Precision Deuteron Charge Radius Measurement with Elastic Electron-Deuteron Scattering

(PR12-17-009)

A. Gasparian NC A&T State University, Greensboro, NC

H. Gao (co-spokesperson), D. Dutta (co-spokesperson), N. Liyanage (co-spokesperson), E. Pasyuk (co-spokesperson), A. Gasparian (spokesperson)

Outline

- Motivation
- Proposed experiment
 - experimental method
 - control of systematic errors
 - PRad short status
- Summary

Motivation of the Experiment

"Proton Charge Radius Puzzle" is still unsolved after seven years.

There is a newly developing "Deuteron Charge Radius Puzzle"

H/D isotope shift: Muonic deuterium: Electronic deuterium: $r_d^2 - r_p^2 = 3.82007(65) \text{ fm2}$ $r_d = 2.12562(13)_{exp}(77)_{theory} \text{ fm}$ $r_d = 2.14150(450) \text{ fm}$

Calles for new independent experiments with possible highest accuracy!

New ed- cross sections at low Q² will be a critical input to reduce theory error in r_d extracted from µD spectroscopy.

A. Gasparian

(R. Pohl, 2017)

Previous $ed \rightarrow ed$ Experiments at Low Q² Range

Three experiments had been used for the modern extraction of deuteron charge radius from ed- scattering:

✓ We propose a new, most optimized method to measure ed → ed absolute cross sections with high accuracy.

Deuteron Charge Radius from $ed \rightarrow ed$ Scattering Experiment

In the limit of first Born approximation the elastic *ed*- scattering is expressed with A(Q²) and B(Q²) structure functions:

$$\frac{d\sigma}{d\Omega} = \frac{d\sigma}{d\Omega}|_{NS}[A(Q^2) + B(Q^2)\tan^2\theta/2]$$

 $\frac{d\sigma}{d\Omega}|_{NS}$ is for elastic scattering from point-like spinless particle, A(Q²) and B(Q²) are related to deuteron charge (G_{cd}), electric quadrupole (G_{Qd}) and magnetic dipole (G_{Md}) form factors:

$$\begin{split} A(Q^2) &= G^2_{Cd}(Q^2) + \frac{2}{3}\eta G^2_{Md}(Q^2) + \frac{8}{9}\eta^2 G^2_{Qd}(Q^2) \\ B(Q^2) &= \frac{4}{3}\eta(1+\eta)G^2_{Md}(Q^2), \end{split}$$
 with $\eta = Q^2/4m_d^2$

At low Q² contribution from G_{Qd} and G_{Md} are small (they can be ignored or included from other experiments). Then, the deuteron rms charge radius:

$$r_d^2 = -6[\frac{dA(Q^2)}{dQ^2}]_{Q^2=0}$$

Proposed Experiment

- Measure $ed \rightarrow ed$ elastic cross sections at very low Q² range: $[2x10^{-4} 5x10^{-2}]$ (GeV/c)².
- Experimental method based on PRad, with two additions:
 - magnetic-spectrometer-free calorimetric experiment;
 - windowless deuterium/hydrogen gas flow target;
 - cylindrical recoil detector for reaction elasticity (new);
 - ✓ additional GEM detector for scattered electron tracking (new).
- That will allow:
 - > reach very low Q^2 range, (~ 10⁻⁴ GeV²) for the first time;
 - > simultaneous detection of $ee \rightarrow ee$ Moller scattering process;
 - providing best control of systematic errors;
 - > measuring cross sections in one kinematical settings for a large Q^2 range;
 - Iow background experiment;
 - essentially model independent r_d extraction.
- Two beam energies, E_e = 1.1 and 2.2 GeV to increase Q² range and control of systematics.

Control of Systematic Errors

- Major improvements over previous experiments:
 - 1) Simultaneous detection of two processes
 - $\bullet \quad ed \rightarrow ed$
 - $\ \, \bullet \ \ \, ee \rightarrow ee \ \ \, Moller \ \ scattering$
 - 2) Windowless D₂ gas target
 - 3) Very low Q² range: [2x10⁻⁴ 5x10⁻²] (GeV/c)²

Tight control of systematic errors Low beam background practically, model independent r_d extraction

