Parity Violating Deep Inelastic Scattering at JLab 6GeV

Diancheng Wang (Univ. of Virginia) GHP 2013, Denver

* Introduction of Physics

- * Experiment Method and Systematic Uncertainties
- ★ DIS Asymmetry Results and Extraction of C_{2a}
- * Asymmetry Results in the Resonance Region

Signature of Weak Interaction (Z^o Exchange) – Parity Violation Asymmetry Between L- and R-handed Electrons

In the Standard Model,

- Weak interaction current =
 V(vector) minus A(axial-vector)
- Parity violation is from the cross products V x A:

fermions	$g_A^f = I_3$	$g_V^f = I_3 - 2Q\sin^2\theta_W$
$\nu_{e}^{}, \nu_{\mu}^{}$	$\frac{1}{2}$	$\frac{1}{2}$
e-,μ-	$-\frac{1}{2}$	$-\frac{1}{2}+2\sin^2\theta_W$
и, с	$\frac{1}{2}$	$\frac{1}{2} - \frac{4}{3}\sin^2\theta_W$
d, s	$-\frac{1}{2}$	$-\frac{1}{2} + \frac{2}{3}\sin^2\theta_W$

$$C_{1q} \equiv 2 g_A^e g_V^q$$
$$C_{2q} \equiv 2 g_V^e g_A^q$$

Parity Violating Electron Scattering

Weak Neutral Current (WNC) Interactions at $Q^2 << M_z^2$

Parity Violation in Deep Inelastic Scattering

$$A_{PV} = \frac{G_F Q^2}{\sqrt{2} \pi \alpha} [a(x) + Y(y)b(x)]$$

$$x \equiv x_{Bjorken} \qquad y \equiv 1 - E' / E$$

$$q_i^{+.}(x) \equiv q_i(x) + \overline{q}_i(x)$$

$$q_i^{-.}(x) = q_i^V(x) \equiv q_i(x) - \overline{q}_i(x)$$

$$E^{YZ} = \sum_{i=1}^{N} \sum_{i=1}^{N}$$

$$a(x) = \frac{1}{2} g_A^e \frac{F_1^{\gamma Z}}{F_1^{\gamma}} = \frac{1}{2} \frac{\sum C_{1i} Q_i q_i^{+.}(x)}{\sum Q_i^2 q_i^{+.}(x)}$$

$$b(x) = g_V^e \frac{F_3^{\gamma Z}}{F_1^{\gamma}} = \frac{1}{2} \frac{\sum C_{2i} Q_i q_i^{-.}(x)}{\sum Q_i^2 q_i^{+.}(x)}$$

For an isoscalar target (²H), structure functions simplifies:

$$\begin{split} A^{D}_{PV} = & \left(\frac{3G_{F}Q^{2}}{2\sqrt{2}\pi\alpha} \right) \frac{2C_{1u}[1+R_{C}(x)] - C_{1d}[1+R_{S}(x)] + Y\left(2C_{2u}-C_{2d}\right)R_{V}(x)}{5+R_{S}(x) + 4R_{C}(x)} \\ C_{1u} = 2g^{e}_{A}g^{u}_{V} = -\frac{1}{2} + \frac{4}{3}\sin^{2}(\theta_{W}) \\ C_{1u} = 2g^{e}_{A}g^{u}_{V} = \frac{1}{2} - \frac{2}{3}\sin^{2}(\theta_{W}) \\ C_{2u} = 2g^{e}_{V}g^{u}_{A} = -\frac{1}{2} + 2\sin^{2}(\theta_{W}) \\ C_{2d} = 2g^{e}_{V}g^{d}_{A} = \frac{1}{2} - 2\sin^{2}(\theta_{W}) \end{split}$$

PVDIS: Only way to measure C_{2q} among current EW experiments

PVDIS and Other SM Test Experiments

Quark Weak Neutral Couplings C_{1,2q}

all are 1σ limit

6

SLAC E122 vs. JLab E08-011

	SLAC E122 (1978)	JLab E08-011 (2009)
Beam	37%, 16.2-22.2 GeV	90%, 6.0674 GeV,100uA
Target	30-cm LD2, LH2	20-cm LD2
Spectrometer	4º	12.9° and 20°
Q^2	$1-1.9 \text{ GeV}^2$	1.1 and 1.9 GeV^2
Data Collection	Integrating gas Cerenkov and lead glass detectors, independently	Counting DAQ using both GC and lead glass for PID at the hardware level
Deuteron results $\sin^2\theta_w = 0.20 \pm 0.03$	(two highest energies only) $A/Q^2 = (-9.5 \pm 1.6) \times 10^{-5} (GeV/c)^{-2}$ $\pm 0.86 \times 10^{-5} (stat) \pm 5\% (Pb)$ $\pm 3.3\% (beam)$ $\pm 2\% (pion contamination)$ $\pm 3\% (radiative corrections)$	±(3-4)%(stat) ±syst.
Proton results	$A/Q^{2}=(-9.7\pm2.7)x10^{-5}(GeV/c)^{-2}$	

JLab Hall A Experimental Setup

Online (Hardware) Particle Identification Scaler Based Counting DAQ

- DIS region, pions contaminate, can't use integrating DAQ.
- + High event rate (~500KHz), exceeds Hall A regular DAQ's Limit.
- Systematics: Deadtime and PID Efficiency

