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Asymmetry measurements have been conducted in Jefferson Lab’s Hall A through

electron scattering from a vertically polarized 3He target in the quasi-elastic 3He↑(e, e′n)

reaction. Measurements were made with the target polarized in the longitudinal di-

rection with respect to the incoming electrons, in a transverse direction that was

orthogonal to the beam-line and parallel to the q-vector, and in a vertical direc-

tion that was orthogonal to both the beam-line and the q-vector. The experiment

measured these asymmetries at four-momentum transfer (Q2) of 0.1 (GeV/c)2, 0.5

(GeV/c)2 and 1.0 (GeV/c)2. This is the first time that three orthogonal asymme-

tries have been measured in the same experiment. Results from this experiment will

be useful in testing models used to extract neutron form factors from polarized 3He.

In the transversely polarized target case, an extraction of the electric form factor of

the neutron can be made.
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Chapter 1

Introduction

Atoms, which constitute most of normal matter, are made of electrons (e) and

a nucleus. Particles that make up the nucleus are called nucleons (N) which can be

of two types: protons (p) and neutrons (n). The nucleons themselves are made of

smaller particles called quarks that are held together by the exchange of particles

of the strong nuclear force, called gluons. Nucleons are primarily comprised of two

different flavors of quarks called up and down. In the simplified constituent quark

model the proton is made of two up quarks and one down quark and the neutron is

composed of one up and two down quarks.

Interactions between these particles are used to study the internal structure

of nucleons. For example, consider that 3He nuclei, which are comprised of two

protons and one neutron, are struck by a beam of electrons. If the incoming electron

interacts with the 3He nucleus with low energy and momentum transferred (usually

by the exchange of single virtual photon, γ) such that the nucleus remains intact

and in its ground state (lowest energy state) after the interaction, this is called

elastic scattering. In another case, the electron may interact with the 3He nucleus

with higher energy and momentum transferred and a single nucleon is knocked free

from the nucleus, but the nucleon remains intact and in its ground state. This is

called quasi-elastic scattering. At even higher energy and momentum transferred,

the electron can interact directly with a single quark which can either break the

nucleon apart or leave it in an excited state. This is called deep inelastic scattering.

1



2

A shorthand notation is often used to describe the interaction channel that

is measured. For example, assume that an electron beam is incident upon a 3He

nucleus and knocks out a neutron that is detected. The notation for this would be

3He(e, e′n) where 3He represents the target, e represents the incoming electron, e′

represents the scattered electron and n represents the scattered neutron.

One of the observables that is well suited to extracting structure information

of nucleons is spin asymmetry. Each of the particles mentioned carry a quantum

property called spin, which is mathematically similar to classical rotational angular

momentum but with quantized properties and can be in one of two states called spin

up and spin down. The direction of the spin can be controlled and measured through

the use of magnetic fields. An asymmetry measurement is useful in determining if

a single spin state dominates another one. A simplified example would be

A =
N↑ −N↓

N↑ +N↓
, (1.1)

where N↑ is the number of detected particles with spin up, N↓ is the number of

detected particles with spin down, and A is the asymmetry. A similar asymmetry

can be made with helicity, which is simply the projection of the spin (~S) onto the

direction of momentum (~p) and is written as

h = ~S · ~p. (1.2)

Electron scattering is a well understood process that is useful for probing

the internal structure of nucleons. Thomas Jefferson National Accelerator Facility

(Jefferson Lab) is a prime location to conduct these experiments due to its ability

to produce a highly polarized continuous-wave electron beam. Experimental Hall A
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at Jefferson Lab is particularly suited to perform asymmetry measurements due to

its polarized 3He target and high resolution spectrometers.

This dissertation is organized into six chapters. Chapter 1 discusses the the-

oretical motivation for the measurements taken as well as placing them within an

historical context. Chapter 2 provides an overview of the theoretical calculations

used that are being tested. Chapter 3 describes the equipment used throughout

the experiment. This includes both information about the electron beam and the

equipment within Jefferson Lab’s Experiment Hall A. The methods used for particle

identification are described in Chapter 4. Factors adjusting the asymmetry mea-

surement, such as dilutions, as well as the error analysis methods used are discussed

in Chapter 5. Finally, results from the measurements are presented in Chapter 6.

1.1 Motivation

Measures of nucleon form factors are not direct observables and thus must

be extracted from observables through the use of theoretical models. Assumptions

made in producing the models can have a large effect on the extraction. For example,

there was a discrepancy between extractions of the electric form factor of neutron,

Gn
E , obtained from deuterium scattering and those from 3He as seen in Figure 1.1.

The original models were based on the plane wave impulse approximation

(PWIA) to extract the form factors from cross section asymmetries. At low mo-

mentum transfer, the simple PWIA is known not to accurately describe experimental

results due to the effects of meson exchange currents (MEC) and final-state inter-

actions (FSI). Meson exchange currents are due to the fact that the nucleons in the

3He nucleus are interacting by meson exchange. Thus, apart from the quasi-free

scattering amplitude, there will be contributions from direct coupling to the electro-
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Fig. 1.1: Discrepancy between double-polarized 3He and 2H GE
n Extractions using PWIA

and small contributions from FSI and MEC. The red N[1] and �[2] correspond to extrac-
tions from deuterium where the blue H[3], �[4], and •[5] correspond to extractions from
3He using PWIA models with small contributions from FSI and MEC. The green �[6]
corresponds to 3He data using models that account for large FSI.
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magnetic currents of exchanged mesons. Final-state interactions may be important

since the final state is a system of three interacting nucleons rather than just two

plane waves. To the leading order, FSI can be considered as rescattering of the

struck nucleon (the neutron here) by the residual nucleus.

In the PWIA, a single spin asymmetry transverse to the scattering plane is

calculated to be exactly zero. Early predictions expected contributions from final

state interactions (FSI) and mesonic exchange currents (MEC) to be small above

a momentum transfer squared (Q2) of 0.2 (GeV/c)2, as can be seen by Laget’s

original calculation[7] in Figure 1.2. In the same figure, there is a data point from

an experiment that was done at the Nationaal Instituut voor Kernfysica en Hoge-

Energiefysica (NIKHEF) which showed this asymmetry to be larger than expected.

The Bochum theoretical group, which correctly predicted the observed asymmetry

used full Fadeev calculations that correctly estimated the significant effects of FSI

and MEC. Extractions of the electric form factor of the neutron now had to take

these into account, which led to a re-analysis of the data in Figure 1.1 and largely

removed the discrepancy between 2H and 3He data as can be seen by the green �.

