E08-005 Update: Quasi-Elastic ³He(e,e'n) Target Single Spin Asymmetries

Elena Long Hall A Collaboration Meeting December 15th, 2011

What are we doing?

- In PWIA, Ay in Quasi-Elastic ³He[↑](e,e'n) is exactly zero
- Previous to this experiment, no measurements of Ay have been done at large Q²
- We will analyze high precision data points taken at 0.1 [GeV/c]², 0.5 [GeV/c]², and 1.0 [GeV/c]²
- Previous experiment at NIKHEF measured A_y at ~0.2 [GeV/c]²
- Faddeev calculations by Bochum group correctly predicted FSI result where other groups expected a much lower value

What are we doing?

[1] J. M. Laget, Phys. Lett. B273, 367 (1991).[2] W. Gloeckle, H. Witala, D. Huber, H. Kamada, and J. Golak, Phys. Rept. 274, 107 (1996).

What are we doing?

- Data will test state of the art calculations at high Q²
 - Neutron form factor extractions must correctly predict this asymmetry
 - In calculating G_Eⁿ from ³He(e,e'n), A_y from ³He[↑](e,e'n) will also be calculated

At high Q², any non-zero result is indicative of effects beyond impulse approximation

Polarized ³He Target

- Optically Pumped Rubidium Vapor used with Potassium to Polarize ³He via Spin Exchange
- MR and EPR Measure Polarization
- Polarization was in Vertical Direction
- Can Polarize up to 60%

Hall A Neutron Detector

Detects neutrons from ³He(e,e'n)
 Along with RHRS allows G_Eⁿ and A_y measurements to be made

Right HRS

Detects quasi-elastically scattered electrons from ³He(e,e'n) and ³He(e,e')
With q along beam polarization on ³He(e,e'), allows a G_Mⁿ measurement to be made

Hall A Neutron Detector

Detects neutrons from ³He(e,e'n)
 Along with RHRS allows G_Eⁿ and A_y measurements to be made

Incident Polarized Electron

Right HRS

Detects quasi-elastically scattered electrons from ³He(e,e'n) and ³He(e,e')
 With q along beam polarization on ³He(e,e'), allows a G_Mⁿ measurement to be made

Hall A Neutron Detector

Detects neutrons from ³He(e,e'n)
 Along with RHRS allows G_Eⁿ and A_y measurements to be made

Incident Polarized Electron

Right HRS

Detects quasi-elastically scattered electrons from ³He(e,e'n) and ³He(e,e')
 With q along beam polarization on ³He(e,e'), allows a G_Mⁿ measurement to be made

Hall A Neutron Detector

Detects neutrons from ³He(e,e'n)
 Along with RHRS allows G_Eⁿ and A_y measurements to be made

Incident Polarized Electron

Right HRS

Detects quasi-elastically scattered electrons from ³He(e,e'n) and ³He(e,e')
 With q along beam polarization on ³He(e,e'), allows a G_Mⁿ measurement to be made

This experiment, E08-005, ran from April 26th through May 10th in Jefferson Lab's Hall A

The kinematics taken were:

Eo [GeV]		E' [GeV]		θ _{lab} [°]		Q² [GeV]²		lql [GeV/c]		θ _q [°]	
1.25		1.22			17.0	0.13		0.359		71.0	
2.43		2.18			17.0	0.46		0.681		62.5	
3.61	3.61		3.09		17.0	0.98		0.988		54.0	
Date	((E ₀ GeV)	RHR: (°)	5	RHRS Po (GeV)	LHRS (°)	LH ((RS Po GeV)	HAN1 (°)	D	BigBite (°)
4/26	1	.245	-17		1.2205	17	1.	2205	71		-74
4/27	1	.245	-17		1.1759	17	1.	1759	71		-74
4/29	3	.605	-17		3.0855	17	3.	0855	54		-74
5/6	3	.605	-17		3.0855	17	3.	0855	62.5	5	-74
5/8	2	.425	-17		2.1813	17	2	.1813	62.5	5	-74

