Parity Violating Deep Inelastic Scattering at JLab 6GeV

Diancheng Wang (Univ. of Virginia) CIPANP 2012

* Introduction of Physics

- * Experiment Setup and Overview
- * Data Analysis / Systematic Uncertainties
- * Preliminary Results and Physics Interpretations

PVDIS Asymmetry

PVDIS asymmetry from deuterium target:

$$\begin{split} A_{d} = & \left(\frac{3G_{F}Q^{2}}{2\sqrt{2}\pi\alpha}\right) \frac{2C_{1u}[1+R_{C}(x)] - C_{1d}[1+R_{S}(x)] + Y(2C_{2u}-C_{2d})R_{V}(x)}{5+R_{S}(x)+4R_{C}(x)} \\ & C_{1u} = 2g_{A}^{e}g_{V}^{u} = -\frac{1}{2} + \frac{4}{3}\sin^{2}(\theta_{W}) \\ & C_{2u} = 2g_{V}^{e}g_{A}^{u} = -\frac{1}{2} + 2\sin^{2}(\theta_{W}) \\ & C_{1d} = 2g_{A}^{e}g_{V}^{d} = \frac{1}{2} - \frac{2}{3}\sin^{2}(\theta_{W}) \\ & C_{2d} = 2g_{V}^{e}g_{A}^{d} = \frac{1}{2} - 2\sin^{2}(\theta_{W}) \end{split}$$

PVDIS: Only way to measure C_{2q} among current EW experiments

PVDIS and Other SM Test Experiments

Quark Weak Neutral Couplings C_{1,2q}

all are 1σ limit

Jefferson Lab Hall A

 JLab: Linear accelerator provides continuous polarized electron beam High Luminorsity Ebeam = 6 GeV Pbeam = 90%

3 experimental halls (Hall A, B, C)

Hall A Experimental Setup

Online (Hardware) Particle Identification Scaler Based Counting DAQ

- DIS region, pions contaminate, can't use integrating DAQ.
- + High event rate (~500KHz), exceeds Hall A regular DAQ's Limit.
- Systematics: Deadtime and PID Efficiency

Online (Hardware) Particle Identification Scaler Based Counting DAQ

- DIS region, pions contaminate, can't use integrating DAQ.
- + High event rate (~500KHz), exceeds Hall A regular DAQ's Limit.
- Systematics: Deadtime and PID Efficiency

Online (Hardware) PID Scaler Based Counting DAQ

Data Analysis / Systematic Uncertainties:

- Beam Polarization
- Deadtime Correction
- PID Efficiency
- Q² Measurement / Optics Calibration
- Electro-Magnetic Radiative Correction
- False Asymmetries
- Backgrounds

Beam Polarization (Compton/Moller)

Moller: 88.47% +/- 2.0% (syst, relative) (6.0GeV) 90.4% +/- 1.7% (syst, relative) (4.8GeV) Compton: 89.45% +/- 1.92% (syst, relative) Systematic mainly from A_{th} $(A_{exp} = P_{\gamma} \times P_e \times A_{th})$

Deadtime Correction

Deadtime correction to asymmetry: $A' = A_{measure} / (1 - Deadtime)$

Methods to study Deadtime:

- → Theoretically, Deadtime ∝ Event Rate
- FADC data: direct way to study deadtime, but low statistics.
- **Tagger method**: use a tagger signal to mimic physics signal.
- Software simulation: simulating all the signals and electronics.

The Tagger method:

Deadtime corrections to asymmetry is: 1.49% +/- 0.44% (Kinematics #1) 0.86% +/- 0.25% (Kinematics #2)

Particle Identification Performance

Affects measured asymmetry (Q²) if it varies over the acceptance or if there are "holes"

	Lead Glass	Gas Cherenkov	Overall
Electron Efficiency	97%	96%	95%
Pion Rejection Factor	52	200	10e4

Asymmetry correction due to electron efficiency: <0.2%

Tracking Reconstruction / Q² Measurement

DIS asymmetry is sensitive to Q², thus tracking reconstruction
After calibration, asymmetry uncertainty due to Q² reconstruction is <1%

EM Radiative Corrections

Monte Carlo Simulation

- No previous measurements of Apv in the resonance region
- Two Theory Calculations for Apv in the resonance, and "Toy Model"
- Measured resonance Apv (10-15% stat.) to constrain inputs of resonance PV models

EM Radiative Corrections

Monte Carlo Simulation

EM Radiative Corrections

Monte Carlo Simulation

- No previous measurements of Apv in the resonance region
- Two Theory Calculations for Apv in the resonance, and "Toy Model"
- Measured resonance Apv (10-15% stat.) to constrain inputs of resonance PV models
- Radiative Corrections: 2.1%+/-2.0% (Kine #1); 1.9%+/-0.43% (Kine #2)