A target single-spin asymmetry has not previously been measured at higher

Q2, leaving contributions from FSI and MEC in this region largely unknown. The

current experiment measured this spin asymmetry (Ay) at Q2=0.1, 0.5, and 1.0

(GeV/c)2.

Extractions of the electric form factor of the neutron can be made from a

double-spin asymmetry where the beam is polarized transverse to the target and

the target is polarized in the direction of the q-vector. The current experiment also

measured this transverse asymmetry (Az) at Q2=0.1, 0.5, and 1.0 (GeV/c)2.

3He(e, e′n) asymmetry measurements in three orthogonal directions have never

been done before in all three directions. The current experiment is the first to also
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NIKHEF [8]

Golak at 0.16 (GeV/c)2 [8]

Nagorny at 0.16 (GeV/c)2 [8]

Laget at 0.16 (GeV/c)2 [8]

0 0.2 0.4

0.0

0.2

0.4

0.6

Q2 [(GeV/c)2]

A0
y

0.6 0.8 1.0

MAMI [9]

Laget Original [7]

Fig. 1.2: Previous A0
y Asymmetry Measurements. Vertical single-spin asymmetry mea-

surements from NIKHEF at Q2=0.162 (GeV/c), MAMI at Q2=0.37 and 0.67 (GeV/c)2,
and various theoretical models are plotted. The Bochum group used Fadeev calcula-
tions to calculate the FSI whereas the others are modified PWIA. PWIA predicts this
asymmetry to be exactly zero.

measure the longitudinal helicity asymmetry (Ax) at Q2=0.1, 0.5, and 1.0 (GeV/c)2.

These measurements provide significantly improved tests of the various theoretical

predictions.

1.2 Experiment Overview

The present experiments were performed at the Thomas Jefferson National

Accelerator Facility in Newport News, Virginia in experimental Hall A. The experi-

ments, E05-015, E05-102, and E08-005, were conducted to learn about the polarized

3He states as well as interactions that occur in electron scattering on 3He. A 3He

target was used that could be polarized in three orthogonal directions. The first,

defined as longitudinal, was parallel to the incident electron beam. The second,

defined as vertical, was orthogonal to both the incident electron beam as well as the
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neutron q-vector. The third, defined as transverse, was orthogonal to the incident

electron beam and parallel to the neutron q-vector. Each of these is indicated in

Figure 1.3

T
L
V

p
p n

n

θq

-θlab

γ*h
e

e

Incident Polarized

Electron
Scattered Electron

q

Fig. 1.3: Definition of Polarization Directions. Vertical target polarization (V) was
used to measure Ay, transverse target polarization (T) was used to measure Az, and
longitudinal target polarization (L) was used to measure Ax.

The incoming electron beam had a polarization of approximately 80%. This

beam, at energies of 1.2, 2.4, and 3.6 GeV, was incident on a 40 cm long 3He cell that

is capable of being polarized up to 60% in the vertical, longitudinal, or transverse

directions. The scattered electrons were detected in a high resolution spectrometer

(HRS) that consists of three focusing quadrupole magnets, one bending dipole mag-

net, and a series of scintillators, wire chambers, and gas Cerenkov detectors used

for particle identification. The knocked out neutrons were detected by the Hall A

neutron detector (HAND) which consists of a matrix of 88 plastic scintillator bars

that are each 10 cm thick arranged in four layers with a veto layer in front that

consists of 64 2-cm thick scintillator bars. HAND has a total thickness of 40 cm.

A coincidence measurement between the HRS and HAND that correlates the

scattered electrons with the knocked-out neutrons was performed. The target had

repeated spin-flips throughout the experiment where the polarization of the 3He
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ARC

Raster

BCM

Møller
Polarimeter

Polarized 3He
Target

BPM

HAND

Preshower

Shower

VDCs

Q1Q2 Q3

D

Scintillators

Gas Cerenkov

Beam Dump

RHRS

Fig. 1.4: Hall A Equipment used for 3He(e, e′n) Measurements

is rotated by 180◦, giving ‘up’ and ‘down’ states in the vertical, longitudinal, and

transverse directions. The scattering asymmetry was measured with the target

polarized in each of these three directions. Of particular importance is the vertical

and transverse asymmetries. The measurement of the vertical single-spin asymmetry

provides new constraints on models of GE
n , as discussed in Section 1.1, while a

measurement of the transverse double-spin asymmetry allows an extraction of GE
n

to be made.



Chapter 2

Theory

2.1 3He Ground State

The experimental study of proton structure is relatively straight-forward due

to readily available free proton targets. This is not the case for studying the internal

structure of the neutron since no free neutron target is available. As such, low-A

targets where the nucleons are weakly bound are often used to approximate a free

neutron target. This is most often done using 2D or 3He. Deuterons are advan-

tageous in that it is the closest target to a free neutron target and is extremely

useful for cross section measurements. 3He is uniquely suited for measurements that

involve the spin of the neutron since the dominate state is the ground state where

the two protons have anti-parallel spin with respect to each other. This causes the

spin of the entire nucleus to be approximately the spin of the neutron. There are

complications, as illustrated in Figure 2.1, but the S ground state makes up ∼90%

of the 3He target wave function.

The simplest method of describing the 3He(e, e′n) reaction is with the plane

wave impulse approximation (PWIA), which is discussed in detail in Section 2.3.

Due to using multi-nucleon targets, extra effects from final-state interactions (FSI)

and meson-exchange currents (MEC) must be taken into account. These reactions

are discussed in detail in Section 2.4. Full three-body calculations, known as Fad-

deev calculations, are very well suited to describing the 3He states at low energy-

transfer. These calculations are discussed in detail in Section 2.6. As energy-transfer

9
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S S' D

Fig. 2.1: 3He States. This cartoon is a representation of the three most common states
of the 3He target. The S ground state makes up approximately 90% of the 3He which
makes this nucleus and ideal candidate for studying neutron spin physics.

is increased, relativistic effects must be taken into account. These are much more

difficult to calculate, so full calculations are not available.

2.2 Formalism

In order to discuss the ideas presented in this dissertation, a number of defini-

tions must be made. Figure 2.2 demonstrates the reaction channel where an incident

electron, e, with energy E, momentum ~k, and helicity h interacts with a 3He nucleon

at rest through a virtual photon, γ. The scattered electron, e′, is deflected at angle

θe′ , has energy E ′, and momentum ~k′.

The electron losses some energy through the interaction of the exchanged pho-

ton which has energy ν = E − E ′ and momentum transfer vector ~q = ~k − ~k′. For

each of the asymmetries presented in this dissertation, ν is a useful quantity for

showing how the asymmetry changes against this energy transfer. The square of the

four-vector momentum transfer is defined as Q2 = ν2 − ~q 2 and is a useful quantity



11

Fig. 2.2: Scattering Definitions. This diagram represents the 3He(e, e′n) reaction.