Extracted yield for $ed \rightarrow ed$

 $\left(\frac{d\sigma}{d\Omega}\right)_{ed} (Q_i^2) = \frac{N_{\exp}^{\text{yield}} \left(ed \to ed \text{ in } \theta_i \pm \Delta\theta\right)}{N_{\text{beam}}^{e^-} \cdot N_{\text{tgt}}^{\text{D}} \cdot \varepsilon_{\text{geom}}^{ed} \left(\theta_i \pm \Delta\theta\right) \cdot \varepsilon_{\text{det}}^{ed}}$

... and for $ee \rightarrow ee$, Moller

$$\left(\frac{d\sigma}{d\Omega}\right)_{e^-e^-} = \frac{N_{\rm exp}^{\rm yield} \left(e^-e^- \to e^-e^-\right)}{N_{\rm beam}^{e^-} \cdot N_{\rm tgt}^{\rm D} \cdot \varepsilon_{\rm geom}^{e^-e^-} \cdot \varepsilon_{\rm det}^{e^-e^-}} \,,$$

• Then, *ed*- cross section is related to Moller:

$$\frac{d\sigma}{d\Omega}\Big)_{ed} (Q_i^2) = \left[\frac{N_{\exp}^{\text{yield}}\left(ed \to ed \text{ in } \theta_i \pm \Delta\theta\right)}{N_{\exp}^{\text{yield}}\left(e^-e^- \to e^-e^-\right)} \cdot \frac{\varepsilon_{\text{geom}}^{e^-e^-}}{\varepsilon_{\text{geom}}^{ed}} \cdot \frac{\varepsilon_{\det}^{e^-e^-}}{\varepsilon_{\det}^{ed}}\right] \left(\frac{d\sigma}{d\Omega}\right)_{e^-e^-}$$

- Two major sources of systematic errors, N_e and N_{tqt}, typical for all previous experiments, cancel out.
- Geom. acceptances and detection efficiencies will be extracted during ep → ep calibration run with hydrogen gas in target cell.
- Moller scattering will be detected in double-arm and single-arm modes in HyCal acceptance.

Proposed Experimental Setup

- Based on the PRad method and experimental setup, three additions:

 - cylindrical recoil detector for reaction elasticity (new); additional GEM detector for scattered electron tracking (new) veto counters for timing (PrimEx veto counters).
 - \checkmark

Windowless Target and Si-strip Cylindrical Recoil Detector

Detection of recoiled deuterons: elasticity in $ep \rightarrow ep$ scattering

Based on PRad windowless gas flow target and CLAS12 Barrel Silicon Tracker (SVT):

- consist of 20 panels of twin, single-sided Si-strip detectors (size; 42x52mm²); thicknesses: lower, \approx 200 µm, upper \approx 300 µm (to be optimized); do-decagon arrangement with R=13 cm radius; *
- *
- ٠
- 256 strops on each sensor, angular resolution: $\delta \phi \leq 5$ mrad, $\delta \theta \leq 20$ mrad *

Second GEM for Scattered Electron Tracking

- Based on PRad GEM detector (UVa group), twice less material (0.25% r.l. vs. 0.5% r.l.):
 - twice less material than previous GEM (0.25% r.l. vs. 0.5% r.l.); located at 40 cm distance from the first; **
 - $\mathbf{\bullet}$
 - will provide tracking for the scattered electrons; \diamond
 - better control of beam line background, especially at very small angles ($\theta_e \approx 1^0$) \diamond

Electromagnetic Calorimeter and Veto Scintillators

- PrimEx (also PRad) hybrid electromagnetic calorimeter, HyCal:
 - energy and position of scattered electrons;
 - provides trigger in experiment;
 - large acceptance, high resolution.
- PrimEx veto counters for timing in scattered electrons (< 1 ns time resolution).</p>

Kinematics and Q² Coverage (ITAC question/comment #1)

- Full GEANT4 simulation code has been developed, including all detectors.
 - ✓ for these beam energies deuterons will recoil at large polar angles: $\theta_d = [83^0 \div 89^0];$
 - and detected in the Si-detectors ("dead layer" ~ 0.5 μm);
 - ✓ for 1.1 GeV: $\theta_d > 1.1^0$ will be detected; with Q² ≥ 4x10⁻⁴ (GeV/c)²
- Also, at this very small angles, the virtual photon energy: $E_{\gamma^*} < 2.2 \text{ MeV}$ (deuteron electro-disintegration threshold). Trigger in experiment: $E_{HyCal} > 0.2_{Ebeam}$;
 - These events will be detected without recoil deuterons In Si-strip detector;
- In summary, the proposed experiment will cover the $Q^2 = [2x10^{-4} \div 5x10^{-2}]$ (GeV/c)² range, as it is stated in the proposal.

