PVDIS (6GeV) Data Analysis Report (Detailed)

Diancheng Wang (UVa) Jan. 6th, 2012

- Electron/Pion DIS Asymmetry Analysis
- Beam Polarization (Compton/Moller)
- Deadtime Correction
- Radiation Correction

Asymmetry Analysis:

- Charge Asymmetry: BCM calibration, Intensity Feedback....
- Beam Modulation: Dithering/Regression analysis
- Fine-tuning cuts: low-beam, beam-burp.....
- Electron/Pion DIS, Electron Resonance, Positron, Transverse.....

Intensity Feedback

With passive measures optimized, Feedback zeroes the helicity-correlated effects even further

Low jitter and high accuracy allows sub-ppm Cumulative charge asymmetry in ~ 1 hour

Beam Modulation

$$A_{mes} = A_{raw} - A_{beam} - \sum \beta_i \Delta x_i$$

Two independent methods:

Dithering: intentionally vary the beam parameters
Regression: use the natural motion of the beam

Dithering plots

Dithering slopes (β_i 's) history:

Beam Asymmetries

Raw Electron Asymmetries

Doing two independent analyses, difference between the two is ~ 0.3 ppm $^{-6}$

Raw Pion Asymmetries

Doing two independent analyses, difference between the two is ~ 0.3 ppm $^{-7}$

Beam Polarization / Compton

 $A' = A_{measure} / Polarization$

$$A_{\exp} = P_{\gamma} \times P_{e} \times A_{th}$$

- Analyzing power (Ath) calculated using GEANT4 simulation, and is the leading uncertainty.
- Asymmetry measured using photon detector with integrating FADC DAQ.
 - Stands alone, no coincidence calibration needed.
 - Doesn't care about pile-up, deadtime, etc...

Integrating FADC Analysis, online plots

Analyzing Power

GEANT4 MC to calculate A_{th}

Inputs to the simulation:

- The experimental setup:
 Shielding, alignment.....
 Thickness of the lead shielding
 Radius of the hole of the collimator
- Detector resolution, smearing
- Pileup Effect
- PMT nonlinearity

Vacuum End Cap(steel): 0.05cm Lead shielding thickness: 0.3 cm Collimator: inner radius 0.5cm outer radius 4.0 cm, length 5.0 cm CH2: radius 5.0 cm, length 10.2 cm GSO: radius 3.0 cm, length 15.0 cm

Analyzing Power / GEANT4 Monte Carlo

- Simulated spectrum sensitive to the thickness of lead shielding.
- Difference b/w best fit and real situation gives systematic error on analyzing power.

Beam Polarization (Compton/Moller)

 $A' = A_{measure} / Polarization$

Deadtime Correction

Deadtime correction to asymmetry: $A' = A_{measure} / (1 - Deadtime)$

Deadtime Decomposition:

- Group Deadtime: proportional to group rate; narrow/wide path.
- Veto Deadtime: T1/GC rate; the same for all groups.
- + Final OR: individual group triggers are ORed together to form final global trigger.
- → Overall Deadtime: Veto DT (+) Group DT (+) Final OR DT

Deadtime Correction

Deadtime correction to asymmetry: $A' = A_{measure} / (1 - Deadtime)$

Deadtime Decomposition:

- Group Deadtime: proportional to group rate; narrow/wide path.
- Veto Deadtime: T1/GC rate; the same for all groups.
- + Final OR: individual group triggers are ORed together to form final global trigger.
- → Overall Deadtime: Veto DT (+) Group DT (+) Final OR DT

Methods to study Deadtime:

- Theoretically, $Deadtime \propto Event Rate$
- FADC data: direct way to study veto deadtime, but low statistics.
- Tagger method: study group deadtime, compare with simulation.
- Software simulation: simulating all the signals and electronics, so everything.
 only way to get overall deadtime.

General Idea of Simulation

- ROOT/C++ Design;
- Simulates standard electronics (various electronic modules).
- Useful if you have a complex DAQ system (e.g. PVDIS).
- General idea:

At every time instance (1ns), **Physics** information is generated. **Detectors** (**Leadglass**, **Gas Cerenkov**, **T1** ...) simulates the detector response and generates signals, which are processed by the **DAQ** system (constructed by **Modules**). **I/O** controls input and output.

