµνρσγ
µPνpρS σ

M
,

(2.20)

where the amplitudes Ai real scalar functions Ai = Ai(p · P, p2) with dimension 1/[m]4. The terms
containing the amplitudes A4, A5 and A12 can be classified as T-odd.

It will turn out that the above expansion is incomplete when we consider also non leading-twist
terms (see Ch. 5).



The integrated correlation function Φ for a polarized target 17

The general expression is

Φ(x, S ) = 1
2

{

f1 /n+ + S L g1γ5/n+ + h1

[

/S T , /n+
]

γ5

2

}

(2.21)

P+Φ(x, S )γ+ = (

f1(x) + S L g1(x) γ5 + h1(x) γ5 /S T
)P+, (2.22)

where we introduced the integrated parton distribution functions

f1(x) =
∫

d2pT dp2 d(2p · P) δ
(

p2
T + x2M2 + p2 − 2xp · P

)

[A2 + xA3] , (2.23a)

g1(x) =
∫

d2pT dp2 d(2p · P) δ
(

p2
T + x2M2 + p2 − 2xp · P

)

[

−A6 −
( p · P

M2 − x
)

(A7 + xA8)
]

,

(2.23b)

h1(x) =
∫

d2pT dp2 d(2p · P) δ
(

p2
T + x2M2 + p2 − 2xp · P

)

[

−A9 − xA10 +
p2

T

2M2 A11

]

. (2.23c)

The function f1 is usually referred to as the unpolarized parton distribution, and it is sometimes
denoted also as simply f or q (where q stands for the quark flavor). The function g1 is the parton
helicity distribution and it can be denoted also as ∆ f or ∆q. Finally, the function h1 is known as
the parton transversity distribution; in the literature it is sometimes denoted as δq, ∆T q or ∆T f ,
although in the original paper of Ralston and Soper [81] it was called hT .

The individual distribution functions can be isolated by means of the projection

Φ[Γ] ≡ 1
2

Tr (ΦΓ) , (2.24)

where Γ stands for a specific Dirac structure. In particular, we see that

f1(x) = Φ[γ+](x), (2.25a)
g1(x) = Φ[γ+γ5](x), (2.25b)

h1(x) = Φ[iσi+γ5](x). (2.25c)

2.2.1 Correlation function in helicity formalism

We will now examine how it is possible to write the correlation function as a matrix in the chirality
space of the good quark fields ⊗ the spin space of the hadron. The steps for the chirality space are
analogous to the previous case, but the treatment of the target spin is obviously new.

Using the Weyl representation, the correlation function reads

(

P+Φ(x, S )γ+
)

ji
=

































f1(x) + S L g1(x) 0 0 (S x − iS y) h1(x)
0 0 0 0
0 0 0 0

(S x + iS y) h1(x) 0 0 f1(x) − S L g1(x)

































. (2.26)
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χ
1

χ′
1

Λ
′

1
Λ

1
Figure 2.1. Illustration of the position of the indices of the correlation matrix.

The four-dimensional Dirac space can be reduced to a two-dimensional space, retaining only the
nonzero part of the correlation function, i.e.

(

P+Φ(x, S )γ+
)

χ′1χ1
= ρ(S )

Λ1Λ
′
1

(

P+Φ(x)γ+
)Λ′1Λ1

χ′1χ1
. (2.27)

We will refer to the last term of this relation as the matrix representation of the correlation function
or, more simply, as the correlation matrix. Fig. 2.1 shows pictorially the position of the spin
indices.

Starting from Eq. (2.22) and using the relation

ΨU + S LΨL + S xΨx + S yΨy = ρ(S )
Λ1Λ

′
1

(

ΨU + ΨL Ψx − iΨy

Ψx + iΨy ΨU − ΨL

)Λ′1Λ1

(2.28)

we can cast the correlation function in the matrix form
(

P+Φ(x)γ+
)Λ′1Λ1

=

(
(

f1(x) + g1(x) γ5
)P+ h1(x) (γx − iγy

)

γ5P+
h1(x) (γx + iγy

)

γ5P+
(

f1(x) − g1(x) γ5
)P+

)

. (2.29)

Finally, by expressing the Dirac structures in Weyl representation and reducing the Dirac space as
done before, we obtain the matrix representation of the correlation function

(

P+Φ(x)γ+
)Λ′1Λ1

χ′1χ1
=



















































f1(x) + g1(x) 0 0 0
0 f1(x) − g1(x) 2h1(x) 0

0 2h1(x) f1(x) − g1(x) 0

0 0 0 f1(x) + g1(x)



















































, (2.30)

where the inner blocks are in the hadron helicity space (indices Λ′1Λ1), while the outer matrix is in
the quark chirality space (indices χ′1χ1).

The form of the correlation matrix can also be established directly from angular momentum
conservation (requiring Λ′1+χ′1 = Λ1+χ1) and the conditions of Hermiticity and parity invariance.
In matrix language, the condition of parity invariance consists in [64]

(

P+Φ(x)γ+
)Λ′1Λ1

χ′1χ1
=

(

P+Φ(x)γ+
)−Λ′1 −Λ1

−χ′1 −χ1
. (2.31)

The most general form of the correlation matrix complying with the previous conditions corre-
sponds to Eq. (2.30).
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As mentioned at the end of Sec. 2.7 on page 26, with transposing the quark chirality indices of
the correlation matrix we obtain the scattering matrix [19, 20]

F(x)Λ
′
1Λ1

χ1χ
′
1
=



















































f1(x) + g1(x) 0 0 2h1(x)
0 f1(x) − g1(x) 0 0

0 0 f1(x) − g1(x) 0

2h1(x) 0 0 f1(x) + g1(x)



















































. (2.32)

Note that because of the inversion of the quark indices, the lower left block has χ′1 = R, χ1 = L
and vice versa for the upper right block. Since this matrix must be positive semidefinite, we can
readily obtain the positivity conditions

f1(x) ≥ 0, (2.33a)
|g1(x)| ≤ f1(x), (2.33b)
|h1(x)| ≤ 1

2
(

f1(x) + g1(x)). (2.33c)

The last relation is known as the Soffer bound [84].
The probabilistic interpretation of the functions f1 and g1 is manifest, since they occupy the

diagonal elements of the matrix and they are therefore connected to squares of probability ampli-
tudes

f1(x) = 1
2

(

F(x)
1
2

1
2

R R + F(x)
1
2

1
2

L L

)

g1(x) = 1
2

(

F(x)
1
2

1
2

R R − F(x)
1
2

1
2

L L

)

(2.34)

On the other hand, the transversity distribution is off-diagonal in the helicity basis. This means
that it does not describe the square of a probability amplitude, but rather the interference between
two different amplitudes

h1(x) = 1
2 F(x)

1
2 −

1
2

R L (2.35)
The transversity distribution recovers a probability interpretation if we choose the so-called

transversity basis, instead of the helicity basis, for both quark and hadron [62,64]. The transversity
basis is formed by the “transverse up” and “transverse down” states. They can be expressed in
terms of chirality eigenstates

u↑ = 1√
2

(uR + uL) , u↓ = 1√
2

(uR − uL) . (2.36)

The same relation holds between the hadron transversity and helicity states.
In the new basis, the scattering matrix takes the form

F(x)Λ
′
1Λ1

χ1χ
′
1
=



















































f1(x) + h1(x) 0 0 g1(x) + h1(x)
0 f1(x) − h1(x) g1(x) − h1(x) 0

0 g1(x) − h1(x) f1(x) − h1(x) 0
g1(x) + h1(x) 0 0 f1(x) + h1(x)



















































, (2.37)

and clearly the transversity distribution function can be defined as

h1(x) = 1
2

(

F(x)↑↑↑↑ − F(x)↑↑↓↓
)

. (2.38)
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2.3 The correlation function Φ for a polarized target

Starting from the general decomposition presented in Eq. (2.20), the leading order part of the
transverse-momentum dependent correlation function becomes

Φ(x, pT ) = 1
2

{

f1/n+ + f ⊥1T

ε
ρσ

T S Tρ pTσ

M
/n+ + g1sγ5/n+

+ h1T

[

/S T , /n+
]

γ5

2
+ h⊥1s

[

/pT , /n+
]

γ5

2M
+ i h⊥1

[

/pT , /n+
]

2M

}

The distribution functions on the r.h.s. depend on x and p2
T , except for the functions with subscript

s, where we use the shorthand notation [76]

g1s(x, pT ) = S L g1L(x, p2
T ) − S T · pT

M
g1T (x, p2

T ) (2.39)

and so forth for the other functions. The 2 functions f ⊥1T (Sivers function) and h⊥1 (Boer-Mulders
function) are T-odd [29, 58], i.e. they change sign under “naive time reversal”, which is defined
as usual time reversal without the interchange of initial and final states. The nomenclature of
the distribution functions follows closely that of Ref. [76], sometimes referred to as “Amsterdam
notation.” We remark that a number of other notations exist for some of the distribution functions,
see e.g. Refs. [25,60,81]. In particular, transverse-momentum-dependent functions at leading twist
have been widely discussed by Anselmino et al. [9, 14, 15]. The connection between the notation
in these papers and the one used here is discussed in App. C of Ref. [14].

The definition of the parton distribution functions in terms of the amplitudes Ai, introduced in
Eq. (2.20), can be found elsewhere [65, 72, 85].

Useful relations are

Φ[γ+] = f1(x, p2
T ) −

ε
ρσ

T pTρS Tσ

M
f ⊥1T (x, p2

T ) , (2.40)

Φ[γ+γ5] = S L g1L(x, p2
T ) − pT ·S T

M
g1T (x, p2

T ) , (2.41)

Φ[iσα+γ5] = S α
T h1(x, p2

T ) + S L
pαT
M

h⊥1L(x, p2
T )

− S Tρ

pαT pρT − 1
2 p2

T gαρT

M2 h⊥1T (x, p2
T ) −

ε
αρ

T pTρ

M
h⊥1 (x, p2

T ) . (2.42)

For any transverse-momentum dependent distribution function, it will turn out to be convenient
to define the notation

f (1/2)(x, p2
T ) ≡ |pT |

2M
f (x, p2

T ), (2.43a)

f (n)(x, p2
T ) ≡

(

p2
T

2M2

)n

f (x, p2
T ), (2.43b)

for n integer. We also need to introduce the function

h1(x, p2
T ) ≡ h1T (x, p2

T ) + h⊥(1)
1T (x, p2

T ). (2.44)
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The connection with the integrated distribution functions defined in Eq. (2.23) is

f1(x) =
∫

d2pT f1(x, p2
T ), (2.45a)

g1(x) =
∫

d2pT g1L(x, p2
T ), (2.45b)

h1(x) =
∫

d2pT h1(x, p2
T ). (2.45c)

2.3.1 Correlation function in helicity formalism

As done in the previous section, we can express the transverse momentum dependent correlation
function as a matrix in the parton chirality space ⊗ target helicity space. To simplify the formulae,
it is useful to identify the T-odd functions as imaginary parts of some of the T-even functions,
which become then complex scalar functions. The following redefinitions are required:1

g1T + i f ⊥1T → g1T , h⊥1L + ih⊥1 → h⊥1L. (2.46)

The resulting correlation matrix is [19, 20]

F(x, pT )Λ
′
1Λ1

χ1χ
′
1
=

















































































f1 + g1L
|pT |
M

e−iφp g1T
|pT |
M

eiφp h⊥∗1L 2 h1

|pT |
M

eiφp g∗1T f1 − g1L
|pT |2
M2 e2iφp h⊥1T −|pT |

M
eiφp h⊥1L

|pT |
M

e−iφp h⊥1L

|pT |2
M2 e−2iφp h⊥1T f1 − g1L −|pT |

M
e−iφp g∗1T

2 h1 −|pT |
M

e−iφp h⊥∗1L −|pT |
M

eiφp g1T f1 + g1L

















































































, (2.47)

where for sake of brevity we did not explicitly indicate the x and p2
T dependence of the distribution

functions and where φp is the azimuthal angle of the transverse momentum vector.
The distribution matrix is clearly Hermitean. The condition of angular momentum conservation

becomes Λ′1 + χ′1 + l′ = Λ1 + χ1. The condition of parity invariance becomes

F(x, pT )Λ
′
1Λ1

χ1χ
′
1
= (−1)l′ F(x, pT )−Λ

′
1 −Λ1

−χ1 −χ
′
1

∣

∣

∣

∣

∣

l′→−l′
. (2.48)

Bounds to insure positivity of any matrix element can be obtained by looking at the one-
dimensional and two-dimensional subspaces and at the eigenvalues of the full matrix.2 The one-
dimensional subspaces give the trivial bounds

f1(x, p2
T ) ≥ 0 ,

∣

∣

∣g1L(x, p2
T )

∣

∣

∣ ≤ f1(x, p2
T ) . (2.49)

1From a rigorous point of view, it would be better to introduce new functions, e.g. g̃1T and h̃⊥1L, but this would
overload the notation.

2Cf. Ref. 73 for an earlier discussion on positivity bounds for transverse momentum dependent structure functions.
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From the two-dimensional subspaces we get

|h1| ≤
1
2

( f1 + g1L) ≤ f1, (2.50a)
∣

∣

∣h⊥(1)
1T

∣

∣

∣ ≤ 1
2

( f1 − g1L) ≤ f1, (2.50b)
∣

∣

∣g(1)
1T

∣

∣

∣

2 ≤
p2

T

4M2 ( f1 + g1L) ( f1 − g1L) ≤
(

f (1/2)
1

)2
, (2.50c)

∣

∣

∣h⊥(1)
1L

∣

∣

∣

2 ≤
p2

T

4M2 ( f1 + g1L) ( f1 − g1L) ≤
(

f (1/2)
1

)2
, (2.50d)

where, once again, we did not explicitly indicate the x and p2
T dependence to avoid too heavy a no-

tation. Besides the Soffer bound of Eq. (2.50a), now extended to include the transverse momentum
dependence, new bounds for the distribution functions are found.

The positivity bounds can be sharpened even further by imposing the positivity of the eigen-
values of the correlation matrix. The complete analysis has been accomplished in Ref. 19 (see also
Ref. 20).

2.4 The correlation function ∆

While the distribution correlation function describe the confinement of partons inside hadrons,
the fragmentation correlation function describes the way a virtual parton “decays” into a hadron
plus something else, i.e. q∗ → hY . This process is referred to as hadronization. It is a clear
manifestation of color confinement: the asymptotic physical states detected in experiment must be
color neutral, so that quarks have to evolve into hadrons.3

The procedure for generating a complete decomposition of the correlation functions closely
follows what has been done on the distribution side in Sec. 2.1 on page 13. It is necessary to
combine the Lorentz vectors k and Ph with a basis of structures in Dirac space, and impose the
condition of Hermiticity and parity invariance. The outcome is

∆(k, Ph) = Mh B1 1 + B2 /Ph + B3 /k +
B4

Mh
σµνP

µ

h kν. (2.51)

The amplitudes Bi are dimensionless real scalar functions Bi = Bi(k · Ph, k2). The T-even and T-
odd part of the correlation function ∆ can be defined in analogy to Eqs. (2.9). According to those
definitions, the last term can be classified as T-odd.