Online (Hardware) Particle Identification Scaler Based Counting DAQ

- DIS region, pions contaminate, can't use integrating DAQ.
- + High event rate (~500KHz), exceeds Hall A regular DAQ's Limit.
- Systematics: Deadtime and PID Efficiency

Deadtime Study / Trigger Simulation

Particle Identification Performance

Affects measured asymmetry (Q²) if it varies over the acceptance or if there are "holes"

	Lead Glass	Gas Cherenkov	Overall
Electron Efficiency	97%	96%	95%
Pion Rejection Factor	52	200	10e4

Data Quality

Beam Polarization (Compton/Moller)

Moller: 88.47% +/- 2.0% (syst, relative) (6.0GeV) 90.4% +/- 1.7% (syst, relative) (4.8GeV) Compton: 89.45% +/- 1.92% (syst, relative) Systematic mainly from A_{th} $(A_{exp} = P_y \times P_e \times A_{th})$

False Asymmetries

Charge Asymmetry: Intensity Feedback

Low jitter and high accuracy allows sub-ppm Cumulative charge asymmetry in ~ 1 hour

Beam Movement: Dithering / Regression

EM Radiative Corrections

Monte Carlo Simulation

- No previous measurements of Apv in the resonance region
- Two Theory Calculations for Apv in the resonance, and "Toy Model"
- Measured resonance Apv (10-15% stat.) to constrain inputs of resonance PV models

EM Radiative Corrections

Monte Carlo Simulation

- No previous measurements of Apv in the resonance region
- Two Theory Calculations for Apv in the resonance, and "Toy Model"
- Measured resonance Apv (10-15% stat.) to constrain inputs of resonance PV models
- Radiative Corrections: 2.1%+/-2.0% (Kine #1); 1.9%+/-0.43% (Kine #2)

Backgrounds

Transverse Asymmetry:

Correction to A_d : $\frac{A_T}{\sin \theta_0} \cdot [S_H \cdot \sin \theta_{tr} - S_v \cdot \sin \theta_0 \cdot \cos \theta_{tr}]$ where $|\theta_{tr}|$ very small, $S_V < 2\%$, $S_H < 20\%$

 $\vec{S}_e \cdot [\vec{k}_e \times \vec{k_e'}]$

	Kine #1	Kine #2
A _T (ppm)	-24.15 ± 15.05	23.49 ± 44.91
Uncertainty to A _d	0.55%	0.56%

Pair Production (Dilution): Positron asymmetry measured, consistent with zero

	Kine #1	Kine #2
A _{e+} (ppm)	723.2 ± 1154.7	1216 ± 1304.5
Correction to A _d	0.03% ± 0.003%	0.48% ± 0.048%

Pion Contamination: Pion asymmetries observed to be non-zero

	Kine #1	Kine #2
Α _π (ppm)	-30.85 ± 12.84	-8.10 ± 4.13
Correction to A _d	0.019% ± 0.014%	0.024% ± 0.003%

Aluminum endcap from target cell: Estimated using SM calculated values

	Kine #1	Kine #2
A _{AI} - A _d (ppm)	-0.75	-1.79
Correction to A _d	0.017% ± 0.0034%	0.023% ± 0.0046%

Uncertainties

Source $\Delta A_d / A_d$	Kine #1	Kine #2
$\Delta P_{b}/P_{b}$	2.00%	1.59%
Radiative Correction	2.00%	0.43%
Q^2	0.73%	0.62%
Transverse Asymmetry	0.55%	0.56%
Deadtime Correction	0.44%	0.25%
False Asymmetry	0.16%	0.05%
Pair Production	0.01%	0.05%
PID Efficiency	0.01%	0.02%
Pion Dilution	0.01%	0.01%
Target Endcap	0.01%	0.01%
Systematics	3.01%	1.87%
Statistical	3.41%	3.96%
Total	4.55%	4.38%

C_{2q} from Q²=1.9 GeV² Point

C_{2q} - β_{HT} Correlation from Q²=1.1 and 1.9 GeV² Combined

$A_{\rm pv}$ in the Resonance Region

Motivation:

- Real Motivation: Radiative Correction for DIS
- After-the-Experiment Motivation:
 - Apv in the resonance region has never been measured (G0 Δ)
 - Provides inputs for calculating yZ box diagram corrections to elastic PVES
 - Check theoretical calculations
 - Quark-Hadron Duality

Methods and Data:

- Exactly the same experimental setup as DIS
- About 1~2 days of beam time for each kinematics
- Data analysis follows the same procedure as DIS, except using group triggers.

Using Group Triggers

Unlike DIS, Group Triggers are used for resonance data analysis

- Group triggers are naturally separated in W
- In resonance region, expect strong dependence of Apv on W
- ◆ 4 resonance kinematics —► 26 data points

Resonance A_{pv} Results

Theoretical Calculations:

I: T.-S.H. Lee et.al, Phys. Rev. C72, 025204 II: M. Gorchtein et.al, Phys. Rev. C84, 015502 III: N. Hall, W. Melnitchouk, private communication

Summary

DIS results and extraction of C_{2q}

- PVDIS asymmetry is measured with high statistical precision and well controlled systematics;
- from Q²=1.9 GeV² point assuming no higher twist is consistent with the Standard Model value and factor of five improvement over previous data;
- simultaneous fit to both $Q^2=1.1$ and 1.9 GeV² points indicate the HT to be small;
- Resonance Results
 - First Measurement of A_{pv} throughout the resonance region;
 - Measurement generally agrees with theory models
 - Quark-Hadron Duality holds