E08-011 Analysis Status Update

Parity Violating Deep Inelastic Scattering (6GeV)

Diancheng Wang (UVa) for the E08-011 collaboration Hall A Collaboration Meeting, Dec. 15th, 2011

* Physics

* Completed Analysis Tasks:

- Electron DIS Asymmetry Analysis
- Beam Polarization (Compton/Moller)
- Q² Measurement
- Particle Identification Performance
- * Updates since last meeting:
 - Deadtime Correction
 - Radiation Correction
 - Raw Pion Asymmetry

PVDIS Asymmetries

2

Raw Electron Asymmetries

Doing two independent analyses, difference between the two is ~ 0.3 ppm $^{-3}$

Beam Polarization (Compton/Moller)

 $A' = A_{measure} / Polarization$

Tracking Reconstruction / Q² Measurement

DIS asymmetry is sensitive to Q², thus tracking reconstruction
 After calibration, asymmetry uncertainty due to Q² reconstruction is <1%

PVDIS Q² Uncertainties

	LHRS						RHRS	
Kinematics	DIS#1	DIS#2	Res#3		Res#4	Res#5	DIS#2	Res#5
Angle9	12.90	20.00	12.90	12.90	12.90	12.90	20.00	12.90
			4.0,3.66	3				
Ε'	3.66	2.63	4.0,3.66	3.66	3.55	3.1	2.63	3.1
HRS angle survey?	Y	Y	Ν	Ν	N	Ν	Y	Ν
Carbon multi foil data?	Y	Y	Y	Y	Ν	Ν	Y	Y
D (from survey) (mm)	0.5	0.5					0.5	
D (from data) (mm)			0.5		0.5	0.5		0.5
D (no survey, no data) (5mm)								
reactZ from ytarg optimization (mm)	0.3	0.3	0.3		0.3	0.3	0.3	0.3
reactZ from target position (mm)	2.5	2.5	2.5		2.5	2.5	2.5	2.5
$sin \theta$) term, to be used for reactZ	0.22	0.34	0.22		0.22	0.22	0.34	0.22
sieve survey?	N	N	Ν	Ν	N	Ν	N	Ν
sieve data?			Y	Y				
sieve horizontal position, absolute (mm)	0.51	0.51	0.51		0.51	0.51	0.50	0.50
sieve horizontal position, calibration (mm)	0.1	0.1	0.1		0.1	0.1	0.1	0.1
horizontal angle using HAPPEX database (mrad)							0.5	0.5
Total angle uncertainty (mrad), using 1.12m d.d.	0.816	1.003	0.816		0.816	0.816	1.117	0.953
Total angle uncertainty, relative (%)	0.363	0.287	0.363		0.363	0.363	0.320	0.423
Total Q 2 uncertainty (%)	0.725	0.575	0.725		0.725	0.725	0.640	0.847

Particle Identification Performance

	Leau Glass	Gas Cherenkuv	Overall
Electron Efficiency	97%	96%	95%
Pion Rejection Factor	52	200	10e4

Asymmetry correction due to electron efficiency <0.5% pion contamination <0.1%

Deadtime Correction

Deadtime correction to asymmetry: $A' = A_{measure}(1 - Deadtime)$

Deadtime Decomposition:

- Group Deadtime: proportional to group rate; narrow/wide path.
- Veto Deadtime: T1/GC rate; the same for all groups.
- Final OR: individual group triggers are ORed together to form final global trigger.
- → Overall Deadtime: Veto DT (+) Group DT (+) Final OR DT

Deadtime Correction

Deadtime correction to asymmetry: $A' = A_{measure}(1 - Deadtime)$

Methods to study Deadtime:

- → Theoretically, *Deadtime* ∝ *Event Rate*
- FADC data: direct way to study veto deadtime, but low statistics.
- Tagger method: study group deadtime, compare with simulation.
- * Software simulation: simulating all the signals and electronics, so everything.

only way to get overall deadtime.

The Tagger method: (Group Deadtime)

Deadtime Correction

Overall Deadtime:

- Veto Deadtime dominates.
- Deadtime corrections to asymmetry is: ~1.6% +/- 0.5% (Kinematics #1) ~1% +/- 0.3% (Kinematics #2)

Monte Carlo Simulation (HAMC)

DIS: calculated using PDF fits (MRST/CTEQ).
 Elastic Quasi-Elastic : Data/Theoretical calculations
 Resonance:

Some calculation (Misha Gorshteyn), which covers a large part of the resonance

Delta Resonance: Theoretical calculation (Lee & Tao).

Other Resonance: No previous data

No previous data
"Toy Model", eg.
$$A_{toy} = A_{dis} \times \frac{\sigma_{res}}{\sigma_{dis}}$$
 12

Use resonance data to constrain uncertainties.

Kine#	Е	θ	E'	e- rate	A _d	$\Delta A_{_{\sf d}}$
	(GeV)		(GeV)	(KHz)	(ppm)	(ppm)
3 (Mistuned)	4.8	12.9	4.00(L)	1288	-66.3	7.8
4	4.8	12.9	3.55(L)	888	-73.4	6.9
5	4.8	12.9	3.10(R)	791	-60.9	5.15
7	6.0	15.0	3.66	280	-118.8	16.9

13

	Elastic	Quasi	Delta	Dis	Тоу	<asym></asym>	A_central	Correction Factor
Dis #1	58.4 (0.03%)	-26.9 (1.3%)	-68.3 (2.1%)	-85.2 (61.1%)	-94.6 (35.4%)	-87.4 (ppm)	-91.7 (ppm)	1.049
Dis #2	80.7 (0.05%)	-46.4 (0.897%)	-102.4 (1.46%)	-157.0 (95.5%)	-126.2 (2.03%)	-154.4 (ppm)	-161.7 (ppm)	1.047

Error Budget

	Source $\ \Delta A_d / A_d$	$Q^2 = 1.1 \text{ GeV}^2$	$Q^2 = 1.9 \text{ GeV}^2$	
	$\Delta P_{b}/P_{b}$	2.0%	2.0%	
	Radiative Correction	1.0%	1.0%	
	Q^2	0.7%	0.6%	
	Deadtime correction	0.5%	0.3%	
	Target endcap contamination	0.4%	0.4%	
	Transverse Asymmetry	0.2%	0.4%	
	PID efficiency	0.2%	0.2%	
	False Asymmetry	0.2%	0.2%	
	Systematics	2.48%	2.41%	
	Statistical	3.00%	4.00%	
$\Delta A_{\tt d}$	Total	3.89%	4.67%	
	Source $\Delta(2C_{2u}-C_{2d})$			_
	A _d	0.0735	0.0565	
	Parton distribution functions	0.0071	0.0031	
	Electro-weak rad. cor.	0.0038	0.0024	_
2d)	Higher Twist (using 1%/&on A _d	0.0170	0.0064	
	CSV (MRST nominal)	0.0054	0.0031 not	included
C_{2l}	CSV (MRST 90% C.L.)	0.0132	0.0085	
$\Delta(2$	Total uncertainty	0.0739	0.0566	

Error Budget

Raw Pion Asymmetries

Very Preliminary!!

Need Electron Contamination Correction.

To Do

Finalize Everything and Unblind!