At leading twist, we are interested in the projection P− ∆(z, kT ) γ−. The insertion of the de-
composition given in Eq. (2.51) into Eq. (1.60b) and the projection of the leading-twist component
leads to

P− ∆(z, kT ) γ− =
(

D1(z, z2k2
T ) + i H⊥1 (z, z2k2

T )
/kT

Mh

)

P− , (2.52)

3Note that on the way to the final state hadrons, the color carried by the initial quark can be neutralized without
breaking factorization, for instance via soft gluon contributions.
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where we introduced the parton fragmentation functions

D1(z, z2 k2
T ) = 1

2z

∫

dk2 d(2k · Ph) δ
(

k2
T +

M2
h

z2 + k2 − 2k · Ph

z

) [

B2 +
1
z

B3

]

, (2.53a)

H⊥1 (z, z2 k2
T ) = 1

2z

∫

dk2 d(2k · Ph) δ
(

k2
T +

M2
h

z2 + k2 − 2k · Ph

z

)

[−B4] . (2.53b)

The fragmentation function H⊥1 is known with the name of Collins function [46].
The individual fragmentation functions can be isolated by means of the projection4

∆[Γ] ≡ Tr (∆Γ) , (2.54)

where Γ stands for a specific Dirac structure. In particular, we see that

D1(z, z2k2
T ) = 1

2 ∆
[γ−](z, kT ), (2.55a)

ε
i j
T kT j

Mh
H⊥1 (z, z2k2

T ) = ∆[iσi−γ5](z, kT ). (2.55b)

As we have done with the distribution functions, it will be helpful to introduce the notation

D(1/2)(z, z2k2
T ) ≡ |kT |

2Mh
D(z, z2 k2

T ), (2.56a)

D(n)(z, z2k2
T ) ≡

(

k2
T

2M2
h

)n

D(z, z2 k2
T ), (2.56b)

for n integer.

2.4.1 Correlation function in helicity formalism

Expressing the Dirac matrices of Eq. (2.52) in the chiral or Weyl representation, as done in
Sec. 2.1.1 on page 15, we get for the leading twist part of the correlation function the expression

(

P− ∆(z, kT ) γ−
)

kl
=

















































0 0 0 0

0 D1(z, z2k2
T ) ieiφk

|kT |
Mh

H⊥1 (z, z2 k2
T ) 0

0 −ie−iφk
|kT |
Mh

H⊥1 (z, z2k2
T ) D1(z, z2 k2

T ) 0

0 0 0 0

















































. (2.57)

Restricting ourselves to the subspace of good quark fields and using the chirality basis, we can
rewrite the correlation function as

D(z, kT )
χ′2χ2
=



























D1(z, z2k2
T ) ieiφk

|kT |
Mh

H⊥1 (z, z2 k2
T )

−ie−iφk
|kT |
Mh

H⊥1 (z, z2 k2
T ) D1(z, z2 k2

T )



























. (2.58)
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χ′
2

χ
2

Figure 2.2. Illustration of the position of the indices of the correlation matrix.

Fig. 2.2 shows diagrammatically the position of the indices of the correlation function. Besides
being Hermitean, the matrix fulfills the properties of angular momentum conservation and parity
invariance. Because of the presence of factors eilφk , we have to take into account l units of angular
momentum in the initial state, therefore the condition of angular momentum conservation is χ′2 =
χ2 + l and the condition of parity invariance is

D(z, kT )
χ′2χ2
= (−1)l D(z, kT )−χ′2 −χ2

∣

∣

∣

∣

l→−l
. (2.59)

Positivity of the correlation matrix implies the bounds

D1(z, z2k2
T ) ≥ 0, (2.60a)

∣

∣

∣H⊥(1)
1 (z, z2k2

T )
∣

∣

∣ ≤ D(1/2)
1 (z, z2k2

T ). (2.60b)

2.5 Structure functions

Inserting the parameterizations of the different correlators in the expression (1.58) of the hadronic
tensor and contracting it with the leptonic tensor, one can calculate the leptoproduction cross sec-
tion for semi-inclusive DIS and project out the different structure functions appearing in Eq. 1.32.
To have a compact notation for the results, we introduce the notation

C[w f D
]

= xB

∑

q

e2
q

∫

d2 pT d2 kT δ
(2)(pT − kT − Ph⊥/z

)

w(pT , kT ) f q(xB, p2
T ) Dq(z, k2

T ), (2.61)

with the unit vector ĥ = Ph⊥/|Ph⊥|, where w(pT , kT ) is an arbitrary function.

4The absence of the factor 1/2 in Eq. (2.54) as compared to Eq. (2.24) is due to the absence of an averaging over
initial states.
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These are the expressions for the structure functions appearing in Eq. (1.32)

FUU,T = C
[

f1D1
]

, FUU,L = 0, Fcos φh

UU = 0 (2.62)

Fcos 2φh

UU = C
[

−
2 (

ĥ · kT

) (

ĥ · pT
) − kT · pT

MMh
h⊥1 H⊥1

]

, (2.63)

Fsin φh

LU = 0, Fsin φh

UL = 0, (2.64)

Fsin 2φh

UL = C
[

−
2 (

ĥ · kT

) (

ĥ · pT
) − kT · pT

MMh
h⊥1LH⊥1

]

, (2.65)

FLL = C
[

g1LD1
]

, Fcos φh

LL = 0, (2.66)

Fsin(φh−φS )
UT,T = C

[

− P̂h⊥ · pT

M
f ⊥1T D1

]

, Fsin(φh−φS )
UT,L = 0, (2.67)

Fsin(φh+φS )
UT = C

[

−
P̂h⊥ · kT

Mh
h1H⊥1

]

, (2.68)

Fsin(3φh−φS )
UT = C

[2
(

P̂h⊥ · pT
) (

pT · kT

)

+ p2
T

(

P̂h⊥ · kT

) − 4 (P̂h⊥ · pT )2 (P̂h⊥ · kT )
2M2Mh

h⊥1T H⊥1

]

, (2.69)

FsinφS

UT = 0, Fsin(2φh−φS )
UT = 0, (2.70)

Fcos(φh−φS )
LT = C

[ P̂h⊥ · pT

M
g1T D1

]

, FcosφS

LT = 0, Fcos(2φh−φS )
LT = 0, (2.71)

It has to be stressed that in much of the past literature a different definition of the azimuthal angles
has been used, whereas in the present work we adhere to the Trento conventions [22]. To compare
with old papers, the signs of φh and of φS have to be reversed. All the nonzero structure functions
here are consistent with those given in Eqs. (36) and (37) of Ref. [32] when only photon exchange
is taken into consideration.

2.6 Weighted asymmetries

In the structure functions we have expressions such as

C
[

− P̂h⊥ · pT

M
f ⊥1T D1

]

(2.72)

where the two functions appear in a convolution. The general way to split the convolution is to use
transverse-momentum-weighted asymmetries. For instance

W =
∫

d2 Ph⊥
|Ph⊥|

M
C
[

− P̂h⊥ · pT

M
f ⊥1T D1

]

(2.73)
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in fact

W = −xB

∑

q

e2
q

∫

d2 Ph⊥ d2 pT d2 kT δ
(2)(pT − kT − Ph⊥/zh

) Ph⊥ · pT

M
f ⊥q
1T Dq

1,

= −xB z2
h

∑

q

e2
q

∫

d2 pT d2 kT

(pT − kT ) · pT

M2 f ⊥q
1T Dq

1,

= −xB

∑

q

e2
q

∫

d2 pT
|pT |2
M2 f ⊥q

1T z2
h

∫

d2 pT Dq
1

= −xB

∑

q

e2
q 2 f ⊥(1)q

1T (xB) D1(zh)

(2.74)

2.7 Leading twist part and connection with helicity formalism

To identify the leading twist contributions to the cross section, it is convenient to define the pro-
jectors

P+ =
1
2 γ−γ+, P− =

1
2 γ+γ−. (2.75)

Before the interaction with the virtual photon, the relevant components of the quark fields are the
plus components, ψ+ = P+ ψ. They are usually referred to as the good components. Vice versa,
after the interaction with the virtual photon, the relevant components of the outgoing quark fields
are the minus components, ψ− = P− ψ. Therefore, the leading twist part of the hadronic tensor in
Eq. (1.25) can be projected out in the following way 5

2MWµν(q, P, S , Ph) ≈ 4zh I
[

Tr(P+Φ(xB, pT , S ) P− γµ P− ∆(zh, kT ) P+ γν)
]

= 4zh I
[

Tr
(

P+Φ(xB, pT , S ) γ+ γ
−γµ

2
P− P− ∆(zh, kT ) γ− γ

+γν

2
P+

)]

.

(2.76)

The differential cross section becomes

d6σ

dxB dy dzh dφS d2Ph⊥

≈
∑

q

α2e2
q

sxBQ2 Lµν(l, l′, λe) I
[

Tr
(

P+Φ(xB, pT , S ) γ+ γ
−γµ

2
P− P− ∆(zh, kT ) γ− γ

+γν

2
P+

)]

≈
∑

q

I












(

P+Φ(xB, pT , S )γ+
)

i j

α2e2
q

sxBQ2 Lµν(l, l′, λe)
(

γ−γµ

2 P−
)

jl

(

γ+γν

2 P+
)

mi

(

P− ∆(zh, kT ) γ−
)

lm













.

(2.77)

5Note that ¯(ψ+) = ψ̄P− and ¯(ψ−) = ψ̄P+.
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In Sec. 2.1.1 on page 15, we have seen in detail how the insertion of the projectors effectively re-
duces the four-dimensional Dirac space into a two-dimensional subspace. Chiral-right and chiral-
left good quark spinors can be used as a basis in this space. Therefore, it is possible to replace
the Dirac indices with chirality indices (of good fields). By doing this, we put particular evidence
on the connection with the helicity/chirality formalism (see e.g. Refs. 61 and 9). Writing all the
components of the cross section in the chirality space of the good fields, we obtain

d6σ

dxB dy dzh dφS d2Ph⊥
= ρ(S )

Λ1Λ
′
1
I

[

(

P+Φ(xB, pT )γ+
)Λ′1Λ1

χ′1χ1

( dσeq

dy

)χ1χ
′
1;χ2χ

′
2
(

P− ∆(zh) γ−
)

χ′2χ2

]

≡ ρ(S )
Λ1Λ

′
1
I

[

F(xB, pT )Λ
′
1Λ1

χ1χ
′
1

( dσeq

dy

)χ1χ
′
1; χ2χ

′
2 D(zh, kT )

χ′2χ2

]

.

(2.78)

The elementary electron-quark scattering matrix is

( dσeq

dy

)χ1χ
′
1;χ2χ

′
2
=

α2e2
q

sxBQ2 Lµν(l, l′, λe)
(

γ−γµ

2
P−

)χ1χ2
(

γ+γν

2
P+

)χ′2χ
′
1

=
2α2e2

q

sxBy2



































A(y) + λeC(y) 0 0 −B(y)
0 0 0 0
0 0 0 0
−B(y) 0 0 A(y) − λeC(y)



































,

(2.79)

where

A(y) = 1 − y +
y2

2 , B(y) = (1 − y), C(y) = y
(

1 − y
2

)

. (2.80)

The internal blocks have indices χ′1 χ1 and the outer matrix has indices χ′2 χ2.





3

Spectator model:
a workbench

There are many models used for the calculation of parton distribution functions (and also frag-
mentation functions). We are here going to take into consideration one, the so-called spectator
model because it allows us to compute in a relatively easy way transverse momentum dependent
distribution and fragmentation functions and discuss some interesting features.

3.1 Basics

In the spectator model, the proton is supposed to be coupled to a quark and a spectator through
some sort of effective vertes. Therefore, the sum of all possible intermediate states in the definition
of the correlator is effectively replaced by a single, on-shell state: the spectator. For a proton target,
the spectator has the quantum numbers of a diquark. Conservation of angular momentum requires
the diquark to have spin 0 (scalar diquark) or 1 (vector diquark). From a flavor point of view, it
could be a isoscalar (ud) or a isovector (uu).
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The correlation function (1.21) becomes

Φ(k, P, S ) =
∑

X

∫ d3PX

(2π)3 2P0
X

〈

P, S ψ̄̄(0) X
〉〈

X ψ(0) P, S
〉

δ(4)
(

P − k − PX

)

→
∫

d4PX

(2π)4 (2π) δ(P2
X − M2

X) θ(P+X) δ(4)(PX − (P − k)) 〈P, S |ψ̄(0)|PX〉 〈PX |ψ(0)|P, S 〉

=
1

(2π)3 δ((P − k)2 − M2
s ) θ((P − k)+) 〈P, S |ψ̄(0)|P − k 〉 〈P − k |ψ(0)|P, S 〉 .

We want to compute Φ(x, kT , S ) =
∫

dk− Φ(k, P, S ). We use the δ function to perform the k−

integration

δ
(

(P − k)2 − M2
s

)

= δ
(

2(P − k)+(P − k)− − k2
T − M2

s

)

= δ
(

−(1 − x)(2P+k− + M2)−k2
T − M2

s

)

=
1

2(1 − x)P+
δ

(

k− +
k2

T + M2
s + (1 − x)M2

2(1 − x)P+
)

(3.1)

so that

Φ(x, kT , S ) =
∫

dk− Φ(k, P, S )
∣

∣

∣

∣

∣

k+=xP+

=
1

(2π)3
1

2(1 − x)P+ 〈P, S |ψ̄(0)|P − k 〉 〈P − k |ψ(0)|P, S 〉
∣

∣

∣

∣

∣

k+=x P+,

k2=−(k2
T+L2)/(1−x)−m2

, (3.2)

where we introduce for convenience the function

L2 = x(1 − x)
(

−M2 +
m2

x
+

M2
s

(1 − x)

)

. (3.3)

For simplicity, we shall consider only the scalar diquark. In this case, the P→ q(2q) “scattering
amplitude” at tree level can be written

〈P − k|ψ(0)|P, S 〉 = i

/k − m
Υs U(P, S ) = i

/k + m

k2 − m2 igs(k2)
1 + γ5/S

2 U(P, S ) . (3.4)

Note that this is not really a simple scattering amplitude, since the quark propagator is included. It
follows that

〈

P, S ψ̄(0) P − k
〉

=
〈

P − k ψ(0) P, S
〉†
γ0 = Ū(P, S )

1 + γ5/S

2 (−i) gs (−i)
/k + m

k2 − m2 . (3.5)

The correlation function becomes

Φ(x, kT , S ) = 1
(2π)3

1
2(1 − x)P+

g2
s(k2)

(k2 − m2)2

[

(/k + m)
1 + γ5/S

2 (/P + M) (/k + m)
]

∣

∣

∣

∣

∣

...

(3.6)
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3.2 Calculation of f1

Now we can compute all kinds of distribution functions we want in a straightforward way. Let’s
start with f1, then we simply calculate (see, e.g., Ref. [31])

Φ[γ+] =
1
2

1
(2π)3

1
2(1 − x)P+

g2
s

(k2 − m2)2 Tr
[

(/k + m)
1 + γ5/S

2 (/P + M) (/k + m)γ+
]

=
g2

s

16π3
m(m + 2Mx) − k2 + 2x k · P

(1 − x) (k2 − m2)2

=
g2

s

16π3
1 − x

(k2
T + L2)2

(

k2
T + (m + Mx)2

)

.

(3.7)

There are now a couple of things to observe: first, the result does not depend on the spin,
meaning that the Sivers function is zero in this model. Second, as it is the function cannot be
integrated over kT : it would give rise to a logarithmic divergence. We can overcome this problem
in two ways: instead of a coupling constant, we can use a form factor g2

s(k2) that suppresses the
hight-kT tails; alternatively, we can choose a cutoff Λ and stop the integration there. Let’s follow
the second option, since it is simpler. The result of the integration is

f1(x) =
g2

s (1 − x)
8π2

(

x
Λ2

L2
(m + M)2 − M2

s

L2 + Λ2 + ln L2 + Λ2

Λ2

)

. (3.8)

Ex. 3.1

Calculate the transversity function using the same procedure as for f1.

3.3 Calculation of the Sivers function

It is not surprising that the previous calculation led to a vanishing Sivers function. In order to
have a nonzero T-odd function, we need the interference between two scattering amplitudes with
different imaginary parts. At tree level, we have just one real scattering amplitude.