False Asymmetry: Charge Asymmetry / Intensity Feedback

With passive measures optimized, Feedback zeroes the helicity-correlated effects even further

Low jitter and high accuracy allows sub-ppm Cumulative charge asymmetry in ~ 1 hour

False Asymmetry: Beam Modulation

$$A_{mes} = A_{raw} - A_{beam} - \sum \beta_i \Delta x_i$$

Two independent methods:

Dithering: intentionally vary the beam parameters
Regression: use the natural motion of the beam

Backgrounds

Transverse Asymmetry:

Correction t o A_d : $\frac{A_T}{\sin \theta_0} \cdot [S_H \cdot \sin \theta_{tr} - S_v \cdot \sin \theta_0 \cdot \cos \theta_{tr}]$ where $|\theta_{tr}|$ very small, $S_V < 2\%$, $S_H < 20\%$

$$\vec{k_e} \qquad \vec{k_e'} \qquad \vec{s_H} \\ \vec{k_e} \qquad \vec{s_V} \\ \vec{s_V} \\ \vec{s_L} \\$$

 $\vec{S}_e \cdot [\vec{k_e} \times \vec{k_e'}]$

	Kine #1	Kine #2
A _T (ppm)	-24.15 ± 15.05	23.49 ± 44.91
Uncertainty to A _d	0.55%	0.56%

Pair Production (Dilution): Positron asymmetry measured, consistent with zero

	Kine #1	Kine #2
A _{e+} (ppm)	723.2 ± 1154.7	1216 ± 1304.5
Correction to A _d	0.03% ± 0.003%	0.48% ± 0.048%

Pion Contamination: Pion asymmetries observed to be non-zero

	Kine #1	Kine #2
Α _π (ppm)	-30.85 ± 12.84	-8.10 ± 4.13
Correction to A _d	0.019% ± 0.014%	0.024% ± 0.003%

Aluminum endcap from target cell: Estimated using SM calculated values

	Kine #1	Kine #2
A _{AI} - A _d (ppm)	-0.75	-1.79
Correction to A _d	0.017% ± 0.0034%	0.023% ± 0.0046%

Asymmetry Results

Asymmetry Analysis

- Blinded Analysis. Unblind after all systematics were finalized.
- Two independent analysis as cross check.

Statistical quality of data (blinded pair-wise asymmetry):

Uncertainties

Source $\Delta A_d / A_d$	Kine #1	Kine #2
$\Delta P_{b}/P_{b}$	2.00%	1.59%
Radiative Correction	2.00%	0.43%
Q^2	0.73%	0.62%
Transverse Asymmetry	0.55%	0.56%
Deadtime Correction	0.44%	0.25%
False Asymmetry	0.16%	0.05%
Pair Production	0.01%	0.05%
PID Efficiency	0.01%	0.02%
Pion Dilution	0.01%	0.01%
Target Endcap	0.01%	0.01%
Systematics	3.01%	1.87%
Statistical	3.41%	3.96%
Total	4.55%	4.38%

Asymmetry Results as of Today

$$x_{bj} = 0.241, Q^2 = 1.085 \text{ GeV}^2$$
:
Ad=-92.27 ±3.15 (stat.) ± 2.77 (syst) ppm
 $x_{bj} = 0.295, Q^2 = 1.901 \text{ GeV}^2$:
Ad=-163.60 ± 6.48 (stat.) ± 3.05 (syst) ppm

Preliminary C_{2q} from Q²=1.9 GeV² Point

Preliminary $C_{2\alpha}$ - β_{HT} Correlation from Q²=1.1 and 1.9 GeV² Combined 2C₂₁₁-C_{2d} 0.2 This Experiment Prescott (using SM C_1) C_{20} - β_{HT} 0 correlation SM -0.2 This Experiment $(Q^2 = 1.9 \text{GeV}^2)$ alone, no HT) -0.4 relin $A_{PV} = A_{PV}^{EW} \left(1 + \frac{\beta_{HT}}{(1-x)^3 \Omega^2} \right)$ -0.6 0.2 β_{HT} -0.2 ()26

Summary

- Experiment completed. Asymmetry analysis finalized;
- Preliminary results from extraction of C_{2q}
 - from Q²=1.9 GeV² point assuming no higher twist is consistent with the Standard Model value and factor of five improvement over previous data;
 - simultaneous fit to both $Q^2=1.1$ and 1.9 GeV² points indicate the HT to be small;
- PVDIS 6GeV will provide important guidance/support for the future 12GeV program.

The Future

PVDIS 12GeV with SoLID Fully Approved, 169 Days, Rated A!