12

for showing differences of A0
y values. Another useful quantity is the Bjorken scaling

variable xBj which is defined as

xBj =
Q2

2mNν
(2.1)

where mN is the average mass of a nucleon. Quasi-elastic scattering occurs in the

energy range where ν ≈ Q2/2mn or, equivalently, where xBj ≈ 1.

In addition, the polar (θ∗) and azimuthal (φ∗) angles of the target spin direc-

tion with respect to q-vector are imperative to translate experimental asymmetries

to theoretical calculations. Figure 2.3 represents these angles. The asymmetries

Fig. 2.3: Angle Definitions. This diagram demonstrates how θ∗ and φ∗ are related to the
q-vector and the polarization axis.

measured in this experiment are of the form

A(θ∗, φ∗) =
1

P
· Y↑ − Y↓
Y↑ + Y↓

(2.2)
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where P is the polarization of the target (Pt) for single-spin asymmetries or the

polarization of the target times the polarization of the beam (Pt ·Pb) for double-spin

asymmetries, and Y↑(↓) are the yields of spin-up (spin-down) events.

Double-spin asymmetries are commonly used in the extraction of the neutron

form factors. In particular, the asymmetries A‖ = A(0◦, 0◦) and A⊥ = A(90◦, 0◦)

can be used to extract the electric form factor of the neutron (Gn
E). In the PWIA

this takes the form of

Gn
E =

b

a
·Gn

M

(PbPtV )‖
(PbPtV )⊥

A⊥

A‖

(2.3)

where a and b are kinematic factors and V‖(⊥) are dilution factors. [9]

It is important to note that due to experimental constraints, the asymmetries

measured and discussed in this dissertation, AT and AL deviate from A‖ and A⊥

(respectively) by a small rotation. However, the vertical target-spin asymmetry

measured in this dissertation, A0
y, is identical to the theoretical A(90◦, 90◦).

2.3 Plane-Wave Impulse Approximation

The plane-wave impulse approximation (PWIA) is a model for describing electron-

nucleon scattering. In the PWIA, it is assumed that a nucleon is cleanly knocked-out

of a nucleus due to scattering from an incident electron without rescattering with

the residual nucleus. This mechanism is presented as a Feynman diagram in Figure

2.4. In the case of 3He, the residual nucleus is either a deuteron in the case of

two-body break-up, or two unbound nucleons in the case of three-body break-up.

In order to understand PWIA, we start with the differential cross section of

the electron-nucleon reaction which can be written as a product of two tensors: the
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Fig. 2.4: PWIA Diagram. This is the Feynman diagram for plane-wave impulse approx-
imation, adapted from [10].
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leptonic tensor, ηµν , and the hadronic tensor, W µν such that

dσ

dE ′dΩedΩNdEN

=
2α2

Q4

pNMnMb

(2π)3EB

ηµνW
µνδ(EN + EB −M3He − ν) . (2.4)

The hadronic tensor describes all of the nuclear structure and dynamics which is

the product of the nuclear electromagnetic transition currents Jµ(Q)∗fiJ
ν(Q)fi. The

leptonic tensor has been described in extensive detail in [11] and [12]. In the ex-

treme relativistic case, where γ >> 1, the helicity of the electron only appears in

the antisymmetric part of the tensor. When both tensors are contracted, the re-

sulting expressing can be separated into a symmetric and antisymmetric part by

interchanging the indices µ and ν,

2ηµνW
µν = v0(Rfi + hR′

fi) , (2.5)

where

v0 ≡ 4EE ′ cos2 θe

2
. (2.6)

The lepton tensor can be projected onto the coordinate system described in

Figure 2.3 such that ẑ ‖ q, ŷ ‖ (k × k′), and ẑ ‖ (ŷ × ẑ). This projection yields the

kinematic factors vk and vk′ where k = L, T, TL, TT and k′ = T ′, TL′ such that the

energy transfer ν, the four-momentum square Q2, and the electron-scattering angle

θe are within these factors. From this, the six-fold differential cross section can be

described as

dσh

dE ′dΩedΩNdEN
=

pNMnMb

(2π)3M3He
σMott(Rfi + hR′

fi)

≡ Σfi + h∆fi (2.7)
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which is the sum of a helicity-independent part (Σfi) and a helicity-dependent

part (∆fi). The polarized and unpolarized cross-sections can be parametrized by

two helicity-dependent (primed) and four helicity-independent (unprimed) response

functions defined as

Rfi = vLR
L
fi + vTR

T
fi + vTLR

TL
fi + vTTR

TT
fi , (2.8)

R′
fi = vT ′RT ′

fi + vTL′RTL′

fi . (2.9)

The response functions RT ′

fi and RTL′

fi can be separated out by measuring dif-

ferent kinematic factors v. In the case where only the initial state of the electrons

and target are polarized, and where the final state does not have polarization de-

termined, it is possible to describe the components of the cross section in Equation

2.7 in terms of nine structure functions such that

Σfi ∼ vLW
L
fi(∆φ) + vTW

T
fi(∆φ)

+ vTL

[
cosφNW

TL
fi (∆φ) + sinφNW̃

TL
fi (∆φ)

]
(2.10)

+ vTT

[
cos 2φNW

TT
fi (∆φ) + sin 2φNW̃

TT
fi (∆φ)

]
,

∆fi ∼ vT ′W̃ T ′

fi (∆φ) + vTL′

[
sinφNW

TL′

fi (∆φ) + sin 2φNW̃
TL′

fi (∆φ)
]

, (2.11)

where the structure functions are dependent on the kinematic variables q, ν, θN , pN , EN ,

and the target spin orientations θ∗ and ∆φ ≡ φ∗ − φN . In the PWIA, the terms

W̃L
fi, W̃

TT
fi , and W TL′

fi are equal to zero [13]. If the target is unpolarized, then all

terms with a ˜ are also equal to zero. Measuring these response functions provides

a test for the PWIA as well as any perturbations to the approximation which could

be caused by FSI or MEC.
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In the PWIA, the electromagnetic current of the nucleus is the sum of currents

of A free nucleons. These nucleons are bound inside the nucleus which causes them

to be off-shell which causes current conservation to be broken. Because of this,

the PWIA is am ambiguous formalism and arbitrary choices need to be made for

an off-shell extrapolation of the PWIA on-shell vertex[14]. The half-off-shell γNN

vertex generally involves the four form factors[15] which can be extrapolated to the

Pauli and Dirac form factors, or the two Sachs form factors, of the nucleon [16].