A good way to introduce imaginary parts is to insert some loops. The optical theorem tells you
that if a scattering amplitude can be seen as the cut diagram of some other process, then it means
that it has an imaginary part. In other words, you have an imaginary part whenever you can cut
the amplitude by putting some internal particles on shell. It’s impossible to do this if you have a
tree-level diagram, but it might be possible for amplitudes with loops. For instance, the self-energy
diagram...

Let’suppose that quark and diquark in our model can interact through the exchange of some
vector boson. We know that they do interact via the exchange of gluons. For the moment being,
let’s suppose they interact via an Abelian gluon (i.e., with no color structure). The gluon-quark
coupling is the standard one (without the color matrix). For the gluon-diquark coupling and for
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the scalar propagators, we take the typical coupling between a photon and a scalar particle and a
typical scalar propagator, i.e.

p
′

p

= −iec (p + p′)µ
p

=
i

p2 − M2
S + iε

(3.9)

The charges of the two objects have to be equal (and opposite), so that the proton can be color
neutral.

There are three possible places to draw gluon loops, but none of them can be cut, meaning that
none of them can give rise to the imaginary part we need. The situation before 2002 was that T-odd
functions could not be produced with this model. However, it turned out that we had forgotten an
important piece in the calculation of the distribution functions: the gauge link or Wilson line. We’ll
come back more formally to this issue, but now let’s take a more pragmatical point of view and
let’s take into consideration the diagram shown in Fig. 3.1 b.

The gluon in this case couples to the quark after the scattering with the photon. This is a
potentially dangerous thing to do, because in the formalism so far we carefully avoided taking
gluons into account and pretended that only the quark-photon interaction was relevant at leading
twist in the low-transverse-momentum regime. It turns out nevertheless that at leading twist, this
diagram can be completely reabsorbed into the quark-quark correlation function. Let’s see how it
works.

P

k − P

q

k

k + q

P

k − Pk − l − P

k − l + q

q

k − l l

k + q

(a) (b)

Figure 3.1.

The amplitude at tree level, including now also the photon interaction, corresponds to (Fig. 3.1 a)

M(0) = ū(k + q) (−ieq) /ε(q)
i(/k + m)
k2 − m2 igs

(

k2) 1 + γ5/S

2
U(P, S ) (3.10)

We write down the amplitude with the loop, Fig. 3.1 b. Two important things: we use Feynman
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gauge for the gluon propagator and we also keep track of the iε terms in the propagators.

M(1) = ū(k + q)
∫ d4l

(2π)4 (−iecγµ)
−igµν

[l2 − m2
g + iε]

(−iec)
(2k − l − 2P)ν i

[(k − l − P)2 − M2
s + iε]

× i(/k + /q − /l + m)
[(k + q − l)2 − m2 + iε] (−ieq)/ε(q)

i(/k − /l + m)
[(k − l)2 − m2 + iε] igs

((k − l)2) 1 + γ5/S

2 U(P, S )

(3.11)

Now, we perform a simplification that goes under the name of “eikonal approximation” and
consists simply in taking into account only the leading parts of the momenta of the quark after
the photon scattering. As we know, the − components are the leading ones. Therefore, the quark
propagator in the upper part of the diagram becomes

i(/k + /q − /l + m)
(k + q − l)2 − m2 + iε

≈ i (k + q)−γ+

−2l+(k + q)− + iε
=

i
2

γ+

−l+ + iε
(3.12)

In the last step it is essential that to have (k + q)− ≥ 0. This condition is guaranteed by the fact that
we want to have an outgoing quark with momentum k + q in the final state. The above expression
is often referred to as an eikonal propagator.

If we insert the simplified propagator in the scattering amplitude and multiply it by the (conju-
gate) of the tree-level amplitude we obtain

M̄(0)M(1) = (−i)g∗s
(

k2) −i(/k + m)
k2 − m2 ieq/ε

∗ u(k + q)ū(k + q)
∫ d4l

(2π)4 (−iecγ
ν) −i

[l2 − m2
g + iε] (−iec)

(2k − l − 2P)ν i
[(k − l − P)2 − M2

s + iε]
i
2

γ+

−l+ + iε

× (−ieq)/ε(q)
i(/k − /l + m)

[(k − l)2 − m2 + iε]
igs

((k − l)2) 1 + γ5/S

2
U(P, S )Ū(P, S )

(3.13)

The crucial observation at this point is that in the spirit of the eikonal approximation, the only
possibility to have a nonzero result is if γν = γ−

. . . (/k+/q+m)γνγ+ . . . ≈ . . . (k+q)−γ+γνγ+ . . . = . . . (k+q)−γ+γ−γ+ . . . = . . . 2(k+q)−γ+ . . . (3.14)

We can then rewrite

M̄(0)M(1) =
e2

q e2
c g∗s

(

k2)

k2 − m2 /ε∗(q) (/k + /q + m) /ε(q)
∫ d4l

(2π)4
i gs

((k − l)2) (2k − l − 2P)+ (/k − /l + m) (1 + γ5/S ) (/P + m) (/k + m)
2 [l2 − m2

g + iε] [−l+ + iε] [(k − l)2 − m2 + iε][(k − l − P)2 − M2
s + iε]

(3.15)

We can associate a modified Feynman diagram to the amplitude M(1) after the eikonal approx-
imation. It is drawn in Fig. 3.2. In other words, we managed to “factorize” the photon-quark
interaction from the rest. In fact, the previous equation can be written as

M̄(0)M(1) = e2
q Tr

[

/ε∗(q) (/k + /q + m)/ε(q) 〈P, S |ψ̄(0)|P − k 〉(1) 〈P − k |ψ(0)|P, S 〉(0)
]

(3.16)
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P

k − Pk − l − P

q

k − l l

k + q

Figure 3.2.

We could now forget about the photon interaction and focus only on the lower part of the diagram,
which now describes our P → q(2q) amplitude at the one-loop level, i.e., including the modifica-
tion due to (the leading-twist part of) the gluon-quark final state interaction. The Feynman diagram
associated with this amplitude is depicted in Fig. 3.3. Whenever we meet the eikonal line in such

P

k − Pk − l − P

k − l l

Figure 3.3.

a Feynman diagram, we have to use the following Feynman rules

= −iec nµ−
(−l)

=
i

−l · n− + iε (3.17)

If we properly take into account the color structure of the gluon-eikonal vertex, it becomes

= ig ta nµ− (3.18)

Note that the modifications we discussed in the context of the eikonal approximation are totally
independent of the specific form of the diquark model. However, they do depend crucially on two
things: the gauge choice and whether the eikonal propagator represents an outgoing or incoming
particle. We’ll come back to this later.

Now, let’s proceed with our model calculation. The quark-quark correlator at one loop reads

Φ(x, kT , S )(1) =
1

(2π)3
1

2(1 − x)P+
e2

c g∗s
(

k2)

k2 − m2
∫ d4l

(2π)4
i gs

((k − l)2) (2k − l − 2P)+ (/k − /l + m) (1 + γ5/S ) (/P + m) (/k + m)
2 [l2 − m2

g + iε] [−l+ + iε] [(k − l)2 − m2 + iε][(k − l − P)2 − M2
s + iε]

+ H.c.

(3.19)
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Since we want to compute the Sivers function, we consider only the part depending on the spin
of the target and we perform the required trace (I use here the shorthand notation ε kS

T = ε
ρσ

T kTρS Tσ)

−
εkS

T

M
f ⊥1T (x, k2

T ) = 1
2
[

Φ[γ+](x, k2
T , S ) − Φ[γ+](x, k2

T ,−S )
]

(3.20)

Let’s first look at the result of the Dirac trace
1
2 Tr

[

(/k − /l + m) γ5/S (/P + m) (/k + m) /n−
]

= 2i
(

Mεkln−S + mε ln−PS
)

= −2i
[

(xM + m)P+ε lS
T − M l+εkS

T + MS +εkl
]

(3.21)

The last term cannot give a contribution because it will never match with the prefactor of the Sivers
function. Mathematically, this is due to the fact that once the integration over l is carried out, the
only transverse vector we have at our disposal is kT . Therefore, εkl after the integration can only
be proportional to εkk, which is zero.

Using this result we write

−
εkS

T

M
f ⊥1T (x, k2

T ) = 1
(2π)3

1
2(1 − x)P+

e2
c g∗s

(

k2)

k2 − m2
∫ d4l

(2π)4

gs
(

(k − l)2) (2k − l − 2P)+
[

(xM + m)P+ε lS
T − M l+εkS

T

]

[l2 − m2
g + iε] [−l+ + iε] [(k − l)2 − m2 + iε][(k − l − P)2 − M2

s + iε]
+ c.c.

=
1

(2π)3
1

2(1 − x)P+
e2

c g∗s
(

k2)

k2 − m2

2 Re
∫ d4l

(2π)4

gs
(

(k − l)2) (2k − l − 2P)+
[

(xM + m)P+ε lS
T − M l+εkS

T

]

[l2 − m2
g + iε] [−l+ + iε] [(k − l)2 − m2 + iε][(k − l − P)2 − M2

s + iε]
(3.22)

In the last step, we assumed that form factor is real. We came to a very important point, namely that
the Sivers function is proportional to the real part of that long integral. It turns out that a nonzero
real part is obtained only if we pick up the two poles from the [−l+ + iε] and [(k− l−P)2 −M2

s + iε]
denominators. Picking up any other pole leads to a vanishing result. Note that we knew the Sivers
function had to be proportional to the imaginary part of the one-loop scattering amplitude. The
result we obtained is consistent with Cutkosky’s rules, which state that the imaginary part of a
Feynman diagram can be obtained by cutting the diagram in all possible ways such that the cut
propagators can be put simultaneously on shell. The only possibility for the present diagram is in
fact to cut the eikonal propagator and the spectator propagator.

Using the residue theorem and picking up the residue of a propagator pole is equivalent to
replacing the propagator with a delta function, e.g.,

1
[l+ − iε] → 2πi δ[l+], 1

[(k − l − P)2 − M2
s + iε] → −2πi δ[(k − l − P)2 − M2

s ], (3.23)

1
[l2 − m2

g + iε] → −2πi δ[l2 − m2
g], 1

[(k − l)2 − m2 + iε] → −2πi δ[(k − l)2 − m2]. (3.24)
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Only the first two δ functions can go together. Let’s take for instance the first and third one. If
l+ = 0, then l2 − m2

g = −l2
T − m2

g cannot be zero, unless we take the special case of zero gluon
mass and zero transverse momentum, in which case the denominator of the integral would anyway
vanish.
Ex. 3.2

Check that the other combinations of δ functions are kinematically forbidden.

To summarize, we have

−
εkS

T

M
f ⊥1T (x, k2

T ) = 1
(2π)3

1
2(1 − x)P+

e2
c g∗s

(

k2)

k2 − m2 (2k − 2P)+ (xM + m) P+ερσT S σ(2k − 2P)+

2
∫ d4l

(2π)2
gs

((k − l)2) lρ
[l2 − m2

g + iε] [(k − l)2 − m2 + iε] δ[l
+] δ[(k − l − P)2 − M2

s ].
(3.25)

The last integral must be proportional to kTρ, because it is the only external transverse momentum
we have. Therefore, introducing the integral

D′1 =
∫ d4l

(2π)2
gs

((k − l)2) (lT · kT )/(kT · kT )
[l2 − m2

g] [(k − l)2 − m2] δ
[

l+
]

δ
[(k − l − P)2 − M2

s

]

, (3.26)

we have
∫ d4l

(2π)2
gs

((k − l)2) lTρ

[l2 − m2
g + iε] [(k − l)2 − m2 + iε] δ

[

l+
]

δ
[(k − l − P)2 − M2

s

]

= D′1 kTρ, (3.27)

−
εkS

T

M
f ⊥1T (x, k2

T ) = − 1
(2π)3

e2
c g∗s

(

k2)

k2 − m2 (xM + m) εkS
T P+ D′1, (3.28)

f ⊥1T (x, k2
T ) = 1

(2π)3
e2

c g∗s
(

k2)

k2 − m2 (xM + m) M P+ D′1. (3.29)

To solve the D′1 integral, we have now to specify our form factor. As before, we choose now a
pointlike form factor and we pull it out of the integral

f ⊥1T (x, k2
T ) = 1

(2π)3
e2

c g2
s

k2 − m2 (xM + m) M P+ D1. (3.30)

where
D1 =

∫ d4l
(2π)2

(lT · kT )/(kT · kT )
[l2 − m2

g] [(k − l)2 − m2] δ
[

l+
]

δ
[

(k − l − P)2 − M2
s

]

. (3.31)

We use the two δ functions to perform the l+ and l− integrations first. Using l+ = 0, the second
δ function becomes

δ
[

(k − l − P)2 − M2
s

]

= δ
[

(P − k)2 − M2
s + l2 + 2l · (P − k)

]

= δ
[−l2

T + 2l−(1 − x)P+ + 2lT · kT
]

=
1

2(1 − x)P+ δ
[

l− −
l2
T − 2lT · kT

2(1 − x)P+
]

(3.32)



3.3 Calculation of the Sivers function 37

Using l+ = 0 and the value for l− fixed by the second δ function, the denominators become

[l2 − m2
g] = −l2

T − m2
g, (3.33)

[(k − l)2 − m2] = k2 + l2 − 2k · l − m2 = −l2
T − 2xP+

( l2
T − 2lT · kT

2(1 − x)P+
)

+ 2kT · lT + k2 − m2

=
1

(1 − x)
[

−(1 − x)l2
T − xl2

T + 2xlT · kT + 2(1 − x)kT · lT + (1 − x)(k2 − m2)
]

=
1

(1 − x)
[

−l2
T + 2 lT · kT + (1 − x)(k2 − m2)

]

=
1

(1 − x)
[

−(lT − kT
)2 − L2

]

.

(3.34)
We eventually have

D1 =
1

2(1 − x)P+

∫ d2 lT

(2π)2
lT · kT

k2
T

(1 − x)
[l2

T + m2
g][(lT − kT

)2
+ L2]

. (3.35)

Changing variable lT → l′T + kT

D1 =
1

2P+

∫ d2 l′T
(2π)2

(l′T + kT ) · kT

k2
T

1
[(l′T + kT )2 + m2

g][l′2T + L2]
(3.36)

At this point, we set the gluon mass to zero and we introduce a Feynman parameter to solve the
integral

D1 =
1

2P+

∫ d2 l′T
(2π)2

∫ 1

0
dα

(l′T + kT ) · kT

k2
T

1
[

α(l′T + kT )2 + (1 − α)(l′2T + L2)
]2

=
1

2P+

∫ 1

0
dα

∫ d2 l′T
(2π)2

(l′T + kT ) · kT

k2
T

1
[

l′2T + 2α l′T · kT + α k2
T + (1 − α)L2]2

l′T→lT−αkT
=

1
2P+

∫ 1

0
dα

∫ d2 lT

(2π)2
1 − α

[

l2
T + α(1 − α)k2

T + (1 − α)L2]2

=
1

8P+π

∫ 1

0
dα 1

α k2
T + L2 =

1
8P+π

1
k2

T

ln
k2

T + L2

L2 .

(3.37)

Therefore, the result for the Sivers function is [31]

f ⊥1T (x, k2
T ) =

e2
c g2

s

4(2π)4
M (m + xM)
k2

T (k2 − m2)
ln

k2
T + L2

L2

= − e2
c g2

s

4(2π)4
M (1 − x) (m + xM)

k2
T (k2

T + L2)
ln

k2
T + L2

L2 .

