BMS: Build Management System

D. Lawrence
Jefferson Lab

May 3, 2005

Abstract

The BMS Build Management System is a set of GNU Makefiles which simplify and
standardize the building of source code distribruted throughout a directory tree. Files
with .c, .cc, or .F suffixes are automatically compiled. Platform dependance is handled
through automatic inclusion of platform specific makefiles. Building versions for debug-
ging and profiling is done by setting a single variable. The system also includes rules to
automatically generate ROOT dictionaries from any .h file which includes the ClassDef
keyword.

Contents
1 Introduction

2 File Naming Conventions

2.1 Makefiles e e
2.2 FORTRAN Files e
23 C/CH++Fileso
2.4 Binary Files
3 BMS defined Rules and Custom Makefiles
3.1 makeclean e
3.2 make env
3.3 Dependancy Rules
3.4 ROOT Dictionaries o v v e e e

4 Modifying the behaviour of BMS

4.1 Variables
4.2 Platform Dependance oo
4.3 Compilers

5 Building across multiple directories
6 Building Debugging Versions

7 Questions

[RGB B ETN SR s o W

o~ o O

10

1 Introduction

The BMS is a set of GNU Makefiles which can be used to compile libraries and link
exectables from a collection of source files. In practice, most projects need to do the same
thing 99% of the time. Namely, compile all of the source files in a directory and then
either archive them into a library. or link them into an executable. The goal of BMS is
to implement this default behaviour in a generic way so that makefiles for large numbers
of projects don’t have to be maintained separately.

In contrast to a typical makefile, the BMS makefiles contain no information about the
names of the files that they need to compile. Rather, they assume that all source files
(identified by a .F, .c, or .cc suffix) in a directory should be compiled. It is believed that
this can help lead to better maintenance of the source tree as files which should not be
compiled must not be kept among those that should.

A typcial users’ makefile will look like this:

Listing 1: Example Makefile

PACKAGES = ROOT:DANA

include $(HALLDHOME)/src /BMS/Makefile.bin

In the example in listing 1, one or more excutables will be made from the source code.
The PACKAGES = ROOT : DAN A line tells BMS to include the Makefile. ROOT
and Makefile. DAN A from the BMS directory.

BMS was designed for use in the Hall-D source code environment. However, it is
general enough to be used in other applications.

2 File Naming Conventions

2.1 Makefiles

The user makefiles (as shown in listing 1) can potentially have any name. The recommen-
dation however is to name them Makefile. This name is one of a list that gmake looks for
if one is not excplicitly passed to it on the command line.

The BMS files themselves are kept in the src/BMS directory and have names of the
form Makefile. * where the * represents one of:

e the functionality provided by the makefile (e.g. Makfile.lib)

e the “OSNAME” of the platform the makefile is being invoked on (e.g. Make-
file.SunOS)

e the package name of a package specific makefile (e.g. Makefile. ROOT)

The file Makefile. ROOT is part of BMS and provides the needed flags and link
options fo building a ROOT enabled executable.

2.2 FORTRAN Files

BMS automatically invokes the fortran compiler for all files with a “F” suffix. Files
with a “.f” suffix are ignored. This is done for two reasons. The first is that the GNU
F77 compiler uses the suffix to determine whether or not to run the file through the
preprocessor. The “.F” files are preprocessed while the “.f” files aren’t. The preprocessor’s
job is to replace # directives such as #include, #define, and #if which would cause errors
in the g77 compiler proper.

The second reason is that PAW’s built-in FORTRAN interpretor can be used to process
FORTRAN files which are never intended to be compiled into an executable. By adopting
the convention that “.f” files are for macros and “.F” files are for compiling, the macros
and source files can coexist in the same directory.

2.3 C/C++ Files

C source files should end in “.c” while C+4+ source files should end in “.cc”!. The prefered
suffix is “.cc”. Header files should end in “.h”.

In order to allow ROOT C++ macros to coexist with source code, they should have
the suffix “.C”.