Various extrapolations [13][16] have been presented in order to find an ex-

pression for the spin-dependent off-shell electron-nucleon cross section, σeN
σ̂ , which

results from the fact that the electromagnetic current is a one-body operator in the

PWIA[17]. From these descriptions, σeN
σ̂ is reduced to the single-nucleon cross sec-

tion where the kinematics are on-shell. In the pPWIA, this cross section connects

the leptonic tensor to part of the hardronic tensor (from Equation 2.4) that depends

on the γNN vertex presented in Figure 2.4 and the beginning of this section. The

general cross section can now be described in terms of the product of σeN
σ̂ and the

spin-dependent spectral function SN
σ̂ (p, Es,Ω

∗) [13][18] by

dσh

dE ′dΩedΩNdEN
=
pNMNMrec

Erec

∑

σ̂

σeN
σ̂ SN

σ̂ (p, Es,Ω
∗) (2.12)

where SN
σ̂ (p, Es,Ω

∗) is the probability density of finding a nucleon N with separation

energy Es, three-momentum p, and spin projection, σ̂ = +(−), parallel (antipar-

allel) to the spin of the 3He nucleus. The general form of the spectral function
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is

SN
σ̂ (p, Es,Ω

∗) =
1

2

{
fN

0 (p, Es) + fN
q (p, Es)σN · σ3He

+ fN
2 (p, Es)

[
(σN · p̂)(σ3He · p̂) − 1

3
σN · σ3He

]}
(2.13)

where fN
0 (p, Es) is a spin-averaged function and fN

1 (p, Es) and fN
1 (p, Es) are two

spin-dependent functions. Each of these is described in detail in [18] in terms of the

momentum-space partial wave of the 3He ground state wave function. The spectral

function is directly related to the tri-nucleon bound state and can be described by

SN
σ̂ (p, Es,Ω

∗) =

1

(2π)3

∑

A

P(A)
∑

B

{〈
ψ3He

∣∣ a+
pσ̂′ |ψB〉 〈ψB| apσ̂

∣∣ψ3He
〉}
δ(Es − E3He − EB) (2.14)

where
∣∣ψ3He

〉
is the 3He bound state solution with binding energy E3He and |ψB〉

is the wave function of the remaining nucleons with internal excitation energy EB,

and a+
pσ̂′ (apσ̂) is the creation (annihilation) operator. Summing over B takes all

nucleon subsystems of the final state into account and summing over A weighted by

P(A) yields the distribution of the ground state angular momentum, JA, over the

nuclear substrates MJA
. The result of Equation 2.14 can be used to determine the

six-fold differential cross section.

In order to relate the cross section of Equation 2.12 to measurable observables,

this cross section can be written as

dσ(h, S)

dΩedEedΩndpn

=
dσ0

dΩedEedΩndpn

× [1 + S · A0 + h(Ae + S · A′)] (2.15)

where h is the helicity of the electron, S is the spin of the 3He target, σ0 is the
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spin-averaged cross section, A0 ≡ (A0
x,A

0
y,A

0
z) are the target analyzing powers,

Ae is the electron analyzing power, and A′ ≡ (A′
x,A

′
y,A

′
z) are the spin-correlation

asymmetries. In this calculation, A′
y = A0

x = A0
z = 0. In the PWIA, due to a

combination of time reversal invariance and hermiticity of the transition matrix, A0
y

is exactly zero. As such, any measurement of A0
y that is non-zero is indicative of

higher-order effects such as FSI and MEC.

2.4 Final-State Interactions and Meson-Exchange Currents

Because there is no free neutron target, the reaction mechanism of neutron

scattering from nuclei must take into account effects from the nuclear medium. In

particular, final-state interactions (FSI) and meson-exchange currents (MEC) must

be accounted for.

Final-state interactions occur when the knocked-out nucleon interacts again

with the remaining nucleons. An example diagram of this type of interaction is

presented in Figure 2.5. Naively, as the momentum-transfer is increased, the amount

of time that such interactions can occur in is decreased and so it would be expected

to see effects of FSI drop off at higher Q2. The PWIA does not include such effects,

although Laget has perturbed the approximation to include them as discussed in

Section 2.5. They are calculated exactly in full Faddeev calculations which are

discussed in detail in Section 2.6.

Meson-exchange currents occur when the incident electron produces mesons,

such as π- and ρ-mesons, which are exchanged with the nucleons in 3He. The

contribution of these effects is expected to be much smaller than FSI, especially at

lower Q2, although still important in understanding the interactions that occur in

3He(e, e′n) scattering. In the case of Laget’s calculation, MEC are taken as a further
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Fig. 2.5: FSI Example. The diagram presented here is an example of final-state interac-
tions where the recoiling nucleon interacts with the rest of the nuclear system after the
initial scattering from the incident electron.

perturbation of PWIA. In the full Faddeev calculations, MEC are included in the

the nucleon-nucleon potential. Each of these cases only accounts for π- and ρ-meson

exchange currents, ignoring heavier mesons. Diagrammatic examples of MEC are

presented in Figure 2.6.

Fig. 2.6: MEC Examples. The diagrams presented here are examples meson-exchange
currents where the incident electron excites the nuclear state in a manner that it produces
mesons, such as π- and ρ-mesons, which interact with the nucleons.

2.5 Original Laget Calculations

In the early 1990s, Laget was working on calculations to estimate the effects

of FSI and MEC in the 3He(e,e’n) reaction. This work was based on the PWIA

and included effects from FSI and MEC. Although his calculations at the time

underestimated the effects from FSI and MEC, the qualitative understanding of
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these calculations still holds.

The general expression of the cross section for (e,e’n) reactions is described as

dσ(h, S)

dΩedEedΩndpn

=
dσ0

dΩedEedΩndpn

× [1 + S · A0 + h(Ae + S · A′)] (2.16)

where h is the helicity of the electron, S is the spin of the target, σ0 is the unpolarized

cross section, A0 is the target asymmetry when the target is unpolarized, Ae is the

electron asymmetry when the target is unpolarized, and A′ is the spin transfer

asymmetry when both the beam and target are polarized.

The components of the spin transfer polarization of the outgoing nucleon are

of the form

σ0P ′
y =

(−q2ǫ(1 − ǫ)

2ν2

)1/2

sin φσ′
TL(y) (2.17)

σ0P ′
x,z = −

(−q2ǫ(1 − ǫ)

2ν2

)1/2

cos φσ′
TL(x, z) + (1 − ǫ2)1/2σ′

TT (x, z) (2.18)

where ν, q2, and ǫ are the energy, squared mass, and the polarization of the

virtual photon respectively and σ′
TT (TL) are the transverse-transverse (transverse-

longitudinal) interference cross sections. In coplanar geometry, P ′
y = P 0

x = A′
y =

A0
x = A0

z = 0 due to the sin and cos terms.