(3.38)

We can integrate the Sivers function over k2
T using a cutoff Λ2 as we did for f1 and obtain, e.g.,

f ⊥(1)
1T (x) = −e2

c g2
s (1 − x) (m + xM)

32(2π)3M
ln Λ

2 + L2

L2 . (3.39)

Ex. 3.3

Calculate the Boer-Mulders function using the same procedure as for the Sivers function
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3.4 Connection with impact-parameter space GPDs

The relation between the Sivers function and the impact-parameter representation of generalized
parton distribution functions has been proposed for the first time in Ref. [40] and worked out in
detail for the spedific case of the spectator model in Ref. [41].

The unpolarized distribution function can be written in terms of light-cone wave functions [41]

f1(x, k2
T ) = 1

4π
(

|ψ++|2 + |ψ+−|2
)

(3.40)

where

ψ++(x, kT ) = (m + xM) φ/x, (3.41)
ψ+−(x, kT ) = −(kx + iky) φ/x, (3.42)
ψ−+(x, kT ) = (kx − iky) φ/x, (3.43)
ψ−−(x, kT ) = (m + xM) φ/x, (3.44)

φ(x, k2
T ) = − gs√

1 − x

x(1 − x)
k2

T + L2 . (3.45)

The wave functions ψ±± give the probability to find in a proton with positive/negative helicity
(proton moving in the z direction) a quark with positive/negative helicity, longitudinal momentum
fraction x and transverse momentum kT , together with a scalar diquark. The superscript refers to
the proton helicity and the subscript to the quark helicity.

For a proton polarized in the y direction we obtain

ψ
↑y
+ (x, kT ) = 1

√
2

(ψ++ + iψ−+) =
1
√

2
[(m + xM) + ikx + ky]φ/x,

ψ
↑y
− (x, kT ) = 1

√
2

(ψ+− + iψ−−) =
1
√

2
[i(m + xM) − kx − iky]φ/x

ψ
↓y
+ (x, kT ) = − 1

√
2

(ψ++ − iψ−+) =
1
√

2
[(m + xM) + ikx + ky]φ/x,

ψ
↓y
− (x, kT ) = − 1

√
2

(ψ+− − iψ−−) =
1
√

2
[i(m + xM) − kx − iky]φ/x

(3.46)

The impact-parameter-dependent (IPD) quark distribution for target polarization along the ±y
direction and proton moving in the z direction reads [41]

fq/p↑y (x, bT ) = H(x, bT ) + 1
2M

∂

∂bx
E(x, bT ) (3.47)

fq/p↓y (x, bT ) = H(x, bT ) − 1
2M

∂

∂bx
E(x, bT ). (3.48)

∂
∂bx E > 0 corresponds to a preference of the quark to be on in the +x side.

In the spectator model, the transverse momentum kT is the Fourier conjugate to the distance
between the quark and the spectator, cT = rTq − rT (2q). However, there is a simple relation between
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cT and the impact parameter bT , which is defined as the distance of the quark to the transverse
center of momentum bT = rTq − RT , where

RT = xrTq + (1 − x)rT (2q). (3.49)

so that
bT = rTq − RT = (1 − x)cT . (3.50)

Therefore, there is a simple relation between quark densities in impact-parameter space and in
transverse-coordinate space

fq/p↑y (x, bT ) = 1
(1 − x)2 fq/p↑y (x, cT )

∣

∣

∣

∣

cT=bT /(1−x)
(3.51)

Introducting the Fourier transforms

ψ̃(x, cT ) =
∫ d2 kT

(2π)2 eikT ·cT ψ(x, kT ) (3.52)

we can finally write

fq/p↑y (x, bT ) = 1
(1 − x)2

1
4π

(

|ψ̃↑y
+ (x, cT )|2 + |ψ̃↑y

− (x, cT )|2
)

∣

∣

∣

∣

cT=bT /(1−x)
(3.53)

and similarly for the ↓ state.
The Fourier transforms of the light-cone wave functions are [41]

ψ̃
↑y
+ (x, cT )|2 = 1

√
2

[

(m + xM) + ∂

∂cx
− i ∂

∂cy

]

φ̃(x, cT )/x (3.54)

ψ̃
↑y
− (x, cT )|2 = 1

√
2

[

i(m + xM) + i ∂
∂cx
− ∂

∂cy

]

φ̃(x, cT )/x (3.55)

and similarly for the ↓ state, with

φ̃(x, cT ) =
∫ d2 kT

(2π)2 eikT ·cT φ(x, k2
T )

= −gsx(1 − x)
√

1 − x

∫ d2 kT

(2π)2 eikT ·cT
1

k2
T + L2 = −

gs

2π
x
√

1 − x K0(|cT | L),
(3.56)

where K0 stands for the first modified Bessel function.
It turns out that

|ψ̃↑y
+ (x, cT )|2 + |ψ̃↑y

− (x, cT )|2 =
[

(m + xM)φ̃/x +
∂

∂cx
φ̃/x

]2
+

[

∂

∂cy
φ̃/x

]2

=
1
x2

[

(m + xM)2φ̃2 +

(

∂

∂cx
φ̃

)2
+

(

∂

∂cy
φ̃

)2
+ 2(m + xM) φ̃ ∂

∂cx
φ̃

]

(3.57)
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The analogous calculation for the ↓ state would lead to the same result, except for a different sign in
the last term. Comparing with Eq. (3.53) and Eq. (3.47) we can find an expression for the function
E in the diquark model, namely [41]

1
2M

∂

∂bx
E(x, bT ) = 1

4π
2

x2(1 − x)2 (m + xM) φ̃ ∂

∂cx
φ̃ (3.58)

The transverse-momentum-dependent quark distribution for an unpolarized quark in a polar-
ized target reads [22]

fq/p↑(x, kT ) = f q
1 (x, k2

T ) − f ⊥q
1T (x, k2

T )
εµνρσPµkνS ρnσ

M (P · n)

= f q
1 (x, k2

T ) − f ⊥q
1T (x, k2

T ) (P̂ × kT ) · S
M

,

(3.59)

f ⊥q
1T > 0 corresponds to a preference of the quark to move to the left if the proton is moving towards

the observer and the proton spin is pointing upwards.
The average transverse momentum kαT/M is

〈kαT/M〉 =
∫

d2 kT
kαT
M

fq/p↑(x, kT ) = εασT S Tσ f ⊥(1)
1T (3.60)

Using expressions (3.30) and (3.36) we can write

〈kαT/M〉 = −εασT S Tσ

e2
c g2

s

2M(2π)3 (1 − x) (xM + m)

×
∫

d2 kT

∫

d2 lT

(2π)2
(kT − lT ) · kT

[k2
T + L2] [(kT − lT )2 + m2

g][l2
T + L2]

(3.61)

Introducing

Γρ
(

(kT − lT )2
)

= −i
e2

c

2
(kT − lT )ρ

(kT − lT )2 + m2
g

, (3.62)

we can write

〈kαT/M〉 = −εασT S Tσ

(xM + m)
2π x2

∫ d2 kT

(2π)2

∫ d2 lT

(2π)2
kTρ

M
φ(x, k2

T ) φ(x, l2
T ) iΓρ

(

(kT − lT )2
)

, (3.63)

where we can see that a convolution of three transverse-momentum dependent terms appears. It
is convenient now to Fourier-transform this expression, so that it becomes a simple product in
position space, since in general

∫ d2 kT

(2π)2

∫ d2 lT

(2π)2 f (kT ) K(kT − lT ) g(lT ) =
∫

d2cT f̃ (cT ) K̃(cT ) g̃(cT ). (3.64)
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It follows that

〈kαT/M〉 = −εασT S Tσ

(xM + m)
2π x2

∫

d2cT φ̃(x, cT ) ∂

∂cρ
φ̃(x, cT ) Γ̃ρ(cT )

= −εασT S Tσ

∫

d2bT
1

2M
∂

∂bρ
E(x, bT ) Γ̃ρ(bT/(1 − x)).

(3.65)

We established a connection between the function E and the (1) transverse moment of the Sivers
function. The term Γ̃ρ represents the final-state interaction that is essential to transfer an asymmetry
in transverse space to an asymmetry in transverse momentum. Note that in this case we can
compute also Γ̃ρ

Γ̃ρ(cT ) =
∫

d2 kT

(2π)2 eikT ·cT Γρ(kT ) = −i
e2

c

2

∫

d2 kT

(2π)2 eikT ·cT
lρT

l2
T + m2

g

mg→0
=

e2
c

4π
cρT
c2

T

(3.66)





4
The gauge link

This chapter is based on Refs. [33, 79]
So far we used the following definition for the correlation function

Φi j(p, P, S ) = 1
(2π)4

∫

d4ξ eip·ξ〈P, S ψ̄̄ j(0) ψi(ξ) P, S
〉 (4.1)

or alternatively

Φi j(x, pT ) =
∫ dξ− d2ξT

(2π)3 eip·ξ 〈P|ψ̄̄ j(0)ψi(ξ)|P〉
∣

∣

∣

∣

∣

ξ+=0
(4.2)

with p+ = xP+.
It turns out that something is missing. The reason can be easily understood: the correlator as

defined above is not gauge invariant, because the two quark field operators are at two different
positions. If we perform a local (Abelian for now) gauge transformation on the fields

ψ(ξ)→ eiα(ξ) ψ(ξ) (4.3)

the correlator evidently changes. This is something to worry about because the parton distribution
functions composing the correlator can be directly measured and they should be gauge invariant.

To fix the problem, we have to insert a gauge link or Wilson line in between the quark fields,
with the following gauge transformation properties

U(ξ1, ξ2)→ eiα(ξ1)U(ξ1, ξ2) e−iα(ξ2). (4.4)
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If we consider only the leading twist contributions, it turns out that the proper gauge invariant
definition of the quark-quark correlator is

Φi j(x, pT ) =
∫ dξ− d2ξT

(2π)3 eip·ξ 〈P|ψ̄ j(0)Un−
(0,+∞)U

n−
(+∞,ξ) ψi(ξ)|P〉

∣

∣

∣

∣

∣

ξ+=0
(4.5)

where the gauge links (Wilson lines) are defined as

Un−
(0,+∞) = U

n−(0−,∞−; 0T ) UT (0T ,∞T ;∞−), (4.6)

Un−
(+∞,ξ) = U

T (∞T , ξT ;∞−) Un−(∞−, ξ−, ξT ). (4.7)

Here Un−(a−, b−; cT ) indicates a Wilson line running along the minus direction from [a−, 0, cT ] to
[b−, 0, cT ], while UT (aT , bT ; c−) indicates a Wilson line running in the transverse direction from
[c−, 0, aT ] to [c−, 0, bT ], i.e.

Un−(a−, b−; cT ) = P exp
[

−ig
∫ b−

a−
dη−A+(η−, 0, cT )

]

, (4.8)

UT (aT , bT ; c−) = P exp
[

−ig
∫ bT

aT

dηT ·AT (c−, 0, ηT )
]

. (4.9)

In particular

Un−(∞−, ξ−, ξT ) = P exp
[

−ig
∫ ξ−

∞−
dη−A+(η−, 0, ξT )

]

≈ 1 − ig
∫ ξ−

∞−
dη−A+(η−, 0, ξT ) (4.10)

UT (∞T , ξT ;∞−) = P exp
[

−ig
∫ ξT

∞T

dηT ·AT (∞−, 0, ηT )
]

≈ 1 − ig
∫ ξT

∞T

dηT ·AT (∞−, 0, ηT ) (4.11)

The correlator in Eq. (4.5) is the one appearing in semi-inclusive DIS. In different processes
the structure of the gauge link can change [21, 35, 36, 47].

n
−

nT

[ξ−, 0+, ξT ]

Figure 4.1. Gauge link for semi-inclusive DIS.

The gauge link can be derived by calculating the leading-twist contributions of diagrams of the
type shown in Fig. 4.2 and their Hermitean conjugates. The presence of the transverse momentum
dependence is essential, so we don’t want to calculate simply inclusive DIS (where the transverse
momentum is integrated over), but we suppose to do the calculation for jet DIS. The formula for
the hadronic tensor can be inferred from Eq. (1.58) once we replace

∆(z, kT )→ γ+ δ(1 − z) δ(2)(kT ). (4.12)
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P

k − Pk − l − P

q

l

k − l

p − l

k

P

k − Pk − l − P

q

p − l − l′ l l′

(a) (b)

Figure 4.2. Examples of graphs contributing to the gauge link.

The formula for the hadronic tensor closely resembles the one we obtained for inclusive DIS, but
now with the unintegrated correlation function, i.e.

2MWµν(q, P, S , Ph) = 2 Tr
(

Φ(xB, pjT , S ) γµ γ+ γν
)

. (4.13)

Let’s take a look at the first diagram of Fig. 4.2 . We could write it as

2MW (a)
µν ∝

∫

dp− d4l Tr
(

γα
/k − /l + m

(k − l)2 − m2 + iε
γνΦ

α
A(p, p − l)γµ (/k + m)

)

∣

∣

∣

∣

∣

k=p+q
(4.14)

where we introduced

ΦαAi j(p, p − l) =
∫ d4ξ

(2π)4
d4η

(2π)4 eip·ξ eil·(η−ξ)〈P, S ψ̄̄i(0) gAα(η)ψ j(ξ) P, S
〉 (4.15)

so that

2MW (a)
µν ∝

∫

dp− dl+ d2 lT

∫ d4ξ

(2π)4
dη− d2ηT

(2π)3 eip·ξei l·(η−ξ)

× 〈P, S |ψ(0)γµγ+γα
/k − /l + m

(k − l)2 − m2 + iε
γνgAα(η)ψ(ξ)|P, S 〉

∣

∣

∣

∣

∣

∣

η+=0
,

(4.16)

where ΦαA is made explicit, the l− integrations is performed. In the expression after the second
equal sign, it is understood that p+ = x P+.

The quark propagator reads explicitly

i
/k − /l + m

(k − l)2 − m2 + iε
≈ i

(/k + m) − γ− l+ − /lT

−2 l+ k− − (kT − lT )2 − m2 + iε
. (4.17)

In the eikonal approximation, we took into consideration only the term k−γ+ in the numerator.
Less obvious is the fact that there is another contribution, namely from the /lT term, which turn out
to be present only at l+ = 0. Let’s start first from the first kind of contribution. We approximate
then the propagator with the standard eikonal propagator, see Eq. (3.12)

i
/k − /l + m

(k − l)2 − m2 + iε
≈ i

2
γ+

−l+ + iε
. (4.18)
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We can use steps similar to what is described in Eq. (3.14) selecting γα to be only γ− and conse-
quently Aα to be A+

γ+γα
/k − /l + m

(k − l)2 − m2 + iε
γνgAα(η) ≈ γ+ 1

2
γ− γ+

−l+ + iε γνgA+(η) = −γ+ gA+(η)
l+ − iε γν

(4.19)

Then
∫

dl+ d2 lT
dη− d2ηT

(2π)3 ei l·(η−ξ) 〈P, S |ψ(0)γµγ+ γν
gA+(η)
l+ − iε

ψ(ξ)|P, S 〉
∣

∣

∣

∣

∣

η+=0
(4.20)

and using
∫

d2 lT
d2ηT

(2π)2 ei lT (ηT−ξT ) =

∫ d2ηT

(2π)2 (2π)2 δ2(ηT − ξT ) (4.21)
∫

dl+
ei l+ (η−−ξ−)

l+ − iε
gA+(η) = 2π i gA+(η) θ(η− − ξ−) (4.22)

we obtain

2MW (a)
µν ∝

∫

dp−
∫ d4ξ

(2π)4 eip·ξ 〈P, S |ψ(0) γµγ+ γν (−ig)
∫ ξ−

∞−
dη− A+(η) ψ(ξ)|P, S 〉

∣

∣

∣

∣

∣

∣

η+=0; ηT=ξT

.