Event Selection and Radiative Corrections

- Event generators for both ed → ed and ee → ee have been developed and implemented in GEANT4 simulation code
- ed- elastic events can be safely selected from Moller events for : $\theta_e \ge 0.7^{\circ}$

Physics Background

(deuteron electro-disintegration, Reader question/comment #1(a))

Elastic $ed \rightarrow ed$ events vs. $ed \rightarrow e+p+n$ will be selected by:

- \checkmark time-of-flight (Δ t) *vs.* co-planarity ($\Delta \phi$) between scattered electron and recoiled deuteron;
- ✓ dE/dx vs. total energy in both Si-strip detectors (Δ E).
- Complete simulation of deuteron electro-disintegration process, including Fermi-motion and realistic models:

Physics Background (Cont'd)

(deuteron electro-disintegration, Reader question/comment #1(a))

Applying $[\Delta \phi vs. \Delta t]$ and $[dE/dx vs. \Delta E]$ cuts removes the physics background for most angles for 1.1 GeV beam energy. Except for $\theta_e \approx 6^{0}$, where the background level is $\leq 0.2\%$.

For 2.2 GeV the [dE/dx vs. Δ E] cut alone is very effective for elastic event selection.

Deuteron

Extraction of Deuteron Charge Radius

- Extraction of r_d from MC simulations with radiative corrections.
- Estimated systematic uncertainty < 0.2%

Responses to TAC, ITAC and Readers Comments/questions

- Our responses to TAC, ITAC and Readers comments/questions had been prepared and submitted some days ago.
- Some of them are addressed in this talk above.
- We will try to address any questions still left open.
- Those comments and questions had been very helpful and constructive.
 - Thank you!

Beam Time Request

Target thickness: $N_{tgt} = 2x10^{18} \text{ D atoms/cm}^2$ Beam intensity: $I_e \sim 10 \text{ nA} (N_e = 6.25x10^{10} \text{ e}^{-/s})$

1) for $E_0 = 1.1 \text{ GeV}$, Total rate for $ed \rightarrow ed$

 $N_{ed} = N_e \times N_{tgt} \times \Delta \sigma \times \epsilon_{geom} \times \epsilon_{det}$

≈ 170 events/s ≈ 14.9 M events/day Rates are high, however, for 0.8% stat. error for the last Q²= 1.3×10^{-2} (GeV/c)² bin 8 days are needed.

2) for $E_0 = 2.2 \text{ GeV}$, Total rate for $ed \rightarrow ed$

 $N_{ed} \approx 43$ events/s ≈ 3.7 M events/day

to have ~ 1 % stat. error for the last Q^2 bins we request 16 days for this energy run.

	Time (days)
Setup checkout, calibration	3.5
Recoil detector commissioning	2
Recoil detector calibration with hydrogen gas	3
Statistics at 1.1 GeV	8
Energy change	0.5
Statistics at 2.2 GeV	16
Empty target runs	6
Total	39

[•] Requested beam time

Estimated Uncertainties

Estimated error budget (added quadratically)

Contribution	Estimated Error (%)
Statistical error	0.1
Event selection (including rad. Corrections)	0.3
Acceptance in recoil detector	0.3
Ratio in acceptance and detector efficiency	0.2
Fitting procedure	0.2
Total	0.5

 Estimated errors are rather conservative, based on our experience we believe it can be done better.

Status of the PRad Experiment

- PRad was designed to address the "proton radius puzzle".
 - > Measurement of $ep \rightarrow ep$ elastic cross sections at very low Q² range, [10⁻⁴ 10⁻²] (GeV/c)²:
 - non-magnetic-spectrometer, calorimetric method;
 - ♦ simultaneous detection of Moller ($ee \rightarrow ee$) process: → control of systematic errors;
 - windowless hydrogen gas flow target
 Iow background experiment

Status of the PRad Experiment (Cont'd)

- **Experiment Timeline:**
- Proposal approved by PAC39
- Development of funding proposals for H₂ gas flow target (NSF MRI #PHY-1229153) and GEM detector (US DOE grant DE-FG02-03ER41231)
- Development and construction of the target and GEM
- Experimental data taking
- Experimental Data Collected:
- with $E_{a} = 1.1$ GeV beam:
 - ✓ 4.2 mC (target areal density: 2x10⁺¹⁸ H /cm²)
 - ✓ 604 M events with target;
 - ✓ 53 M events with "empty" target;
 - ✓ 25 M events with ¹²C target for calibration.
- with $E_e = 2.2$ GeV beam:
 - ✓ 14.3 mC (target areal density: 2x10⁺¹⁸ H /cm²)
 - ✓ 756 M events with target;
 - ✓ 38 M events with "empty" target;
 - ✓ 10.5 M events with ¹²C target for calibration.