2.4 Binary Files

The term “Binary Files” here means library files (e.g. libBAR.a), executable files, and ob-

ject files (e.g. f00.0). In general, the library files are kept in the directory SHALLD_HOME/1lib/$SOSNAME
and the executables are kept in SHALLD_HOME /bin/SOSNAME. The output of the

executables can be controlled through the $SHALLD_MY environment vaiable as de-

scribed in section 4.1. The object files for libraries are kept inside the library archives

themselves. For executables, the objects are kept in the directory obj/$SOSNAME rela-

tive to the source directory. See section 6 for more details and how the naming scheme

for debug versions differ from the non-debug versions.

3 BMS defined Rules and Custom Makefiles

If you wish to include BMS in situations which require more customization of the makefile,
one can do so by adding a target to their makefile which uses the “all” target as a
dependancy. A list of targets and rules defined by BMS is given here:

e all

e mkdirs

e clean

e %d : %.cpp
e %d: %.cxx
o %d : %.cx

)

L«.cpp” and “.cxx” are also treated as C++ source files, but their use is discouraged.

e %d: %.c

o %d: %.F

e % Dict.cc : %.h
e env

3.1 make clean

To clean out all depends files, objects, libraries, and executables associated with a specific
directory simply invoke:

make clean

This will also remove other generated files commonly left by editors, etc. including
x.bak, x , core, last.kumac, .depends , # x #, and 0bj /SOSNAME.

It is not a bad idea to do this every so often.

Note also that, as with other parts of BMS, doing a make clean will NOT recursively
traverse directories. Only the files in the current directory are considered. Multiple
directories can be ”cleaned” with a single invocation of make clean by simply making a
master makefile as described in section 5.

3.2 make env

The env rule is available for both the Makefile.lib and Makefile.bin makefiles. Invoking
make with the env argument will print a list of variables (see section 4.1) with their
values. Some are user settable and others are internal to BMS. This can be helpful when
debugging the make system

3.3 Dependancy Rules

The purpose and power of a make system is to recompile only when necessary. To ac-
complish this, the make system must be aware of the dependancies of the source file.
Specifically, the make system should recompile a source file if either it or any header files
on which it depends are changed. To accomplish this, BMS makes use of a feature of the
GNU compilers to generate dependancy rules by examining the source files themselves?.
The dependancy rules are generated and stored in files in the .depends directory relative
to its source. The depends files are given names with a .d suffix.

Building these GNU Make compatible rules is specific to the GNU compilers. As such,
the BMS is hardwired to use the GNU compiler to generate them even when using
another compiler to actually compile the code! This limits use of the BMS to
systems which have the needed GNU compilers (g77, gce, g++) installed. As these are
free and available for all platforms on which GNU make can run, it should not be much
of a limitation.

2See the —M and —M M options of gcc

3.4 ROOT Dictionaries

Some features of ROOT such as object I/O and the GUI classes can only be accessed
if the classes are defined to ROOT through a ROOT dictionary. Dictionaries are made
from the C++ header files using the rootcint program. To make it easier to add this
functionality, BMS defines a rule to run rootcint. It only applies the rule to header
files (ones ending in .h) that contain the string ClassDef. In the Hall-D source code,
a Makefile is placed in the src/libraries/include directory specifically for this purpose.
Since the default name of libinclude.a seems less than optimal, the makefile specifies a
different name (libHDDICT'.a) with the following Makefile:

Listing 2: Makefile from src/libraries/include

PACKAGES = ROOT
MODULENAME = HDDICT

include $(HALLDHOME)/src/BMS/Makefile.lib

Here, the MODULE_NAME variable is used to specify the alternate name of the
resulting library. Also the ROOT package is included via use of the PACKAGES variable.

4 Modifying the behaviour of BMS

The behaviour of BMS can be modified through the setting of environment variables, or
adding specialized makefiles to the BMS directory. In general, the only files in the BMS
directory to have rules are Makefile.common Makefile.lib and Makefile.bin. All others
(except for very special cases) will only modify variables (see section 4.1). You may need
to add a makefile when porting BMS to a new platform or you may want to compile using
a different compiler. These situations are addressed in the following sections.