Inputs:

Leadglass (ADC) signals from data, then converted into analogy signal:

Analog signal $\sim t \cdot e^{-\tau}$, where τ needs to be calibrated

- Physics signal rates. Also from data.
- DAQ map.
- Output:
 - Rootfile containing all signal information with a time variable.
 - Can do post-hats analysis to get tdc spectrum, scaler counting, etc...
- It is NOT GEANT4 based, doesn't simulate particle interaction with materials.
- Efficiency: ~1hour to simulate 10ms. Maybe not fast enough for online monitoring...

Time Constants Calibration

All Other Leadglass PMTs:

Veto Deadtime/FADC Analysis

Veto Deadtime/FADC Analysis

Path Deadtime/Tagger Analysis

The Tagger method to measure deadtime:

Path Deadtime/Tagger Analysis

The Tagger method to measure deadtime:

Path Deadtime/Tagger Analysis

The Tagger method to measure deadtime:

Deadtime Correction

Overall Deadtime:

@100uA	RES #3	RES #4	RES #5	RES #7	DIS #1	DIS #2
Narrow	1.48% +/- 0.44%	2.22% +/- 0.67%	2.06% +/- 0.62%	0.73% +/- 0.22%	01.45% +/- 0.44%	0.89% +/- 0.27%
Wide	1.68% +/- 0.5%	2.62% +/- 0.79%	2.36% +/- 0.71%	0.8% +/- 0.24%	1.64% +/- 0.49%	0.93% +/- 0.28%

EM Radiative Corrections

- Based on Hall A Monte Carlo (HAMC)
- Prerequisites:
 - Radiation: Internal/External Bremsstrahlung, Ionization....
 - Acceptance
 - Simulation checked with data

Inputs:

DIS: calculated using PDF fits (MRST/CTEQ).

Elastic Quasi-Elastic : Data/Theoretical calculations

Resonance:

Some calculation (Misha Gorshteyn), which covers a large part of the resonance

Delta Resonance: Theoretical calculation (Lee & Tao).

"Toy Model", eg.

Other Resonance: No previous data

Use resonance data to constrain uncertainties.

 $A_{toy} = A_{dis} \times \frac{\sigma_{res}}{\sigma_{dis}}$

Hall A Monte Carlo

A Monte Carlo simulation package developed to simulate the physics.

Basic checks of HAMC:

$$Q_{data}^{2} = 1.907$$

 $Q_{hamc}^{2} = 1.896$

Res #3 / Delta Resonance

(Magnets Mistuned)

	Elastic	Quasi	Table	Dis	Тоу	<asym></asym>	Data	
Lee&Tao	80.2 (0.15%)	-46.4 (12.5%)	-89.3 (87.4%)	0	0	-83.66(ppm)	-66.258 +/-7.768 (ppm)	
Misha	80.3 (0.16%)	-46.5 (12.2%)	-89.2 (87.6%)	0	0	-83.68(ppm)		

Resonance #4,5,7 / Toy Model

	Elastic	Quasi	Delta	Dis	Тоу	<asym></asym>	Data
Res #4	54.9 (0.04%)	-25.6 (1.7%)	-67.0 (72.2%)	0	-62.7 (26.1%)	-65.2 (ppm)	-73.4+/-6.9 (ppm)
Res #5	43.8 (0.02%)	-18.9 (1.3%)	-55.2 (3.7%)	0	-59.7 (95.0%)	-59.0 (ppm)	-60.9 +/- 5.15 (ppm)
Res #7	86.4 (0.04%)	-47.5 (0.8%)	-101.2 (1.6%)	-105.6 (21.7%)	-120.7 (75.9%)	-116.4 (ppm)	-118.8 +/- 16.9 (ppm)

DIS Radiative Corrections

	Elastic	Quasi	Delta	Dis	Тоу	<asym></asym>	A_central	Correction Factor
Dis #1	58.4 (0.03%)	-26.9 (1.3%)	-68.3 (2.1%)	-85.2 (61.1%)	-94.6 (35.4%)	-87.4 (ppm)	-91.7 (ppm)	1.049
Dis #2	80.7 (0.05%)	-46.4 (0.897%)	-102.4 (1.46%)	-157.0 (95.5%)	-126.2 (2.03%)	-154.4 (ppm)	-161.7 (ppm)	1.047

Thank You!