(4.23)
By comparing this expression with Eq. (4.13), we can see that it corresponds to the O(g) term in
the expansion of the longitudinal part of the Wilson lineU−[∞,ξ] multiplying ψ(ξ) in Eq. (4.5). The
result of the diagram in Fig. 4.2b with two A+-gluons gives theO(g2) term, etc. From the Hermitean
conjugate diagram of Fig. 4.2a one obtains the O(g) term in the expansion of the longitudinal part
of the Wilson lineU−[0,∞] following ¯ψ(0). Summing all these contributions we get

Φi j(x, pT ) =
∫ dξ− d2ξT

(2π)3 eip·ξ 〈P|ψ̄ j(0)Un−(0−,∞−; 0T )Un−(∞−, ξ−, ξT )ψi(ξ)|P〉
∣

∣

∣

∣

∣

ξ+=0
(4.24)

If we choose at this point a light-cone gauge, where the A+ vanish, the Wilson line can be re-
duced simply to unity. However, this is not yet the complete story. You can see it diagrammatically
because we did not yet close the link path. You can also see it from the explicit calculation we
did of the Sivers function. If in that case instead of using the gluon polarization sum in Feynman
gauge we used the gluon polarization sum in light-cone gauge

dµν(l; n−) = −gµν +
lµ nν− + lν nµ−

l · n−
, (4.25)

our Sivers function would vanish as soon as we require the index µ to be +. There is something
wrong, because the Sivers function cannot depend on the gauge.

In fact, there is now a last piece we have to worry about, namely transverse gluon fields at
infinity. If we go back to the expression (4.17), we can check that naively all transverse gluon field
contributions would be suppressed as 1/k−. However, if we consider only the transverse gluon
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field at ∞−, i.e. AT [∞−, η+, ηT ], this term does not depend anymore on η−, so that we can easily
perform the integration over this variable and obtain a δ(l+) (soft gluons). From this term we get

γ+/lT
/k − /l + m

(k − l)2 − m2 + iε
δ(l+) = γ+/l

/k − /l + m

(k − l)2 − m2 + iε
δ(l+)

= γ+ (/l − (/k − m))
/k − /l + m

(k − l)2 − m2 + iε
δ(l+) = −γ+ δ(l+)

(4.26)

We could do the first step because l−γ+ gives zero due to the presence of the initial γ+, and the
second step because we have an outgoing quark and the Dirac equation guarantees that ū(k)(/k −
m) = 0.

Finally, the integration over l+, lT and ηT gives
∫

dp−
∫ dξ

(2π)4 eip·ξ 〈P, S |ψ(0) γµγ+ γν (−ig)
∫ ξT

∞T

dηT · AT (∞, η+, ηT ) ψ(ξ)|P, S 〉
∣

∣

∣

∣

∣

∣

η+=0; ηT=ξT

,

(4.27)
which gives precisely the first term of the transverse link that is needed to modify Eq. (4.24) into
the fully color gauge invariant correlation function of Eq. (4.5).

The final result is that the quark-quark correlator is now correctly defined with the required
gauge link, at least at leading twist. We can now choose different gauges, but the final result should
be unchanged. In particular, if we choose a light-cone gauge where A+ = 0, then the longitudinal
part of the gauge link is reduced to unity, but the transverse part in general is not. When using
Feynman gauge, on the other hand, the transverse gauge link does not give a contribution, but the
longitudinal does (this is exactly what happened in the spectator model calculation). Finally, we
could choose a very specific gauge where A+ = 0 and at the same time AT (+∞−) = 0. In this
case, we would get no contributions from the gauge link. We should however still be able to obtain
a nonzero Sivers function in our spectator model, since this is a gauge invariant result. It would
come from diagrams that we discarded because they could not contain an imaginary part in normal
gauges, but they turn out to contain an imaginary part in this specific gauge.

4.1 Universality

Does the gauge link have the same form in different processes? If not, we should worry because
we could not plug the quark-quark correlator we used so far into some different scattering process
and we would run the risk of having to deal with different parton distribution functions in different
processes.

It turns out that indeed the gauge link and the quark-quark correlator change depending on the
process, but the nice news is that we can calculate exactly how it changes, and keep using universal
distribution and fragmentation functions in different processes, once we correctly take into account
these changes.

The easiest example is to analyze what happens in Drell-Yan scattering. The crucial difference
is that instead of having an outgoing quark we have an incoming antiquark and that implies a small
change in the form of the eikonal propagator. Let’s take a look again at the eikonal approximation.
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Let’s work in Feynman gauge, so that we can use the eikonal approximation and avoid worrying
about gluon fields at infinity. The relevant diagram is drawn in Fig. 4.3.

P

k − Pk − l − P

k − l

q

q − k

k − l − q

l

Figure 4.3.

i(/k − /q − /l + m)
(k − q − l)2 − m2 + iε

≈ i −(q − k)−γ+

2l+(q − k)− + iε
=

i
2

γ+

−l+ − iε
(4.28)

The only crucial difference from the steps in Eq. (3.12) is that here (q − k)− ≥ 0, because we have
an incoming quark with momentum q − k in the intial state. This leads to a different sign in the iε.
However, this makes a big difference for the calculation of the Sivers function in this case, since
instead of using

1
[l+ − iε]

→ 2πi δ[l+] (4.29)

we now need
1

[l+ + iε]
→ −2πi δ[l+] (4.30)

The final result would just have the opposite sign. More in general, in the construction of the
gauge link we would have a gauge link running to −∞ instead of +∞, sometimes referred to as a
past-pointing Wilson line instead of a future pointing one. The leading part of the transverse gauge
link would also be at −∞−. The correlator would look like

Φi j(x, pT ) =
∫ dξ− d2ξT

(2π)3 eip·ξ 〈P|ψ̄ j(0)Un−
(0,−∞)U

n−
(−∞,ξ) ψi(ξ)|P〉

∣

∣

∣

∣

∣

ξ+=0
(4.31)

nT

[ξ−, 0+, ξT ]

n
−

Figure 4.4.

What about fragmentation functions? The situation is more complex in that case because imag-
inary parts are present also in diagrams that are not related to the gauge link (at one loop, self
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energy and vertex corrections), and they don’t change in different processes. Moreover, it turns
out that in the “box diagram” the soft-gluon pole never gives a contribution at leading twist. As
a consequence, there is no difference in sign between, for instance, fragmentation functions in
semi-inclusive DIS and e+e− annihilation [48,75]. To prove this, it is sufficient to take a look at the

k − l − Ph

k − l l

k − Ph

q

Ph

q − kk − l − q

Figure 4.5.

analytic structure of the denominators of a typical box diagram (Fig. 4.5), similar to the integral
occurring in Eq. (3.22). Let’s reproduce a simplified version of that integral here

∫ d4l
(2π)4

. . . lTρ

[l2 − m2
g + iε] [l+ ± iε] [(k − l)2 − m2 + iε][(k − l − P)2 − M2

s + iε] (4.32)

As we discussed already in the previous chapter, we need the real part of this integral, therefore
we need to pick up two poles.

1
[l+ − iε]

→ 2πi δ[l+], 1
[(k − l − P)2 − M2

s + iε]
→ −2πi δ[(k − l − P)2 − M2

s ], (4.33)

1
[l2 − m2

g + iε] → −2πi δ[l2 − m2
g], 1

[(k − l)2 − m2 + iε] → −2πi δ[(k − l)2 − m2]. (4.34)

In the calculation of a T-odd distribution function, we checked that it was possible to use only the
combination of the first two δ functions.

In the case of the fragmentation function, the kinematical conditions change. The integral
would look like

∫ d4l
(2π)4

. . . lTρ

[l2 − m2
g + iε] [l− ± iε] [(k − l)2 − m2 + iε][(k − l − P)2 − M2

s + iε]
(4.35)

In particular, if we choose the pick up the eikonal pole
1

[l− ± iε]
→ ∓2πi δ[l−] (4.36)

to perform the l− integration, we would be left with

∓i
∫ d2 lT dl−

(2π)3
. . . lTρ

4k−(k − P)− [−l2
T − m2

g + iε] [l+ − a − iε
(k−P)− ] [l+ − b − iε

k− ]
(4.37)
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The l2
T is out of question because otherwise we would have a vanishing numerator. (k−P)− must be

positive because its the momentum of the on-shell spectator, implying that also k− must be positive
(P− itself is positive). Therefore, if we try to perform the l+ integration, we are forced to take two
poles (e+e− annihilation) or none (SIDIS). In both cases, it turns out that the final result vanishes.

This shows that the eikonal pole cannot give a contribution. The other combination that works
in both SIDIS and e+e− is to pick up the l2 and (k − l)2 poles. There is no change of sign in
this particular contribution, thus the conclusion that fragmentation functions are universal, in an
“easier” way that distribution functions.

4.2 More complex processes

We have seen shortly what happens in Drell-Yan compared to SIDIS. They are relatively simple
because they have a colored state that can interact with the gluons only either in the initial (Drell-
Yan) or final state (SIDIS). However, in hadron-hadron collisions there are colored states both in
initial and final state and the situation becomes more complex. In particular, we have to take into
account the non-Abelian nature of the color interaction.

As an example, let’s consider one of the many partonic processes contributing to jet-jet pro-
duction in proton-proton collisions, namely qq̄ → q′q̄′. The Feynman diagram at Born level is
depicted in Fig. 4.6 (a).

t
a
ij t

b
lk

t
b
jit

a
kl t

a
ij t

b
mn

t
b
pqt

a
kl

(a) (b)

Figure 4.6.

The calculation of the tree-level diagram is done in detail e.g. in Peskin-Schroeder, at the end
of Sec. 17.4. It corresponds, e.g., to e−e+ → µ−µ+, the only difference being the color structure.
The color matrices give, including color averaging

1
Nc

1
Nc

ta
il tb

li ta
jm tb

m j =
1

N2
c

Tr[tatb] Tr[tatb] = 1
N2

c

T 2
Fδ

ab δab

=
T 2

F

N2
c

δaa =
T 2

F

N2
c

(N2
c − 1) = TF

Nc
CF =

2
9 .

(4.38)

and the partonic cross-section reads

dσ̂qq̄→q′ q̄′ =
2πα2

S

ŝ2
2
9

( t̂2

ŝ2 +
û2

ŝ2

)

. (4.39)
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The inclusion of the quark-quark correlator without gauge link makes no difference, because
the color indices of the two quark fields are forced to be the same by the color structure of the
partonic scattering. In fact, using the relation

ta
ik ta

mn = TF

(

δin δmk −
1
Nc

δik δmn

)

. (4.40)

we can check that

Φqi ta
ik tb

kq ta
jl tb

l j = T 2
F Φqi

(

δil δk j −
1
Nc

δik δ jl

) (

δk j δql −
1
Nc

δkq δl j

)

= T 2
F Φqi

(

δiq δ j j +
1

N2
c

δiq δ j j −
1
Nc

δiq −
1
Nc

δiq

)

= T 2
F Φqi δiq

N2
c − 1
Nc

= Φii TF CF

(4.41)

Including gauge links corresponds to including all possible gluon interactions drawn in Fig. 4.6
(b). We already know that the Dirac structure of the interaction is not a problem because it simpli-
fies in the eikonal approximation and can be “pulled through” the Born-level quark-gluon vertices
to form the gauge link. What is new in this case is the color structure. We are going to look in
detail at what happens to it. To do this, we only have to indicate explicitly the color indices of the
gauge link and of the quark-quark correlator without gauge link, which we’ll denote as a Φ̃. It is
furthermore convenient to introduce the shorthand notation

U[+] = Un−
(0,+∞)U

n−
(+∞,ξ), U[−] = Un−

(0,−∞)U
n−
(−∞,ξ). (4.42)

The color structure of the diagram with the correlator becomes [36, Eq. (21)]
[

Φ̃qi ta
i j U[−]

jp tb
pq

] [

ta
kl U[+]

lm tb
mn U[+]†

nk

]

(4.43)

The goal is to write the above expression in a way similar to the Born-level expression, Eq. (4.41),
putting all extra structures inside Φ, now with its proper gauge link. Let’s see in detail how this
can be done:

T 2
F Φ̃qi U[−]

jp U[+]
lm U[+]†

nk

(

δil δ jk δpn δqm +
1

N2
c

δi j δkl δpq δmn −
1
Nc

δi j δkl δpn δqm −
1
Nc

δil δ jk δpq δmn

)

= T 2
F Φ̃qi

(

U[−]
jp U[+]

iq U[+]†
p j +

1
N2

c

U[−]
iq U[+]

lm U[+]†
ml −

1
Nc

U[−]
ip U[+]

lq U[+]†
pl −

1
Nc

U[−]
jq U[+]

im U[+]†
m j

)

.

(4.44)

We note that
U[+]

im U[+]†
m j = δi j (4.45)

and we remember that δii = Nc, to obtain

T 2
F Φ̃qi

(

U[+]
iq Tr[U[−]U[+]†] − 1

Nc
U[−]

iq

)

= TF CF
Nc

N2
c − 1 Φ̃qi

(

U[+]
iq Tr[U[−]U[+]†] − 1

Nc
U[−]

iq

)

(4.46)
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Therefore, the expression is equivalent to Eq. (4.41) once we identify

Φii = Φ̃qi
1

N2
c − 1

(

N2
c U[+]

iq

Tr[U[−]U[+]†]
Nc

− U[−]
iq

)

(4.47)

The new gauge link is not simply a U [+] as in SIDIS, nor a U [−] as in Drell-Yan, but rather a
combination of the two, due to the fact that we have both incoming and outgoing colored states
which are subject to gluon rescattering.

4.3 Consequences of different gauge links

Difference gauge links have the effect of modifying the T-odd distribution functions, which are
sensitive to the presence of the gauge link. In particular, if the Sivers and Boer-Mulders function
contribute in DIS with a certain sign, they will contribute with the opposite sign in Drell-Yan.
In proton-proton collisions, for each different partonic diagram they acquire a different numerical
prefactor, which is sometimes called a gluonic-pole strenght.

In the expression for the cross section, they have to be convoluted not with standard partonic
cross-section, but rather with gluonic-pole cross section, which take into account the numerical
factors we discussed above.

As a consequence of the gauge link, the T-odd distribution functions are multiplied by a
(sub)process dependent factor C[U]

G . which is called a gluonic pole strength. The future point-
ing Wilson line in SIDIS leads to CSIDIS

G =+1, while the past pointing Wilson line in DY gives the
gluonic pole strength CDY

G =−1. From this observation follows the important conclusion that the
Sivers effect appears with opposite signs in SIDIS and DY [39, 47]:

Sivers effect in SIDIS: dσ`H→`hX ∼ + f ⊥(1)
1T (x) dσ̂`q→`q D1(z) , (4.48a)

Sivers effect in DY: dσHH′→` ¯̀X ∼ − f ⊥(1)
1T (x) f̄1(x′) dσ̂qq̄→` ¯̀ . (4.48b)

In partonic processes with more complex gauge links, the gluonic pole strength is not limited
to just a sign [21,34,35]. The recipe consists in taking the result for the gauge-invariant correlation
function for each partonic diagram, e.g. (4.47) and replace each gauge link structure with a certain
number, namely

U[+] → +1, U[−] → −1, Tr[U[−]U[+]†] = Tr[U[−]†U[+]]→ Nc, (4.49)
U[+]† → −1, U[−]† → +1, Tr[U[+]U[−]†U[+]]→ +3, (4.50)

so that the gluonic pole strenght for the qq̄→ q′q̄′ diagram is CG = N2
c + 1/N2

c − 1 = 5/4.
It becomes particularly interesting when one considers a process where there are different

Feynman diagrams that contribute to the hard process. Since the gauge link depends on the color-
flow of the hard diagram the gluonic pole strength can in general be different for each contribu-
tion. For example, the gluonic pole strengths of the t and u channel contributions to identical
quark scattering are CG=(N2−5)/(N2−1)= 1

2 , whereas those of the tu interference diagrams are
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Figure 4.7. Some examples of ratios of gluonic pole cross sections and partonic cross sections as functions
of the variable y≡−t̂/ŝ for N=3 (solid line) and N→∞ (dashed line).