In PWIA, due to a combination of time reversal invariance and hermiticity of

the transition matrix, P 0
y = A0

y = 0. Laget perturbs the PWIA by including FSI and

MEC, diagrams of which are shown in Figure 2.8, which cause P 0
y 6= 0 and A0

y 6= 0.

Before A0
y was experimentally measured, Laget estimated these effects from FSI and

MEC to play an important role at low Q2 and to drop off as the momentum-transfer

increased as shown in Figure 2.7.[7]

Since this time, Laget has updated his calculations to meet with experimental

constraints, however the full range has not been calculated as it is shown here.
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Fig. 2.7: Original Laget Calculations. This plot shows the results from the original
Laget calculations form P 0

y and A0
y. Although Laget has since updated his calculations

to include larger effects due to FSI and MEC, they are only calculated for individual Q2

values and not for the range presented here. [7].

Fig. 2.8: Diagrams Chosen by Laget. The diagrams presented here are the perturbations
of PWIA that Laget included in his analysis of A0

y . The top row consists of diagrams of
two-body break-up, the center row of three-body break-up, and the bottom diagram is
for pion electroproduction. [8].
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Although the magnitude of the effects of FSI and MEC are larger than was originally

expected, qualitatively this understanding of A0
y still holds.

2.6 Faddeev Calculations

Faddeev calculations are full calculations of the three-body Schrödinger equa-

tion in non-relativistic kinematics. Processes such as MEC are absorbed into the

nucleon-nucleon potential. They consist of a set of coupled integral equations that

have unique solutions for three-body scattering. These calculations have been done

by the Bochum group for A0
y, A‖, and A⊥ at low Q2.

Faddeev showed that rearranging the perturbation series of the scattering T -

matrix will lead to unique solutions of the 3N Schrödinger equation. This system

includes two-body and three-body interactions, all of which have a finite range

beyond which the force acting on all three nucleons becomes negligible.

The three particles are labeled i, j, and k = 1, 2, 3 such that i 6= j 6= k as shown

in Figure 2.9 where j and k are interacting and i is a spectator. In these coordinates,

the center of mass of the system is fixed by setting the total momentum, P , equal

to zero. The momentum of the spectator particle, qi is defined with respect to the

center of mass of the interacting particles with momentum pi. The masses of the

particles are defined as mi. In momentum space, the independent variables are

P =
3∑

i=0

ki ≡ 0, p1 =
k2 − k3

2
, q1 =

2k1 − (k2 + k3)

3
(2.19)

where ~ = 1, m1 = m2 = m3, M = 3m, µp = m/2 is the reduced mass of the

interacting particles and µq = 2m/3 is the reduced mass of the entire system. The
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Fig. 2.9: Three-Body Coordinates. This cartoon identifies the three independent Jacobi
coordinates for the three-body system where particles j and k interact and particle i is
a spectator. The spacial relations, xi and yi, also correspond to the momentum pi and
qi, respectively.



25

non-relativistic Schrödinger equation for this system is defined as

(E −H) |Ψ〉 = (E −H0 − V ) |Ψ〉 = 0 (2.20)

where

H0 =
3∑

i=1

ki · ki

2mi

=
P 2

2M
+

p2
i

2µp

+
q2
i

2µq

, and (2.21)

V0 =

3∑

i=1

Vi = V0 + V1 + V2 + V3 . (2.22)

The free Hamiltonian is described above by H0, the interaction between the particles

is defined as V which is the sum of three independent nucleon-nucleon potentials (Vi

where i = 1, 2, 3) and one three-body potential, V0. In order to keep the computation

relatively simple, V0 is usually neglected. This is the case in Equation 2.20. Although

not described in detail here, it should be noted that the Coulomb potential is also

included in the full Faddeev calculations by the Bochum group.

In order to solve the Schrödinger equation, Green’s functions are introduced

which take the form of

G(z) ≡ (z −H)−1 and G0(z) ≡ (z −H0)
−1 (2.23)

where z is a variable with dimensions of energy. These functions are related by

G(z) = G0(z) +G0(z)V G(z)

= G0 +G0V G0 +G0V G0V G0 + · · · (2.24)

The transition operator, T (z), is related to the potential V by the Lippman-Schwinger
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equation such that

T (z) = V + V G0(z)T (z)

= V + V G(z)V . (2.25)

If the potential V from Equation 2.22 is substituted into Equation 2.25, then

the equation can be expanded into an infinite series where the operator G0 is the

propagator of the non-interacting three-body system and the two-body interaction

Vi is an intermediary connecting particles j and k. The corresponding Green’s

function to this expansion is defined as

G =G0 +G0

∑

i

ViG0 +G0

∑

i

ViG0

∑

j

VjG0

+G0

∑

i

ViG0

∑

j

VjG0

∑

k

VkG0 + · · · (2.26)

which can be expressed graphically as presented in Figure 2.10.

Fig. 2.10: Green’s Function Expansion. This series of diagrams is the expansion of the
Green’s function operator, G(z), in terms of the free propagator, G0, and two-body
interactions.

Within the expansion displayed in Figure 2.10 there are three infinite series

of disconnected diagrams. One of these is displayed in Figure 2.11. The non-

interacting particle has an unchanging momentum which causes a δ-function to

remain in the momentum representation. The series of diagrams where one particle
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Fig. 2.11: Disconnected Diagrams. The infinite series displayed in Figure 2.10 contains
three subsets which each contain and infinite number of disconnected diagrams where
the spectator particle does not interact with the other two. This is an example of one of
those series where i is the non-interacting particle.

is disconnected corresponds to the two-body T -matrix in 3N-space. The two-body

transition operator, Ti, can similarly be defined as

Ti ≡ Vi + ViG0(z)Ti . (2.27)

From this, the channel Green’s function can be defined as

Gi ≡ (z −H0 − Vi)
−1 (2.28)

and is presented in diagrammatic form is Figure 2.12.

Fig. 2.12: Channel Operator Diagrams. The series displayed here corresponds to the
infinite series of disconnected diagrams for the channel operator Gi.

Faddeev described the full operator as the composition of four pieces defined as

G(z) = G0(z) +G(1)(z) +G(2)(z) +G(3)(z) (2.29)

where G0(z) is the free propagator and G(i)(z) are three Faddeev components. These

components are displayed in diagrammatic form in Figure 2.13. Through the use of

Gi, all subsets where only two particles interact are defined in one term.
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Fig. 2.13: Faddeev Component. The series displayed is an expansion of one of the
Faddeev components G(i)(z) in terms of the channel Green’s function Gi.