4.1 Variables

e OSNAME: If not set, it is set to return value of uname (e.g. Linuz, SunOS,
Darwin, ...)

e FC: FORTRAN compiler. Default is g77
e CC: C compiler. Default is gcc
o CXX: C++ compiler. Default is g + +

e DFC: FORTRAN compiler used for generating dependancy rules. Default is g77
(see section 3.3)

e DCC: C compiler used for generating dependancy rules. Default is gce (see section
3.3)

e DCXX: C++ compiler used for generating dependancy rules. Default is g++ (see
section 3.3)

e HALLD HOME: Points to the the directory which contains the src directory. The
libraries and executables will be placed in $HALLD_HOME /bin/$OSNAME and
$SHALLD HOME/lib/SOSNAME

e HALLD_MY: If this is set, executables will be placed in SHALLD_MY /bin/$SOSNAME,

but libraries are still linked from $HALLD _HOME/lib/SOSNAME
e FFLAGS: Flags for FORTRAN compiler
e CFLAGS: Flags for C compiler
o CXXFLAGS: Flags for C++ compiler

e PACKAGES: Colon separated list of packages for which to include the corresponding
BMS makefiles.

e LIBS: Libraries to include on the link command

e MODULE_NAME: Used as the base name for the output binary. Defaults to direc-
tory name for libraries and basename of ”main” source file for executables.

e LD: Linker. Defaults to $C XX
e MISC_LIBS: Extra libraries added to the end of the link list.
e DEBUG: If set, creates debug version of binaries (see section 6)

e LINK _ OBJS: Extra link objects to add to the link command

4.2 Platform Dependance

Platform dependance is handled by including a platform specific makefile which is part
of BMS. This done automatically with the OSNAME variable (see section 4.1). The
—include command is used rather than include (without the “-”) because it will not
give an error if the file does not exist. This means that new platforms for which no
platform specific makefile exists at least have a chance to compile. Every effort should
be made to develop the software in platform-independant ways so the content of the
platform dependant Makefiles is minimized. In fact, at the time of this writing, there is
no Makefile.Linux because there are no special requirements for the Linux platform. The
best example of an existing BMS makefile which incorporates platform dependant settings
is the Mac OS X file Makefile. Darwin (so named because uname returns “Darwin”)

Listing 3: Makefile.Darwin

This defines flags which can implement (or not) features
in a way compatible with this OS

OSXFLAGS = —DBASENAME_IN_LIBGEN —DXDR.LONGLONGMISSING —Wno-long—

CFLAGS += $ (OSXFLAGS)
CXXFLAGS += $ (OSXFLAGS)

double

The important thing to note here is that the additional settings for the CFLAGS and
CXXFLAGS variables are appended to the variables. This will insure settings placed
there by the generic system are not overwritten.

7

The other point to notice in listing 3 is that “BASENAME_IN_LIBGEN” and “XDR_LONGLONG_MISSING
are features. These are used to control sections of compilation in the code by using pre-
processor directives like: #ifdef XDR_LONGLONG_MISSING. You generally want to
avoid using the platform itself by doing something like this: #ifdef Darwin. Compiling
on features rather than platforms allows one to turn on/off sections related to single fea-
tures. Using the platform as the conditional couples all conditionals for a single platform
together.

4.3 Compilers

By default, the GNU compilers (g77, gcc, and g++) are used. The compilers can be
changed by setting the FC, CC, and CXX variables (see section 4.1). Note that the GNU
versions must still be present though since they are used to produced the dependancy files
as described in section 3.3.

To override one or all of the compilers, one can set the environment variable of the
appropriate name before invoking gmake.

It may be desirable to always use a particular compiler on a certain platform. For
example, the solaris compiler on SunOS machines. In this case, the FC, CC, and CXX
variables should be set in the platform specific makefile Makefile. SunOS.