Cluster Energy E' v.s. scattering angle θ (2.2 GeV)

May/June

2012

2013

2015

2016

PRad Analysis Status: ep- data quality

Current focus is on 2.2 GeV data:

ep Elastic Peak

- background level for ep- events is $\sim 8 \div 10\%$ for small angles and $\sim 1 \div 2\%$ for relatively larger angles.
- Background from residual gas is $\sim 1 \div 2$ % for all angular range.
- For 1.1 GeV run the background level is factor of 2÷3 higher than for 2.2 GeV run.
- We performed high statistics measurements of background in 3 different ways for both beam energies.

PRad Analysis Status: ee- data quality (Moller)

Moller yield needs to be extracted for ep-normalization.

Elasticity in *ee* scattering

Co-planarity in ee scattering

background level is ≤ 1 % for ee- events (Moller).

- For 1.1 GeV run the background level is factor of 2÷3 higher than for 2.2 GeV run.
- We performed high statistics measurements of background in 3 different ways for both beam energies.

PRad Analysis Status: Event Selection Quality (answer to ITAC question #4)

- Control of background in the PRad experiment.
- Consistency of two practically independent measurements (within the ~ 0.2% statistical errors)demonstrates that we control the background, and

PRad will reach its goal of sub-percent extraction of the Proton Radius!!!

Double ratio of (ep/ee) from experiment and from theory for both 1.1 GeV and 2.2 GeV

- Tracking would further reduce the background.
- We plan to use second GEM plane in the proposed ed- experiment.

PRad Analysis Status: Extracted Preliminary Differential Cross Sections

- About half of 2.2 GeV beam energy data have been analyzed:
 - \checkmark differential cross sections for $ep \rightarrow ep$ have been extracted;
 - \checkmark statistical errors are on the level of $\sim 0.2\%$ at this analysis stage;
 - \checkmark systematic errors are estimated to be on the level of $\sim 2\%$ at this analysis stage.
- Physics analysis in progress, extraction of the Proton Radius in 2018.

A. Gasparian

Summary

- We propose a new experiment for the deuteron charge radius measurement with a high accuracy to address the newly developing "deuteron radius puzzle" in nuclear physics.
- It is based on the PRad experiment for the proton charge radius measurement:
 - magnetic-spectrometer-free calorimetric experiment;
 - ✓ windowless deuterium/hydrogen gas flow target;
 - cylindrical recoil detector for reaction elasticity;
 - ✓ additional GEM detector for scattered electron tracking.

That will allow:

- > reach very low Q² range, $[2x10^{-4} 5x10^{-2}]$ GeV²;
- > ed \rightarrow ed cross sections normalized to well known QED process (Moller scattering);
- ensure the elasticity in the extracted ed- cross sections;
- > measuring cross sections in one kinematical settings for a large Q^2 range;
- arguably, it is currently the most optimized ed- measurement to extract the deuteron charge radius with a sub-percent accuracy.
- Requesting 39 days of beam time for this experiment.
- PRad preliminary analysis indicates: backgrounds well understood, proposed uncertainty can be achieved.

The End

PRad Experiment

Proton charge radius puzzle is still unsolved after seven years.

Si-strip Detector

D2 density (1/cm³) x10¹⁷ 2.28411 2.28406 2.28401 (1/cm³) 2.28396 2.28391 D2 2.28386 2.28381 2.28376 0 -2 -1 1 2 -3 Z-coordinate (cm)

Kinematics and Resolutions

Calibration of Recoil Detector

Control of Systematic Errors (Moller event selection)

Will analyze Moller events in 3 different ways: 1)Single-arm method: one Moller e^{-1} is in the same Q² range

 $\epsilon_{det}\,$ will be measured for [0.7 – 6.0] GeV range

Relative $\boldsymbol{\epsilon}_{det}~$ are needed for this experiment

2) Coincident Method

3) Integrated over HyCal acceptance

Relative \mathbf{E}_{det} will be measured with high precision.

Contribution of $\epsilon_{det}~$ and $\epsilon_{geom}~$ in cross sections will be on second order only.