The final term in Figure 2.13 can be expanded out as represented in Figure 2.14.

The Faddeev component G(i) always starts with an interaction between particles i

and j and ends with an interaction between particles i and j or i and k. Permutations

of this component where the diagrams differ only by which particles are interacting

are defined as G(j) and G(k) which leads to the coupling described in Equation 2.29.

Fig. 2.14: Multiple Interaction Term Expansion. The final diagram in Figure 2.13 is
expanded in detail here. The Faddeev component always starts with an interaction
between particles i and j and ends with an interaction between particles i and j or i and
k.

In order to solve the non-relativistic Schrödinger equation described in Equation

2.20, the wave function is decomposed into three Fadeev calculations. The wave
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function is thus described by

|Ψ〉 ≡ |Φ0〉 +
3∑

i=1

|ψi〉F (2.30)

where

|Φ0〉 = lim
ǫ→0

iǫG0 |Φ0〉 and |ψi〉F = lim
ǫ→0

iǫG(i) |Φ0〉 (2.31)

Each of the Faddeev components, |ψi〉F can be written as the decomposition

of the full Green’s function G(z) and the solution |φi〉 of the channel Hamiltonian

Hi = H0 + V where |φi〉 is the product of a bound state two-body wave function

and a plane wave for a single free particle. The eignenvalue of Hi |φi〉 is given by

Hi |φi〉 =

(
ǫi +

3

4m
q2
i

)
|φi〉 = Eqi

|φi〉 (2.32)

where ǫi is the binding energy of the two-body system. It is required to solve the

Faddeev equations for both the bound state and the continuum in order to describe

electron scattering from a 3He nucleus. The Faddeev equations can be described in

diagrammatic form as shown in Figure 2.15 or in matrix notation as




|ψ1〉F

|ψ2〉F

|ψ3〉F




=




|Φ0〉

0

0




+




0 T1(z) T1(z)

T2(z) 0 T2(z)

T3(z) T3(z) 0



G0(z)




|ψ1〉F

|ψ2〉F

|ψ3〉F




(2.33)

The full Faddeev calculations have been solved exactly by the Bochum group for

low Q2 where relativistic effects are not necessary. They are presented along with the

experimental values measured for A0
y in this dissertation and include contributions

from both FSI and MEC. In addition, calculations have been done for both the

3He(e, e′d) and 3He(e, e′p) channels which, when constrained to experimental data,
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Fig. 2.15: Faddeev Equations. This set of diagrams is equivalent to the Faddeev equations
given in Equation 2.33.

give information into the contributions of the S, S’, and D states of 3He.



Chapter 3

Setup of the Experiment

3.1 Overview of CEBAF and Hall A

The experiment presented in this dissertation used the Jefferson Laboratory’s

Continuous Electron Beam Accelerator Facility (CEBAF) and was performed in

experimental Hall A. CEBAF is a superconducting radio frequency electron accel-

erator which was able to provide a beam with polarization greater than 80% and

energies up to 6 GeV. An overhead picture of the lab can be seen in Figure 3.1. The

accelerator is discussed in detail in Section 3.2.

Fig. 3.1: Aerial View of Jefferson Lab.

Hall A contained equipment which included two High Resolution Spectrom-

eters (HRS), the Hall A Neutron Detector (HAND), and a polarized 3He target

31



32

capable of being polarized in three orthogonal directions. A schematic of the equip-

ment used in Hall A can be seen in Figure 3.2. The equipment in Hall A is discussed

in detail in Section 3.3.

Hall A

ARC

Compton
Polarimeter Raster

BCM eP

Møller
Polarimeter

Polarized 3He
Target

BPM
Wire

Chambers

Trigger Plane
(Scintillators)

HAND

Preshower
Shower

VDCs

Q1
Q2

Q3

D

Scintillators

Gas
Cerenkov

Pion Rejectors
(Pb Glass)

Beam Dump

Left HRS

Right HRS
BigBite

D

Fig. 3.2: Hall A Experimental Setup. This shows all of the Hall A equipment that was
in place during this experiment. The beam line downstream from the target (towards
the right in the schematic) corresponds to a 0◦ angle.

Due to an improved polarized 3He target, this experiment was able to take

measurements with the target polarized in each of the three orthogonal directions.

This is the first time that an experiment has simultaneously measured the 3He(e, e′n)

asymmetries with the polarization in three dimensions. Details of the kinematics

used during this experiment are discussed in Section 3.4.
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3.2 CEBAF and the Electron Beam

Jefferson Lab’s CEBAF is able to produce an 80%-polarized, continuous-wave

electron beam. The beam starts as a polarized electron source which enters the

main accelerator through the injector. It is accelerated up to 6 GeV by two super-

conducting radio frequency (SRF) linear accelerators and two sets of recirculating

arcs. The beam can be circulated up to five times with each pass increasing the

energy by up to 1.2 GeV. The final beam is able to be simultaneously sent to the

three different experimental halls by a beam switchyard. Each experimental hall

can receive beam and different energies, so long as they are integer multiples of a

single pass. The different components of CEBAF are described in detail below.

A

B
C

Helium
Refrigerator

Extraction elements

North Linac
(400 MeV, 20 cryomodules)

Injector
(45 MeV, 2 1/4 cryomodules)

Injector

Halls

Fig. 3.3: CEBAF Layout. This shows the layout of the Continuous Electron Beam
Accelerator Facility.
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3.2.1 Injector

The polarized electron source is a GaAs cathode that is hit by a circularly

polarized laser beam. A Pockels cell causes changes to occur in the laser polarization

every 33.3 ms which in turn causes a flip in the helicity of the electrons every 33.3

ms. In order to reduce systematic effects dependent on the beam helicity, a half-wave

plate can be inserted which reverses the beam’s helicity.

These newly-polarized electrons are accelerated to 100 keV and injected into

the main accelerator through two superconducting radio-frequency (SRF) cavities.

These two SRF cavities are referred to as a quarter-cryomodule, since the main

accelerator consists of cryomodules that each contain eight SRF cavities.

3.2.2 Linear Accelerators

The heart of CEBAF is the niobium SRF linear accelerators (LinAcs). There

are two sets of these, one towards the north and one towards the south as shown in

Figure 3.3. Each contains 20 cryomodules which in turn each contain 8 SRF cavities.

Superfluid He is used to keep the niobium at a superconducting temperature of

2 K. In the LinAcs, electrons are accelerated up to 600 MeV before entering a

recirculating arc which will allow them to be accelerated again. Due to the unique

construction of Jefferson Lab, electrons may pass through the LinAcs up to five

times.