5 Building across multiple directories

BMS was designed for a software heirarchy in which directories contain more or less
independant packages. When executables are made, BMS assumes the libraries it needs
to link against are up to date rather than checking if they need to be rebuilt. It is done
this way since it can often be the case that one links against libraries stored in a group
area where one lacks either the source code or the neccessary privileges to rebuild them.

To use BMS across multiple directories, a “master” makefile should be created which
invokes make in the appropriate subdirectories. For example, the makefile that is in the
src/ libraries directory looks like this:

Listing 4: Makefile from src/libraries

.PHONY: all

all:
make —C include
make —C BCAL
make —C CDC
make —C CHERENKOV
make —C DANA
make —C FCAL
make —C FDC
make —C HDDM
make —C TAGGER
make —C TOF

make —C TRIGGER
make —C UPV
make —C TRACKING

clean :

make —C include clean
make —C BCAL clean
make —C CDC clean

make —C CHERENKOV clean
make —C DANA clean
make —C FCAL clean
make —C FDC clean

make —C HDDM clean
make —C TAGGER clean
make —C TOF clean

make —C TRIGGER clean
make —C UPV clean

make —C TRACKING clean

This just runs make (or make clean) in each of the specified directories. BMS does
NOT recursively traverse directory structures. Having BMS recursively search subdirec-
tories would complicate the system for little gain. Writing makefiles such as the one in
listing 4 are trivial enough and leave a level of control with the user.

This same mechanism can be employed for directory trees in which more than one
level contains source code. For example: One has source code in a directory called “foo”,
but there is also a subdirectory of foo named “foo/bar” which contains source code. One
could make a master makefile called Makefile and a BMS specific one called something
like Makefile.bms. The two would look like this:

Listing 5: Makefile

all :
make —C bar
make —f Makefile .bms

clean:
make —C bar clean
make —f Makefile .bms clean

Listing 6: Makefile.bms

PACKAGES = ROOT:DANA

include $(HALLDHOME)/src/BMS/Makefile .bin

Listing 5 shows the “master” makefile whose job is simply to invoke make in the
current directory and in the subdirectory named bar. Listing 6 shows the makefile which
implements BMS to compile the source in the current directory.

6 Building Debugging Versions

By default, files are compiled without debugging symbols and with level 2 optimization 3
(=02 flag). However, if the variable DEBUG is set, then instead of the default optimiza-
tion, the —¢g and —pg flags are set. The —g flag adds debugging symbols while the —pg
flag turns on profiling? and includes the proper compiler libraries 5.

The DEBUG variable can be set either through the environment, or by passing it

explicitly on the command line:

make DEBUG=yes

The value of DEBUG is ignored. It is only checked if it is set. Ergo, compiling with
DEBUG=no would produce the same result as the above example.

The debugging versions of binaries are given suffixes of _d to distinguish them from
their non-debug counter parts and so that they may share directories with them. For
example, a library named [ibF'OO.a will have a debug version named [libF'OO _d.a. An
executable named BAR will have a debug version named BAR_d.

When making a debugging version of an executable, it is assumed that the needed
debugging version of the libraries have been made. This is the same behaviour as for
non-debug versions. The point being that one cannot link debug-objects with non-debug
libraries.

It may be worth noting that the objects created from the source files follow a slightly
different naming scheme. Objects created for libraries are stored in the library archive
itself. These objects are given the same names as those in the non-debug version. For
example, a file named recon.cc in the directory FOO will be stored as an object named
recon.o in both libFOO.a and libFFOO_d.a. By contrast, objects in directories which
contain source which is to be linked into executables are stored as separate files in the obj
directory. For these, the object files each carry the _d suffix. For example, a file named
myprog.cc would be stored as obj/Linuxz/myprog-d.o (on a Linux system). This is a
detail that one does not generally need to know since this is all taken car of by BMS.

7 Questions

Please refer any questions to David Lawrence at davidl@jlab.org.

30ptimization is not used for FORTRAN files since the large hddsGeant3.F file in the Hall-D source code
fails to compile with optimization turned on.

4see gprof
5The —g flag seems widely used while the —pg flag may be GNU specific.

10