RHRS

Selectron ID

Electron ID

Electron ID

Subtracting background from ToF

Subtracting background from ToF

Subtracting background from ToF

Subtracting background from ToF - Error Estimates

What's being worked on Background-subtracted ToF peaks used to find asym Q²=1.0 GeV², Quasi-Elastic, Vertical ³He(e,e'n)

What's being worked on Background-subtracted ToF peaks used to find asym Q²=0.5 GeV², Quasi-Elastic, Vertical ³He(e,e'n)

ToF Spin Up Signal Events for QE Peak 10³100 # of Good Up Events: 163459 ToF Spin Down Signal Events for QE Pea 10^{3} # of Good Down Events: 148344

What's being worked on Background-subtracted ToF peaks used to find asym

Q²=0.1 GeV², Quasi-Elastic, Vertical ³He(e,e'n)

What's being worked on Background-error

Q²=0.1 GeV², Quasi-Elastic, Vertical ³He(e,e'n)

bins v. # events/bin for spin up -150 -100 -50 50 100 150 200 # bins v. # events/bin for spin down 2.5 2 1.5 0.5 0-200 -100 50 150 -150 -50 0 100 200

What's being worked on Background-subtracted ToF peaks used to find asym

Q²=0.1 GeV², Quasi-Elastic, Vertical ³He(e,e'n) & ³He(e,e'p)

What's being worked on Raw Target SSA vs. Q²

Ø Note: All points are ³He[↑](e,e'n)

Ø Note: All points are ³He[↑](e,e'n)

What's being worked on Raw Target SSA vs. Q²

What's being worked on Raw Target SSA vs. Q²

Note: Q²=0.1 GeV² is ³He(e,e'n) + ³He(e,e'p)

What's being worked on ³He(e,e'n) Double-Spin Asymmetries for E05-102 Transverse ³He(e,e'n) Q²=1 DSA

³He(e,e'n) Double-Spin Asymmetries for E05-102
Longitudinal ${}^{3}He(e,e'n) Q^{2}=1 DSA$

Where are we going?

Include contribution of proton contamination to asymmetry, especially Q²=0.1 GeV²

Finalize Background Subtraction Error Estimates

Finalize scaling factors and systematic errors of asymmetry

(E05-102) Finish raw semi-exclusive ³He(e,e'n) double-spin asymmetries for transverse and longitudinal polarization at Q²=1 and 0.5 GeV²

(E05-102) Extract G^E_n from transversely polarized
 ³He(e,e'n) asymmetry

Thank to the Hall A Quasi-Elastic E05-015, Family of Experiments E08-005, and E05-102

Spokepersons

T. Averett, College of William and Mary (E05-015, E08-05) J. P. Chen, Thomas Jefferson National Accelerator Facility (E05-015) S. Gilad, Massachusetts Institute of Technology (E05-102) D. Higinbotham, Thomas Jefferson National Accelerator Facility (E05-102, E08-005) X. Jiang, Rutgers University (E05-015) W. Korsch, University of Kentucky (E05-102) B. E. Norum, University of Virginia (E05-102) S. Sirca, University of Ljubljana (E05-102) V. Sulkosky, Thomas Jefferson National Accelerator Facility (E08-005)

Run CoordinatorsC. ChenE. JensenN. MuangmaA. TolCamsonne, Thomas Jefferson National Accelerator FacilityFacilityC. ChenE. JensenN. MuangmaW. TiraP. Monaghan, Hampton University S. Riordan, University of Virginia B. Sawatzky, Temple University Y. Qiang, Duke UniversityC. DuttaC. W. KeesE. Piasetzky J. WatJ. WatSulkosky, Massachusetts Institute of Technology Y. Qiang, Duke UniversityD. FlayJ. LeRoseA. J. R. PuckettZ. YB. Zhao, College of William and MaryR. SolgeR. Gilman S. GolgeW. LuoA. SahaL. Z
--

A.

Extra Slides

Yields

 $\text{Yield} = \frac{N}{Q * LT * \rho * \Delta z} * \left(\frac{1}{\varepsilon_{det} * \Delta \Omega * \Delta E'}\right)$

Ignore since it will cancel

P

 \bigcirc

45

P

³He(e,e') Asymmetry for Q²=1 with transversely polarized target is checked against Jin Ge's analysis