3.2.3 Recirculating Arcs

The recirculating arcs consist of a dipole ”spreading” magnet, followed by

a series of dipole magnets which steer the electron beam into a 180◦ arc, and a

final dipole ”recombining” magnet. Each arc contains a beam pipe for electrons at
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each pass energy. Lower energy electrons, which are easier to steer, are diverted to

the higher arcs while higher energy electrons through the lower arcs. Each of the

different energy beams are then re-combined at the end of the arc to be put through

the LinAcs again.

3.2.4 Beam Switchyard

The beam switchyard is used to send beam to each of the lab’s experimental

halls. It consists of RF separators, septa, and dipole magnets which separate and

divert the beam.

3.3 Hall A

This experiment was performed in Hall A of Jefferson Lab which is uniquely

suited to measuring 3He(e, e′n) asymmetries due to its high resolution spectrometer

(HRS), polarized 3He target, and neutron detector. The Hall also contains the Big

Bite spectrometer, as well as a second HRS that were used for the simultaneous mea-

surements of the 3 ~He(~e, e′p), 3 ~He(~e, e′d), 3 ~He(~e, e′), and 3He↑(e, e′) asymmetries and

which are explored in detail by M. Mihovilovic[19], G. Jin[20], and Y.-W. Zhang[21].

Figure 3.4 shows the placement of the equipment used for the 3He(e, e′n) asymme-

tries in Hall A.

3.3.1 Beam Measurements

Several pieces of equipment were used in order to understand the incoming

electron beam incident upon the target. A variety of parameters were measured, an

overview of which can be seen in Table 3.1 and details of which are presented in the

sections below.
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Fig. 3.4: Hall A Equipment used for 3He(e, e′n) Measurements

Parameter Method Accuracy Comments
Energy Arc 2 × 10−4 Invasive
Energy Arc 5 × 10−4 Non-invasive

Energy Width OTR ∆E
E

≈ 1 × 10−5(σ) Non-invasive
Current (≥ 1 µA) 2 RF Cavities ≤ 5 × 10−3 Non-invasive

Position (at target) 2 BPM/Harp 140 µm x, y on line
Direction (at target) 2 BPM/Harp 30 µrad θ, φ on line
Stability (at target) Fast Feedback ≤ 720 Hz motion
Stability (at target) Position ≤ 20 µm (σ)
Stability (at target) Energy ≤ 1 × 10−5 (σ)

Polarization Møller ∆P
P

≈ 2% Invasive

Table 3.1: Methods to Determine Beam Parameters. This table contains an overview of
the methods and equipment used to determine beam parameters. The Accuracy column
is the width of an assumed Gaussian distribution. Techniques labeled ”Invasive” require
dedicated beam time and interrupt the main experiment.[22]



37

3.3.1.1 Arc

The energy of the beam is determined by measuring the deflection of the beam

in the arc section of the beam-line and the field integral of eight dipole magnets.

Nominally, the angle of the beam is 34.3◦. A set of superharp wire scanners are used

to determine the position of the incoming and outgoing beam and thus measure

the angle. The integrated magnetic field of the eight quadruple magnets that the

beam passes through in that bend is also measured. These are related to the beam

momentum (and thus energy) by

p = k

∫
~B · d~l
θ

(3.1)

where k = 0.299792 GeV·rad
T·m·c [22].

θ

Control

Electronics

Entrance Angle

Exit Angle

Superharps

Superharps To Hall A

1
2

3
4
5

6
7

8

9

Fig. 3.5: Arc Layout. Displayed is the layout of the arc energy monitor which consists
of 9 quadruple magnets, four superharp wire scanners, and control electronics.
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3.3.1.2 Beam Current Monitors

Hall A’s Beam Current Monitors (BCMs) consist of an Unser monitor and two

RF cavities. They are located 25 m upstream of the target. They are calibrated

against a cavity monitor and a Faraday Cup which are located at the injector of

CEBAF. In order reduce noise and drift, the Unser monitor must have extensive

magnetic shielding and the temperature must be stable. Due to drifts caused by

having the beam running through the monitor over a time scale of minutes, it can’t

be used to continuously measure the beam current.

The RF cavities are stainless steel cylindrical high-Q waveguides tuned to

the frequency of the beam (1.497 GHz) which provide output voltages that are

proportional to the beam current. The output signals are doubled so that one

provides a sampling and the other an integration. The sampling signal is recorded

into the data stream approximately every 2-5 s. Each of the integration signals

are sent into amplifiers of gains 1, 3, and 10 which extend the non-linear region at

lower currents. Each of these integrated signals (three from each BCM) are recorded

which allows for a measurement of the integrated charge during any given run[22].

3.3.1.3 Beam Raster

In order to prevent damage to the glass target cell, the beam was spread out

through the use of quickly changing magnetic fields. This process is called rastering.

Rastering also allows for a thinner glass wall on the target, which reduces background

scattering. Typically, the raster size is a 2 mm × 2 mm square, as shown in Figure

3.6. The magnetic fields are provided by dipole magnets that are located 23 m

upstream of the target.
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Fig. 3.6: Raster Example. Displayed is an example of the 2 mm × 2 mm raster used
during the experiment. Data here is from Run 22487.

3.3.1.4 Beam Position Monitors

Two beam position monitors (BPMs) consisting of a 4-wire antenna array

tuned to the fundamental RF frequency of the beam were used to determine the

position and the direction of the electron beam on the target. They were placed

7.542 m and 1.286 m upstream of the target. The relative position of the beam

is determined to within 100 µm for currents above 1 µA through the standard

difference-over-sum technique[23]. The absolute position of the BPMs is calibrated

through the use of superharp wire scanners located next to the BPMs. The averaged

position over 0.3 seconds is logged into the EPICS datastream[22].

3.3.1.5 Møller Polarimeter

A Møller polarimeter was used to measure the polarization of the beam in

Hall A. It measures a beam-target double-spin asymmetry from Møller scattering

( ~e− + ~e− → e− + e−) to extract the beam polarization. The polarimeter consists

of a ferromagnetic foil target (which is magnetized in a magnetic field of about
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24mT) as the source of the polarized electrons and a magnetic spectrometer. The

spectrometer consists of three quadruple magnets, one dipole magnet, a steel col-

limator, and two arms of lead-glass calorimeters. The layout of the polarimeter is

shown in Figure 3.7. The steel collimator is 6 cm thick and has a 2 cm radius hole

which allows the scattered electrons through. The spectrometer detects scattered

electrons in a kinematic range of 75◦ < θCM < 105◦ and −5◦ < φCM < 5◦ where

θCM is the azimuthal angle.[22] The Møller polarimeter is an invasive piece of equip-

ment and requires dedicated beam time with runs taking approximately an hour.