CG=−(N2+3)/(N2−1)=− 3
2 . Therefore, the Sivers-effect contribution of identical quark scattering

is seen to contain the gluonic pole matrix element f ⊥(1)
1T (x) in the combination

f ⊥(1)
1T (x)

(

{1
2
}

+
{ 1

2
} − {− 3

2
} − {− 3

2
}

)

, (4.51)

rather than with the partonic cross section, which does not contain the weight factors between
braces {·}. This observation generalizes to all partonic processes and hence the quark-Sivers func-
tion f ⊥(1)

1T is seen to appear with the hard functions

dσ̂[q]a→bc =
∑

D
C[U(D)]

G dσ̂[D]
qa→bc , (4.52)

where dσ̂[D] is the squared amplitude expression of the Feynman diagram D and the summation
runs over all diagrams D that can contribute to the process qa→bc. The hard functions (4.52)
are the gluonic pole cross sections. Hence, the gluonic pole cross sections are gauge-invariant
weighted sums of Feynman diagrams that are, in general, distinct from the partonic cross sections
that enter in spin-averaged processes (see Figure 4.7). The bracketed subscript [q] indicates that in
this example it is quark q that contributes the gluonic pole.





5
Semi-inclusive DIS
at subleading twist

This chapter is based essentially on Ref. 23.

There are three crucial steps to go from leading twist to subleading twist. First of all, the study
of the quark-quark correlation function has to be extended to subleading twist. Secondly, the con-
tributions from quark-gluon-quark correlation functions has to be taken into consideration. Thirdly,
it is important to keep track of the difference between assuming the proton and the outgoing hadron
to be collinear (the frame where the distribution and fragmentation functions are defined) and the
proton and photon to be collinear (the frame where the azimuthal angles appearing in the cross
section are defined).

5.1 Quark-quark correlator up to subleading twist

Due to the presence of the gauge link, for the general parametrization of the correlator we have to
take into account also the extra vector n− [see Eq. (4.5)]. Because of this, new structures appear in
the decomposition of Eq. (2.20) [57]. The full decomposition for a nucleon target has been studied
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in Ref. [58] and reads

Φ(p, P, S |n−) = MA1 + /PA2 + /pA3 +
i

2M
[/P, /p] A4 + i(p · S )γ5 A5 + M/S γ5 A6

+
p · S
M

/Pγ5 A7 +
p · S
M

/pγ5 A8 +
[/P, /S ]

2
γ5 A9 +

[/p, /S ]
2

γ5 A10

+
(p · S )
2M2 [/P, /p]γ5 A11 +

1
M
εµνρσγµPνpρS σ A12

+
M2

P · n−
/n− B1 +

iM
2P · n−

[/P, /n−] B2 +
iM

2P · n−
[/p, /n−] B3

+
1

P · n−
εµνρσγµγ5Pνpρn−σ B4

+
1

P · n−
εµνρσPµpνn−ρS σ B5 +

iM2

P · n−
(n− · S )γ5 B6

+
M

P · n−
εµνρσγµPνn−ρS σ B7 +

M
P · n−

εµνρσγµpνn−ρS σ B8

+
(p · S )

M(P · n−)
εµνρσγµPνpρn−σ B9 +

M(n− · S )
(P · n−)2 ε

µνρσγµPνpρn−σ B10

+
M

P · n−
(n− · S )/Pγ5 B11 +

M
P · n−

(n− · S )/pγ5 B12

+
M

P · n−
(p · S )/n−γ5 B13 +

M3

(P · n−)2 (n− · S )/n−γ5 B14

+
M2

2P · n−
[/n−, /S ]γ5 B15 +

(p · S )
2P · n−

[/P, /n−]γ5 B16 +
(p · S )
2P · n−

[/p, /n−]γ5 B17

+
(n− · S )
2P · n−

[/P, /p]γ5 B18 +
M2(n− · S )
2(P · n−)2 [/P, /n−]γ5 B19 +

M2(n− · S )
2(P · n−)2 [/p, /n−]γ5 B20 ,

(5.1)

where the B amplitudes are new compared to Eq. (2.20).
To simplify the discussion, let’s first focus on the unpolarized part [24]

Φ(p, P, S |n−) = MA1 + /PA2 + /pA3 +
i

2M
[/P, /p] A4

+
M2

P · n−
/n− B1 +

iM
2P · n−

[/P, /n−] B2 +
iM

2P · n−
[/p, /n−] B3

+
1

P · n−
εµνρσγµγ5Pνpρn−σ B4

(5.2)

We keep only the leading and subleading terms in 1/P+

Φ(P, p; n−) ≈ P+ (A2 + xA3) /n+ + P+
i

2M

[

/n+, /pT
]

A4 + MA1 + /pT A3

+

[(

P+p−

M
− xM

2

)

A4 + M(B2 + xB3)
]

i
2
[

/n+, /n−
]

+ γ5ε
ρσ

T γρpTσB4

(5.3)
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leading to

Φ(x, pT ) ≡
∫

dp−Φ[+](P, p; n−)

=
1
2

{

f1/n+ + ih⊥1
[

/pT , /n+
]

2M

}

+
M

2P+

{

e + f ⊥
/pT

M
+ ih

[

/n+, /n−
]

2
+ g⊥γ5

ε
ρσ

T γρpTσ

M

}

.

(5.4)

Two crucial observations can be made at this point:

• were the B amplitudes set to zero, there would be a relation between the functions h⊥1 and h;

• were the B amplitudes set to zero, the function g⊥ would not even exist.

The relations between the functions in the absence of the B amplitudes are known in the liter-
ature as “Lorentz invariance relations”. Taking the example of the unpolarized case, the relation
can be obtained as follows. First the relation between the functions and the amplitudes has to be
sorted out, i.e.

f1(x, p2
T ) = 2P+

∫

dp− (A2 + xA3) , h⊥1 (x, p2
T ) = 2P+

∫

dp− (−A4) ,

e(x, p2
T ) = 2P+

∫

dp−A1, f ⊥(x, p2
T ) = 2P+

∫

dp−A3,

h(x, p2
T ) = 2P+

∫

dp−
(

p · P − xM2

M2 A4 + B2 + xB3

)

, g⊥(x, p2
T ) = 2P+

∫

dp−B4.

Suppose we now set the B functions to zero, we obtain in particular

h(x, p2
T ) = 2P+

∫

dp−
p · P − xM2

M2 A4. (5.5)

Introducing the symbols τ = p2 and σ = 2p · P, which are related by [see e.g. Eq. 1.22]

τ = xσ − x2M2 − p2
T , (5.6)

we can then rewrite

h⊥(1)
1 (x) = −π

∫

dp2
T dσ dτ δ(τ − xσ + x2M2 + p2

T )
p2

T

2M2 A4(σ, τ) (5.7)

h(x) = π
∫

dp2
T dσ dτ δ(τ − xσ + x2M2 + p2

T ) σ − 2xM2

2M2 A4(σ, τ). (5.8)

We observe that

− d
dx

h⊥(1)
1 (x) = π

∫

dp2
T dσ dτ δ(τ − xσ + x2M2 + p2

T )
p2

T

2M2
∂A4(σ, τ)

∂τ

dτ
dx

(5.9)

since
∂A4(σ, τ)

∂τ
= −∂A4(σ, τ)

∂p2
T

(5.10)
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we obtain

− d
dx

h⊥(1)
1 (x) = −π

∫

dp2
T dσ dτ δ(τ − xσ + x2M2 + p2

T )
p2

T

2M2
∂A4(σ, τ)
∂p2

T

(σ − 2xM2)

= −π
∫

dσ dτ δ(τ − xσ + x2M2 + p2
T )

p2
T

2M2 A4(σ, τ)
∣

∣

∣

∣

∣

∞

0

+ π

∫

dp2
T dσ dτ δ(τ − xσ + x2M2 + p2

T ) σ − 2xM2

2M2 A4(σ, τ),

(5.11)

− d
dx

h⊥(1)
1 (x) = h(x) (5.12)

In the last step we assumed that the first term vanishes (otherwise pT -dependent functions could
never be integrated between 0 and in f ty).

With similar steps, one can obtain the following relations

gT (x) = g1(x) + d
dx

g⊥1T (x), (5.13)

g⊥L (x) = − d
dx

g⊥(1)
T (x), (5.14)

hL(x) = h1(x) − d
dx

h⊥1L(x), (5.15)

h⊥T (x) = − d
dx

h⊥(1)
1T (x), (5.16)

h⊥1L(x, p2
T ) = hT (x, p2

T ) − h⊥T (x, p2
T ) (5.17)

fT (x) = − d
dx

f ⊥(1)
1T (x), (5.18)

h(x) = − d
dx

h⊥(1)
1 (x), (5.19)

eL(x) = − d
dx

e(1)
T (x), (5.20)

f ⊥1T (x, p2
T ) = − f ⊥L (x, p2

T ). (5.21)

Ex. 5.1

Try to obtain the first relation using the parametrization of Eq. (2.20) and check that it is violated
when extending the parametrization as in Eq. (5.1).

The full result for

Φ(x, pT ) = 1
2

{

f1 /n+ − f ⊥1T

ε
ρσ

T pTρS Tσ

M
/n+ + g1sγ5/n+

+ h1T

[

/S T , /n+
]

γ5

2
+ h⊥1s

[

/pT , /n+
]

γ5

2M
+ i h⊥1

[

/pT , /n+
]

2M

}

+
M

2P+

{

e − i es γ5 − e⊥T
ε
ρσ

T pTρS Tσ

M
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+ f ⊥
/pT

M
− f ′T ε

ρσ

T γρS Tσ − f ⊥s
ε
ρσ

T γρ pTσ

M

+ g′T γ5/S T + g⊥s γ5
/pT

M
− g⊥γ5

ε
ρσ

T γρ pTσ

M

+ hs
[/n+, /n−]γ5

2 + h⊥T

[

/S T , /pT
]

γ5

2M
+ i h

[

/n+, /n−
]

2

}

. (5.22)

The distribution functions on the r.h.s. depend on x and p2
T , except for the functions with subscript

s, where we use the shorthand notation [76]

g1s(x, pT ) = S L g1L(x, p2
T ) − pT ·S T

M
g1T (x, p2

T ) (5.23)

and so forth for the other functions. The first eight distributions of Eq. (5.22) are referred to as
twist two, and the next 16 distributions are referred to as twist three, where we use the notion of
“dynamical twist” as explained in Ref. [64]. The remaining eight functions of twist four have been
omitted here and can be found in Ref. [58]. The 10 functions f ⊥1T , h⊥1 , eL, eT , e⊥T , f ′T , f ⊥L , f ⊥T , g⊥,
h are T-odd [29, 58], i.e. they change sign under “naive time reversal”, which is defined as usual
time reversal, but without the interchange of initial and final states. The functions g⊥ [24], e⊥T and
f ⊥T [58] exist because the direction n− of the Wilson line. The nomenclature of the distribution
functions follows closely that of Ref. [76], sometimes referred to as “Amsterdam notation.”

We remark that a number of other notations exist for some of the distribution functions, see
e.g. Refs. [25, 60, 81]. In particular, transverse-momentum-dependent functions at leading twist
have been widely discussed by Anselmino et al. [9, 14, 15]. The connection between the notation
in these papers and the one used here is discussed in App. C of Ref. [14].

We also list here the expressions for the traces of the correlator Φ(x, pT ) from Ref. [58]. With
Φ[Γ] = 1

2Tr[ΦΓ] we have

Φ[γ+] = f1 −
ε
ρσ

T pTρS Tσ

M
f ⊥1T , (5.24)

Φ[γ+γ5] = S L g1L −
pT ·S T

M
g1T , (5.25)

Φ[iσα+γ5] = S α
T h1 + S L

pαT
M

h⊥1L

−
pαT pρT − 1

2 p2
T gαρT

M2 S Tρ h⊥1T −
ε
αρ

T pTρ

M
h⊥1 , (5.26)

Φ[1] =
M
P+

[

e −
ε
ρσ

T pTρS Tσ

M
e⊥T

]

, (5.27)

Φ[iγ5] =
M
P+

[

S L eL −
pT ·S T

M
eT

]

, (5.28)

Φ[γα] =
M
P+

[

− εαρT S Tρ fT − S L

ε
αρ

T pTρ

M
f ⊥L

−
pαT pρT − 1

2 p2
T gαρT

M2 εTρσS σ
T f ⊥T +

pαT
M

f ⊥
]

, (5.29)
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Φ[γαγ5] =
M
P+

[

S α
T gT + S L

pαT
M

g⊥L

−
pαT pρT − 1

2 p2
T gαρT

M2 S Tρ g⊥T −
ε
αρ

T pTρ

M
g⊥

]

, (5.30)

Φ[iσαβγ5] =
M
P+

[S α
T pβT − pαT S β

T

M
h⊥T − ε

αβ

T h
]

, (5.31)

Φ[iσ+−γ5] =
M
P+

[

S L hL −
pT ·S T

M
hT

]

, (5.32)

where α and β are restricted to be transverse indices. Here we made use of the combinations

fT (x, p2
T ) = f ′T (x, p2

T ) −
p2

T

2M2 f ⊥T (x, p2
T ), (5.33)

gT (x, p2
T ) = g′T (x, p2

T ) −
p2

T

2M2 g⊥T (x, p2
T ), (5.34)

h1(x, p2
T ) = h1T (x, p2

T ) −
p2

T

2M2 h⊥1T (x, p2
T ), (5.35)

to separate off terms that vanish upon integration of the correlator over transverse momentum due
to rotational symmetry. The conversion between the expressions with fT and f ′T can be carried out
using the identity

p2
T ε

αρ

T S Tρ = pαT ε
ρσ

T pTρS Tσ + (pT ·S T ) εαρT pTρ , (5.36)
which follows from the fact that there is no completely antisymmetric tensor of rank three in two
dimensions.

Integrating the correlator over the transverse momentum pT yields

Φ(x) =
∫

d2 pT Φ(x, pT ) = 1
2

{

f1 /n+ + S L g1 γ5/n+ + h1

[

/S T , /n+
]

γ5

2

}

+
M

2P+

{

e − i S L eLγ5 + fT ε
ρσ

T S Tργσ + gT γ5/S T

+ S L hL
[/n+, /n−]γ5

2 + i h

[

/n+, /n−
]

2

}

, (5.37)

where the functions on the r.h.s. depend only on x and are given by

f1(x) =
∫

d2 pT f1(x, p2
T ) (5.38)

and so forth for the other functions. We have retained here one common exception of notation,
namely

g1(x) =
∫

d2 pT g1L(x, p2
T ). (5.39)

Other notations are also in use for the leading-twist integrated functions, in particular f q
1 = q (unpo-

larized distribution function), gq
1 = ∆q (helicity distribution function), hq

1 = δq = ∆T q (transversity
distribution function). The T-odd functions vanish due to time-reversal invariance [58]

∫

d2 pT fT (x, p2
T ) = 0,

∫

d2 pT eL(x, p2
T ) = 0,

∫

d2 pT h(x, p2
T ) = 0. (5.40)
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We have kept them in Eq. (5.37) so that one can readily obtain the analogous fragmentation corre-
lator, where such functions do not necessarily vanish.

The fragmentation correlation function is defined as

∆i j(z, kT ) = 1
2z

∑

X

∫ dξ+ d2ξT

(2π)3 eik·ξ 〈0| Un+
(+∞,ξ) ψi(ξ)|h, X〉〈h, X|ψ̄ j(0)Un+

(0,+∞)|0〉
∣

∣

∣

∣

∣

ξ−=0
,

(5.41)

with k− = P−h /z and the Wilson lines

Un+
(+∞,ξ) ≡ U

T (∞T , ξT ;+∞+) Un+(+∞+, ξ+; ξT ), (5.42)

Un+
(0,+∞) ≡ U

n+(0+,+∞+; 0T ) UT (0T ,∞T ;+∞+). (5.43)

The notationUn+(a+, b+; cT ) indicates a Wilson line running along the plus direction from [0−, a+, cT ]
to [0−, b+, cT ], whileUT (aT , bT ; c+) indicates a gauge link running in the transverse direction from
[0−, c+, aT ] to [0−, c+, bT ]. The definition written above naturally applies for the correlation func-
tion appearing in e+e− annihilation. For semi-inclusive DIS it seems more natural to replace all
occurrences of +∞+ in the gauge links by −∞+ [33]. However, in Ref. [48] it was shown that
factorization can be derived in such a way that the fragmentation correlators in both semi-inclusive
DIS and e+e− annihilation have gauge links pointing to +∞+.

The fragmentation correlation function (for a spinless or an unpolarized hadron) can be param-
eterized as

∆(z, kT ) = 1
2

{

D1 /n− + iH⊥1
[

/kT , /n−
]

2Mh

}

+
Mh

2P−h

{

E + D⊥
/kT

Mh
+ iH

[

/n−, /n+
]

2 +G⊥γ5
ε
ρσ

T γρkTσ

Mh

}

, (5.44)

where the functions on the r.h.s. depend on z and k2
T . To be complete, they should all carry also

a flavor index, and the final hadron type should be specified. The correlation function ∆ can be
directly obtained from the correlation function Φ by changing1

n+ ↔ n−, εT → −εT , P+ → P−h , M → Mh, x→ 1/z, (5.45)

and replacing the distribution functions with the corresponding fragmentation functions ( f is re-
placed with D and all other letters are capitalized).

The correlator integrated over transverse momentum reads

∆(z) = z2
∫

d2 kT ∆(z, kT ) = D1
/n−
2
+

Mh

2P−h

{

E + iH
[

/n−, /n+
]

2

}

, (5.46)

where the functions on the r.h.s. are defined as

D1(z) = z2
∫

d2 kT D1(z, k2
T ) (5.47)

1The change of sign of the tensor εT is due to the exchange n+ ↔ n− in its definition (10).
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and so forth for the other functions. The prefactor z2 appears because D1(z, kT ) is a probability den-
sity w.r.t. the transverse momentum k′T = −zkT of the final-state hadron relative to the fragmenting
quark. The fragmentation correlator for polarized spin-half hadrons is parameterized in analogy to
Eqs. (5.22) and (5.37). As already remarked, in this case the functions DT , EL and H (the analogs
of fT , eL and h) do not vanish because |h, X〉 is an interacting state that does not transform into
itself under time-reversal. Of course, it should be taken as an outgoing state in the fragmentation
correlator.

5.1.1 The quark-gluon-quark correlators

We now examine the quark-gluon-quark distribution correlation functions [33, 79]
(

Φ
µ

D

)

i j
(x, pT ) =

∫ dξ− d2ξT

(2π)3 eip·ξ〈P|ψ̄ j(0)Un−
(0,+∞)U

n−
(+∞,ξ) iDµ(ξ)ψi(ξ)|P〉

∣

∣

∣

∣

∣

ξ+=0
, (5.48)

which contain the covariant derivative iDµ(ξ) = i∂µ+gAµ. UsingUn−
(+∞,ξ) iD+(ξ)ψ(ξ) = i∂+[Un−

(+∞,ξ) ψ(ξ)]

we can write
Φ+D(x, pT ) = xP+Φ(x, pT ) (5.49)

for the plus-component of the correlator. For the transverse components we define a further corre-
lator [33]

Φ̃αA(x, pT ) = ΦαD(x, pT ) − pαT Φ(x, pT ), (5.50)

which is manifestly gauge invariant. It reduces to a correlator defined as in Eq. (5.48) with the
covariant derivative iDµ replaced by gAα

T if one has Un−
(+∞,ξ) = 1, which is the case in a light-cone

gauge A+ = 0 with suitable boundary conditions at light-cone infinity [26].
The quark-gluon-quark correlator can be related to the quark-quark correlator by means of the

QCD equation of motion
[

i/D(ξ) − m
]

ψ(ξ) = 0. (5.51)
Let’s work out an example here. If we multiply the above equation by γµ and use

γµγν = gµν − iσµν, (5.52)

we obtain
(

iDµ + iσνµiDν − mγµ
)

ψ = 0, (5.53)
In particular, if we choose µ = + and use the index α to denote only transverse components we
have

σα+iDαψ = i (iD+ − σ+−D+ − mγ+
)

ψ. (5.54)
From the above relation, we can obtain (let’s consider only the unpolarized case for the moment
being)

Tr
[

Φ̃Aασ
α+] = Tr

[

ΦαD σ
α+] − pαT Tr

[

Φσα+]

= i Tr
[

Φ+D
] − Tr

[

Φ+D σ
+−] − i mTr

[

Φ γ+
] − pαT Tr

[

Φσα+]

= i xP+Tr
[

Φ
] − xP+Tr

[

Φσ+−
] − i mTr

[

Φ γ+
] − pTα Tr

[

Φσα+]

= 2xM i e + 2xMh − 2m i f1 − pTα
2pαT
M

h⊥1

(5.55)
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The important point is that the quark-gluon-quark correlator can be expressed in terms of the
same distribution functions that we introduced in the quark-quark correlator (both at leading at
subleading twist). No new functions are introduced. The more general case is treated below
[Eq. (5.62) and ff.].

In general, the quark-gluon-quark correlation function can be decomposed as

Φ̃αA(x, pT ) =

xM
2

{

[

(

f̃ ⊥ − i g̃⊥)
pTρ

M
− (

f̃ ′T + i g̃′T
)

εTρσS σ
T −

(

f̃ ⊥s + i g̃⊥s
)

εTρσ pσT
M

]

(

gαρT − iεαρT γ5
)

− (

h̃s + i ẽs
)

γαT γ5 +
[

(

h̃ + i ẽ
)

+
(

h̃⊥T − i ẽ⊥T
)

ε
ρσ

T pTρS Tσ

M

]

iγαT + . . .
(

gαρT + iεαρT γ5
)

} /n+
2
,

(5.56)

where the index α is restricted to be transverse here and in the following equations. The functions
on the r.h.s. depend on x and p2

T , except for the functions with subscript s, which are defined as
in Eq. (5.23). The last term in the curly brackets is irrelevant for the construction of the hadronic
tensor of semi-inclusive DIS and has not been parameterized explicitly. The only relevant traces
of the quark-gluon-quark correlator are

1
2Mx

Tr
[

Φ̃Aασ
α+] = h̃ + i ẽ +

ε
ρσ

T pTρS Tσ

M

(

h̃⊥T − i ẽ⊥T
)

, (5.57)
1

2Mx
Tr[Φ̃Aα iσα+γ5

]

= S L
(

h̃L + i ẽL
) − pT ·S T

M
(

h̃T + i ẽT
)

, (5.58)

1
2Mx

Tr[Φ̃Aρ (gαρT + iεαρT γ5)γ+] =
pαT
M

(

f̃ ⊥ − ig̃⊥
) − εαρT S Tρ

(

f̃T + ig̃T
)

− S L

ε
αρ

T pTρ

M

(

f̃ ⊥L + i g̃⊥L
) −

pαT pρT − 1
2 p2

T gαρT

M2 εTρσS σ
T

(

f̃ ⊥T + ig̃⊥T
)

, (5.59)

where again we have used the combinations

f̃T (x, p2
T ) = f̃ ′T (x, p2

T ) −
p2

T

2M2 f̃ ⊥T (x, p2
T ), (5.60)

g̃T (x, p2
T ) = g̃′T (x, p2

T ) −
p2

T

2M2 g̃⊥T (x, p2
T ). (5.61)

The above traces have been given already in Ref. [24] for the terms without transverse polarization,
whereas the terms with transverse polarization were partly discussed in Ref. [76] (the functions e⊥T
and f ⊥T introduced in Ref. [58] were missing).

Relations between correlation functions of different twist are provided by the equation of mo-
tion for the quark field

[i/D(ξ) − m
]

ψ(ξ) = [

γ+iD−(ξ) + γ−iD+(ξ) + γαT iDα(ξ) − m
]

ψ(ξ) = 0, (5.62)

where m is the quark mass. To make their general structure transparent we decompose the correla-
tors into terms of definite twist,

Φ = Φ2 +
M
P+
Φ3 +

( M
P+

)2
Φ4,

1
M
Φ̃αA = Φ̃

α
A,3 +

M
P+
Φ̃αA,4 +

( M
P+

)2
Φ̃αA,5, (5.63)
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where the twist is indicated in the subscripts and the arguments (x, pT ) are suppressed for ease of
writing. One has P+Φ4 = P−Φ2 = 0 and P+Φ̃αA,5 = P−Φ̃αA,3 = 0, where P+ = 1

2γ
−γ+ and P− =

1
2γ
+γ− are the projectors on good and bad light-cone components, respectively [64]. Projecting

Eq. (5.62) on its good components one obtains for the correlators

P+
[

xM γ−Φ3 + MγTρ Φ̃
ρ

A,3 + /pTΦ2 − mΦ2
]

+ P+
[

xM γ−Φ4 + MγTρ Φ̃
ρ

A,4 + /pTΦ3 − mΦ3
] M
P+
= 0, (5.64)

where the term with D− has disappeared and the terms with D+ and Dα have been replaced using
Eqs. (5.49) and (5.50). Multiplying this relation with one of the matrices Γ+ = {γ+, γ+γ5, iσα+γ5},
which satisfy Γ+P+ = Γ+(1 − P−) = Γ+, and taking the trace gives

TrΓ+
[

γ−xΦ3 + γTρ Φ̃
ρ

A,3 +
/pT

M
Φ2 −

m
M
Φ2

]

= 0, (5.65)

where the terms multiplied by M/P+ in Eq. (5.64) have disappeared because the trace of Dirac
matrices cannot produce a term that transforms like P+ under boosts in the light-cone direction.
Inserting the parameterizations (5.22) and (5.56) into (5.65), one finds the following relations
between T-even functions:

xe = xẽ +
m
M

f1, (5.66)

x f ⊥ = x f̃ ⊥ + f1, (5.67)

xg′T = xg̃′T +
m
M

h1T , (5.68)

xg⊥T = xg̃⊥T + g1T +
m
M

h⊥1T , (5.69)

xgT = xg̃T −
p2

T

2M2 g1T +
m
M

h1, (5.70)

xg⊥L = xg̃⊥L + g1L +
m
M

h⊥1L, (5.71)

xhL = xh̃L +
p2

T

M2 h⊥1L +
m
M

g1L, (5.72)

xhT = xh̃T − h1 +
p2

T

2M2 h⊥1T +
m
M

g1T , (5.73)

xh⊥T = xh̃⊥T + h1 +
p2

T

2M2 h⊥1T . (5.74)

These relations can be found in Ref. [76], App. C. Neglecting quark-gluon-quark correlators (often
referred to as the Wandzura-Wilczek approximation) is equivalent to setting all functions with a
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tilde to zero. For T-odd functions we have the following relations:

xeL = xẽL, (5.75)

xeT = xẽT , (5.76)

xe⊥T = xẽ⊥T +
m
M

f ⊥1T , (5.77)

x f ′T = x f̃ ′T +
p2

T

M2 f ⊥1T , (5.78)

x f ⊥T = x f̃ ⊥T + f ⊥1T , (5.79)

x fT = x f̃T +
p2

T

2M2 f ⊥1T , (5.80)

x f ⊥L = x f̃ ⊥L , (5.81)

xg⊥ = xg̃⊥ +
m
M

h⊥1 , (5.82)

xh = xh̃ +
p2

T

M2 h⊥1 . (5.83)

Most of these relations can be found in Refs. [27,30], and Eq. (5.82) can be inferred from Eq. (13)
in Ref. [24]. Eqs. (5.77) and (5.79) have not been given before as they require the new functions
introduced in Ref. [58]. We emphasize that the constraints due to the equations of motion remain
valid in the presence of the appropriate Wilson lines in the correlation functions. All that is re-
quired for the gauge link U(0,ξ) between the quark fields is the relation U(0,ξ) iD+(ξ) = i∂+U(0,ξ)

leading to Eq. (5.49). In contrast, the so-called Lorentz invariance relations used in earlier work
are invalidated by the presence of the gauge links [57]. We remark that if quark-gluon-quark corre-
lators are neglected, the time-reversal constraints (5.40) require that

∫

d2 pT p2
T f ⊥1T (x, p2

T ) = 0 and
∫

d2 pT p2
T h⊥1 (x, p2

T ) = 0.

Ex. 5.2

Check some of the relations above.

The quark-gluon-quark fragmentation correlator analogous to ΦD is defined as
(

∆
µ

D

)

i j
(z, kT ) =

1
2z

∑

X

∫ dξ+ d2ξT

(2π)3 eik·ξ 〈0| Un+
(+∞,ξ) iDµ(ξ) ψi(ξ)|h, X〉〈h, X|ψ̄ j(0)Un+

(0,+∞)|0〉
∣

∣

∣

∣

∣

ξ−=0
. (5.84)

The transverse correlator
∆̃αA(z, kT ) = ∆αD(z, kT ) − kαT ∆(z, kT ) (5.85)
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can be decomposed as

∆̃αA(z, kT ) = Mh

2z

{

(

D̃⊥ − i G̃⊥
)

kTρ

Mh

(

gαρT + iεαρT γ5
)

+
(

H̃ + i Ẽ
) iγαT + . . .

(

gαρT − iεαρT γ5
)

} /n−
2 . (5.86)

Using the equation of motion for the quark field, the following relations can be established be-
tween the functions appearing in the above correlator and the functions in the quark-quark corre-
lator (5.44):

E
z
=

Ẽ
z
+

m
Mh

D1, (5.87)

D⊥

z
=

D̃⊥

z
+ D1, (5.88)

G⊥

z
=

G̃⊥

z
+

m
Mh

H⊥1 , (5.89)

H
z
=

H̃
z
+

k2
T

M2
h

H⊥1 . (5.90)

5.1.2 Calculation of the hadronic tensor

We limit ourselves to the leading and first subleading term in the 1/Q expansion of the cross
section and to graphs with the hard scattering at tree level. Loops can then only occur as shown in
Fig. 5.1b, c, d, with gluons as external legs of the nonperturbative functions. The corresponding
expression of the hadronic tensor is [33, 76]

2MWµν = 2z
∑

a

e2
a

∫

d2 pT d2 kT δ
2(pT + qT − kT ) Tr

{

Φa(x, pT )γµ∆a(z, kT )γν

− 1
Q
√

2

[

γα/n+γ
ν Φ̃a

Aα(x, pT )γµ∆a(z, kT ) + γα/n−γ
µ∆̃a

Aα(z, kT )γνΦa(x, pT ) + h.c.
]}

,

(5.91)

with corrections of order 1/Q2, where the sum runs over the quark and antiquark flavors a, and ea

denotes the fractional charge of the struck quark or antiquark. The first, second and third term in
Eq. (5.91) respectively correspond to the graphs in Fig. 5.1a, b and c, with gluons having transverse
polarization. The analogs of Fig. 5.1b and c with the gluon on the other side of the final-state cut
correspond to the “h.c.” terms in Eq. (5.91).

The Wilson lines needed in the color gauge invariant soft functions come from graphs with
additional gluons exchanged between the hard scattering and either the distribution or the frag-
mentation function (as in Fig. 5.1b,c,d).
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P
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∆
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Figure 5.1. Examples of graphs contributing to semi-inclusive DIS at low transverse momentum of the
produced hadron.

5.2 Frames

In the theoretical calculations we used a frame where P and Ph have no transverse components, and
P points in the +z direction. In reality, the choice of frame is implied by the fact that we assume
n+ = [0, 1, 0T ] and n− = [1, 0, 0T ], and not by the above equations.

Experimentally, usually the frame of Fig. 1.1 is preferred, i.e. in general any frame where the
proton and the photon have no transverse component, and the photon points in the +z direction.
The difference between the two frames is of order 1/Q. This is why we did not worry too much
about this issue in Ch. 1. Here however we have to worry about it. We’ll follow the option of
expressing all the vectors in the experimental frame.

In a frame where the proton and photon are collinear (but the proton still points in the +z
direction)

n+ = [0, 1, 0T ], (5.92)

n− =
[

1,
q2

T

Q2 − q2
T

, − qT

√
2

√

Q2 − q2
T

]

,≈
[

1, 0, − qT

√
2

Q

]

(5.93)
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(the last approximation holds if q2
T � Q2).

The expression of the momenta in this frame are

Pµ =

[

xBM2

Q
√

2
,

Q

xB

√
2
, 0

]

(5.94a)

Pµ

h =

[

zhQ
√

2
,

M2
h + z2

h M2
h

zhQ
√

2
, −zhqT

]

(5.94b)

qµ =

[

Q
√

2
, − Q
√

2
, 0T

]

(5.94c)

lµ =















Q

y
√

2
,

(1 − y)Q
y
√

2
,

Q
√

1 − y

y
, 0















, (5.94d)

l′µ =















(1 − y)Q
y
√

2
,

Q

y
√

2
,

Q
√

1 − y

y
, 0















. (5.94e)

Usually, we identify

Ph⊥ = −zh qT . (5.95)

Note that in this change of frame transverse vectors also change, due to the change in the transverse
projector

gαβT = gαβ − nα+n
β
− − nα−n

β
+ (5.96)

The rule is

aµT ≈












0, qT · aT

√
2

Q
, aT













(5.97)

There is a last step to do, namely inverting the direction of the z axis.

5.3 Results for structure functions

Inserting the parameterizations of the different correlators in the expression (5.91) of the hadronic
tensor and using the equation-of-motion constraints just discussed, one can calculate the lepto-
production cross section for semi-inclusive DIS and project out the different structure functions
appearing in Eq. (1.32). To have a compact notation for the results, we introduce the unit vector
ĥ = Ph⊥/|Ph⊥| and the notation

C[w f D
]

= xB

∑

a

e2
a

∫

d2 pT d2kT δ
(2)(pT − kT − Ph⊥/z

)

w(pT , kT ) f a(xB, p2
T ) Da(z, k2

T ), (5.98)
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where w(pT , kT ) is an arbitrary function and the summation runs over quarks and antiquarks. The
expressions for the structure functions appearing in Eq. (1.32) are

FUU,T = C
[

f1D1
]

, (5.99)

FUU,L = 0, (5.100)

Fcos φh

UU =
2M
Q
C
[

−
ĥ · kT

Mh

(

xBh H⊥1 +
Mh

M
f1

D̃⊥

z

)

− ĥ · pT

M

(

xB f ⊥D1 +
Mh

M
h⊥1

H̃
z

)]

, (5.101)

Fcos 2φh

UU = C
[

−
2
(

ĥ · kT

) (

ĥ · pT
) − kT · pT

MMh
h⊥1 H⊥1

]

, (5.102)

Fsin φh

LU =
2M
Q
C
[

−
ĥ · kT

Mh

(

xBe H⊥1 +
Mh

M
f1

G̃⊥

z

)

+
ĥ · pT

M

(

xBg⊥D1 +
Mh

M
h⊥1

Ẽ
z

)]

, (5.103)

Fsin φh

UL =
2M
Q
C
[

−
ĥ · kT

Mh

(

xBhLH⊥1 +
Mh

M
g1L

G̃⊥

z

)

+
ĥ · pT

M

(

xB f ⊥L D1 −
Mh

M
h⊥1L

H̃
z

)]

, (5.104)

Fsin 2φh

UL = C
[

−
2 (

ĥ · kT

) (

ĥ · pT
) − kT · pT

MMh
h⊥1LH⊥1

]

, (5.105)

FLL = C
[

g1LD1
]

, (5.106)

Fcos φh

LL =
2M
Q
C
[ ĥ · kT

Mh

(

xBeLH⊥1 −
Mh

M
g1L

D̃⊥

z

)

− ĥ · pT

M

(

xBg⊥L D1 +
Mh

M
h⊥1L

Ẽ
z

)]

, (5.107)

Fsin(φh−φS )
UT,T = C

[

− P̂h⊥ · pT

M
f ⊥1T D1

]

, (5.108)

Fsin(φh−φS )
UT,L = 0, (5.109)

Fsin(φh+φS )
UT = C

[

−
P̂h⊥ · kT

Mh
h1H⊥1

]

, (5.110)

Fsin(3φh−φS )
UT = C

[2 (

P̂h⊥ · pT
) (

pT · kT

)

+ p2
T

(

P̂h⊥ · kT

) − 4 (P̂h⊥ · pT )2 (P̂h⊥ · kT )
2M2Mh

h⊥1T H⊥1

]

, (5.111)

Fsin φS

UT =
2M
Q
C
{(

xB fT D1 −
Mh

M
h1

H̃
z

)

−
kT · pT

2MMh

[(

xBhT H⊥1 +
Mh

M
g1T

G̃⊥

z

)

−
(

xBh⊥T H⊥1 −
Mh

M
f ⊥1T

D̃⊥

z

)]}

, (5.112)

Fsin(2φh−φS )
UT =

2M
Q
C
{2 (ĥ · pT )2 − p2

T

2M2

(

xB f ⊥T D1 −
Mh

M
h⊥1T

H̃
z

)

−
2
(

ĥ · kT

) (

ĥ · pT
) − kT · pT

2MMh

[(

xBhT H⊥1 +
Mh

M
g1T

G̃⊥

z

)

+

(

xBh⊥T H⊥1 −
Mh

M
f ⊥1T

D̃⊥

z

)]}

, (5.113)



70 5. Semi-inclusive DIS at subleading twist

Fcos(φh−φS )
LT = C

[ P̂h⊥ · pT

M
g1T D1

]

, (5.114)

Fcos φS

LT =
2M
Q
C
{

−
(

xBgT D1 +
Mh

M
h1

Ẽ
z

)

+
kT · pT

2MMh

[(

xBeT H⊥1 −
Mh

M
g1T

D̃⊥

z

)

+

(

xBe⊥T H⊥1 +
Mh

M
f ⊥1T

G̃⊥

z

)]}

, (5.115)

Fcos(2φh−φS )
LT =

2M
Q
C
{

−
2 (ĥ · pT )2 − p2

T

2M2

(

xBg⊥T D1 +
Mh

M
h⊥1T

Ẽ
z

)

+
2 (

ĥ · kT

) (

ĥ · pT
) − kT · pT

2MMh

[(

xBeT H⊥1 −
Mh

M
g1T

D̃⊥

z

)

−
(

xBe⊥T H⊥1 +
Mh

M
f ⊥1T

G̃⊥

z

)]}

. (5.116)

Notice that distribution and fragmentation functions do not appear in a symmetric fashion in these
expressions: there are only twist-three fragmentation functions with a tilde and only twist-three
distribution functions without tilde. This asymmetry is not surprising because in Eq. (1.32) the
structure functions themselves are introduced in an asymmetric way, with azimuthal angles refer-
ring to the axis given by the four-momenta of the target nucleon and the photon, rather than of the
target nucleon and the detected hadron.

A few comments concerning the comparison with the existing literature are in order here. First
of all, it has to be stressed that in much of the past literature a different definition of the azimuthal
angles has been used, whereas in the present work we adhere to the Trento conventions [22]. To
compare with those papers, the signs of φh and of φS have to be reversed. The terms with the distri-
bution functions f ⊥T and e⊥T have not been given before. All leading-twist structure functions here
are consistent with those given in Eqs. (36) and (37) of Ref. [32] when only photon exchange is
taken into consideration. The structure functions F sinφh

LU and Fsin φh

UL in our Eqs. (5.103) and (5.104)
correspond to Eqs. (16) and (25) in Ref. [24]. The other six twist-three structure functions were par-
tially given in the original work of Mulders and Tangerman [76], but excluding T-odd distribution
functions, assuming Gaussian transverse-momentum distributions, and without the contributions
from the fragmentation function G⊥.

The structure function Fcos φh

UU is associated with the so-called Cahn effect [42, 43]. If one ne-
glects the quark-gluon-quark functions D̃⊥ in Eq. (5.101) and f̃ ⊥ in Eq. (5.67) as well as the T-odd
distribution functions h and h⊥1 , our result becomes

Fcos φh

UU ≈ 2M
Q
C
[

− ĥ · pT

M
f1D1

]

. (5.117)

This coincides with the cos φh term calculated to order 1/Q in the parton model with intrinsic
transverse momentum included in distribution and fragmentation functions, see e.g. Eqs. (32) and
(33) in Ref. [13].

Let us briefly mention some experimental results and phenomenological analyses for the struc-
ture functions given above. For simplicity we do not distinguish between measurements of the
structure functions and of the associated spin or angular asymmetries, which correspond to the
ratio of the appropriate structure functions and FUU,T + εFUU,L.
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1. Measurements of the cross-section components containing the structure function F cos φh

UU have
been reported in Refs. [2, 16, 37, 44]. A description of the cosφh modulation by the Cahn
effect alone has been given in Ref. [13]. The same analysis can be applied to the structure
function Fcos φh

LL , leading to the results of Ref. [10].

2. Fcos 2φh

UU contains the functions h⊥1 (Boer-Mulders function [29]) and H⊥1 (Collins function [46]).
It has been measured in Refs. [37, 44].

3. The structure function Fsin φh

LU has been recently measured by the CLAS collaboration [17].

4. The structure function Fsin φh

UL has been measured by HERMES [7]. The precise extraction of
this observable requires care because in experiments the target is polarized along the direc-
tion of the lepton beam and not of the virtual photon [24, 50, 69, 77]. This implies that the
longitudinal target-spin asymmetries measured in Refs. [3–5] receive contributions not only
from Fsin φh

UL , but at the same order in 1/Q also from F sin(φh−φS )
UT,T and Fsin(φh+φS )

UT (see also the phe-
nomenological studies of Refs. [51–55, 74, 82]). In Ref. [7] the HERMES collaboration has
separated the different contributions to the experimental sinφh asymmetry with longitudinal
target polarization and shown that Fsin φh

UL is dominant in the kinematics of the measurement.

5. Fsin(φh−φS )
UT,T contains the Sivers function [83] and has been recently measured for a proton

target at HERMES [6] and for a deuteron target at COMPASS [8]. Extractions of the Sivers
function from the experimental data were performed in Refs. [12,45,86] (see Ref. [11] for a
comparison of the various extractions).

6. The structure function Fsin(φh+φS )
UT contains the transversity distribution function [25, 81] and

the Collins function. As the previous structure function, it has been measured by HER-
MES [6] on the proton and by COMPASS [8] on the deuteron. Phenomenological studies
have been presented in Ref. [86], where information about the Collins function was ex-
tracted, and in Ref. [56], where constraints on the transversity distribution function were
obtained by using additional information from a Collins asymmetry measured in e+e− anni-
hilation [1].

Integration of Eqs. (5.99) to (5.116) over the transverse momentum Ph⊥ of the outgoing hadron
leads to the following expressions for the integrated structure functions in Eq. (1.38):

FUU,T = xB

∑

a

e2
a f a

1 (xB) Da
1(z), (5.118)

FUU,L = 0, (5.119)

FLL = xB

∑

a

e2
a ga

1(xB) Da
1(z), (5.120)

Fsin φS

UT = −xB

∑

a

e2
a

2Mh

Q
ha

1(xB) H̃a(z)
z

, (5.121)
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Fcos φS

LT = −xB

∑

a

e2
a

2M
Q

(

xBga
T (xB)Da

1(z) + Mh

M
ha

1(xB) Ẽa(z)
z

)

. (5.122)

Finally, the structure functions for totally inclusive DIS can be obtained from Eqs. (1.40) and (1.41)
to (1.44). This gives the standard results [76]

F1 =
1
2

∑

a

e2
a f a

1 (xB), (5.123)

FL = 0, (5.124)

g1 =
1
2

∑

a

e2
a ga

1(xB), (5.125)

g1 + g2 =
1
2

∑

a

e2
a ga

T (xB), (5.126)

where given the accuracy of our calculation we have replaced g1−γ2g2 by g1 in (5.125), and where
we have used

∑

h

∫

dz z Da
1(z) = 1,

∑

h

∫

dz Ẽa(z) = 0,
∑

h

∫

dz H̃a(z) = 0. (5.127)

The first relation is the well-known momentum sum rule for fragmentation functions. The second
relation was already pointed out in Ref. [63]. The sum rule for H̃ follows from Eq. (5.121) and the
time-reversal constraint (1.45).

5.4 Semi-inclusive jet production

In this appendix, we take into consideration the process

`(l) + N(P) → `(l′) + jet(P j) + X (5.128)

in the kinematical limit of large Q2 at fixed x and P2
h⊥. In the context of our tree-level calculation,

we identify the jet with the quark scattered from the virtual photon. We then have z = 1 and
the cross section formula is identical to Eq. (1.32), except that it is not differential in z. Corre-
spondingly, the structure functions do not depend on this variable. The structure functions for the
process (5.128) can be obtained from those of one-particle inclusive DIS in Eqs. (5.99) to (5.116)
by replacing D1(z, k2

T ) with δ(1 − z)δ(2)(kT ), setting all other fragmentation functions to zero and
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integrating over z. This gives

FUU,T = xB

∑

a

e2
a f a

1 (x, P2
j⊥), (5.129)

Fcos φh

UU = −xB

∑

a

e2
a

2|P j⊥|
Q

xB f ⊥a(x, P2
j⊥), (5.130)

Fsin φh

LU = xB

∑

a

e2
a

2|P j⊥|
Q

xBg⊥a(x, P2
j⊥), (5.131)

Fsin φh

UL = xB

∑

a

e2
a

2|P j⊥|
Q

xB f ⊥a
L (x, P2

j⊥), (5.132)

FLL = xB

∑

a

e2
a ga

1L(x, P2
j⊥), (5.133)

Fcos φh

LL = −xB

∑

a

e2
a

2|P j⊥|
Q

xBg⊥a
L (x, P2

j⊥), (5.134)

Fsin(φh−φS )
UT,T = −xB

∑

a

e2
a

|P j⊥|
M

f ⊥a
1T (x, P2

j⊥), (5.135)

Fsin φS

UT = xB

∑

a

e2
a

2M
Q

xB f a
T (x, P2

j⊥), (5.136)

Fsin(2φh−φS )
UT = xB

∑

a

e2
a

|P j⊥|2
MQ

xB f ⊥a
T (x, P2

j⊥), (5.137)

Fcos(φh−φS )
LT = xB

∑

a

e2
a

|P j⊥|
M

ga
1T (x, P2

j⊥), (5.138)

Fcos φS

LT = −xB

∑

a

e2
a

2M
Q

xBga
T (x, P2

j⊥), (5.139)

Fcos(2φh−φS )
LT = −xB

∑

a

e2
a

|P j⊥|2
MQ

xBg⊥a
T (x, P2

j⊥), (5.140)

whereas the remaining 6 structure functions are zero. The results for the terms with indices UL and
LU correspond to those in Ref. [24]. Integration of the cross section over Ph⊥ leads to the results
for inclusive DIS in Eqs. (5.123) to (5.126). Most terms vanish due to the angular integration, and
Fsin φS

UT in Eq. (5.136) vanishes due to the time-reversal condition (5.40).
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