Measurements of the beam polarization can be found in Section 5.1.2.
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Fig. 3.7: Møller Polarimeter Layout. Displayed is the layout of the Møller polarimeter
where (a) is a side view and (b) is a top view. The trajectories dispelled belong to a
simulated event of Møller scattering at θCM = 80◦ and φCM = 0◦ at a beam energy of
4 GeV.[22]
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3.3.2 Polarized 3He Target

E05-102 and E08-005 would not have been possible if not for Hall A’s polarized

3He target system. Polarization of up to 60% was obtained through the use of a spin

exchange and optical pumping (SEOP) cell. The target consists of glass cell which

holds the He and alkali-metal vapor, a laser-based optical pumping to polarize the

target, a series of Helmholtz coils to hold the polarization, an electron paramagnetic

resonance (EPR) coil, and nuclear magnetic resonance (NMR) coils. The setup of

the target system is shown in Figure 3.8. Target polarization of >50% was achieved

for each of the three polarization directions. The different polarization directions

are shown in Figure 3.9.
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Fig. 3.8: Target System. This is a schematic of the target system. Not shown is a third
set of Helmholtz holding coils which were placed orthogonal to each pair shown.
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Fig. 3.9: Target Polarization Directions. The 3He target used in this experiment was
oriented in three orthogonal directions: transverse to both the beam and q-vector (Ver-
tical, V), transverse to the beam and longitudinal with the q-vector (Transverse, T), and
longitudinal with the scattered electron (Longitudinal, L).

3.3.2.1 Target Cell

The target cell is made up of a pumping chamber, a transfer tube, and a target

chamber as shown in Figure 3.10. It contains 3He pressurized to about 0.69 MPa.

The pumping chamber is where polarization of the 3He occurs through optically-

pumped spin-exchange.The particular type of cell used was a RbK hybrid cell. Cir-

cularly polarized laser light excited the Rb atoms which collide and exchange spin

with both 3He and K atoms. The now-polarized K atoms will also collide with 3He

atoms and cause the 3He to polarize. The second process helps to reduce the time

needed for the total of the target to be polarized[22]. A diagram of these processes

is shown in Figure 3.11. The target chamber is a 40 cm long tube where the beam

passes through. Two cells were used for these experiments: “Dominic” when the

target was polarized vertically, and “Moss” when the target was polarized longitu-

dinally and transversely. The glass walls of each had a thickness of <1.7 mm and a

window thickness of <0.16 mm.
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Fig. 3.10: Target Cell. This schematic of the target cell shows the pumping chamber,
transfer tube, and target chamber. All measurements are design specifications and may
have been adjusted slightly in production.
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Fig. 3.11: Spin Exchange Processes. This cartoon shows the spin exchange processes of
Rb, K, and 3He.
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3.3.2.2 Optical Pumping System

A laser system capable of producing approximately 50 W of light at 795 nm

was used to induce polarization in the Rb mixture. It consisted of three 30 W diode

lasers. The light was routed via fiber optics and polarizing optics to the pumping

chamber of the target cell. The laser light was polarized through the use of a

polarizing beam splitter, which polarized the beam linearly, followed by a quarter-

wave plate which polarized the light circularly. The polarization of the light was

able to be reversed through through the use of an insertable half-wave plate, which

combined with reserving the direction of the holding field would reverse the direction

of 3He polarization[22].

3.3.2.3 NMR and EPR

Two systems were used to measure the polarization of the target: nuclear mag-

netic resonance (NMR) and electron paramagnetic resonance (EPR). The 3He NMR

signal was calibrated against that a water cell through the technique of adiabatic

fast passage (AFP) to find the polarization. NMR signals were recorded every four

hours throughout the experiment. They were cross checked with EPR measure-

ments of Rb atoms to determine the polarization of the target. There were 15 EPR

measurements taken over the entire run period.

3.3.3 High Resolution Spectrometer

Jefferson Lab’s Hall A has two primary detectors called the Left and Right

High Resolution Spectrometers (LHRS and RHRS, respectively). The 3He(e, e′n)

channel used in the measurements in this thesis only used the RHRS. The detector

consisted of three quadruple magnets, one dipole magnet, and a detector package.
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The detector package for this experiment consisted of two multi-wire vertical drift

chambers (VDCs), two trigger scintillators (S1 and S2), a gas Cerenkov detector,

and two planes of lead glass calorimeters (Preshower and Shower). The layout of

each of these is shown in Figure 3.12.
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Fig. 3.12: RHRS Layout. This shows the placement of the detectors inside of the right
High Resolution Spectrometer.

3.3.3.1 Vertical Drift Chambers

The RHRS has two planes of vertical drift chambers (VDCs) which measure

the position and angle of incidence of recoiled electrons to within ±125 µm. Each

VDC consists of two orthogonal planes of wires held at a high voltage and immersed

in a bath of gaseous argon and ethane. As charged particles travel through the gas,

it becomes ionized and is attracted to the wire planes. Upon collision with the wires,
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a signal pulse is generated which is recorded using multi-hit TDCs. Each VDC has

a 2118 mm × 288 mm active area. The geometry of the VDCs is shown in Figure

3.13.

2.1
18

 m

0.288 m

Nominal 45°
Particle Trajectory

45°

45°

45°

26 mm

0.335 m

Fig. 3.13: VDC Relative Geometry. This schematic shows the relative angles and dis-
tances of the VDCs with respect to each other. Each VDC contains an upper (V) and
lower (U) plane of wires that orthogonal to each other. The wire planes from their match-
ing plane (Utop ↔Ubottom, Vtop ↔Vbottom) by 0.335 m. This figure is adapted from [24]
and is not to scale.
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3.3.3.2 Trigger Scintillators

Two planes of thin plastic scintillators were used as triggers in the RHRS.

Each plane has six overlapping, 5 mm-thick paddles. The planes are separated by 2

m and have a time resolution of 0.30 ns. Every individual paddle records a possible

event when there is a coincidence between the two photomultiplier tubes (PMTs) on

that paddle. If the event is picked up in both the front scintillator (S1) and the rear

scintillator (S2), then the event is recorded[22]. Details of the trigger electronics is

shown in Figure 3.14.
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spectrometer. Signals from the trigger scintillators enter on the left, and the output on
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3.3.3.3 Gas Cerenkov

A CO2-filled gas Cerenkov detector is used to separate pions from electrons.

It is positioned between the S1 and S2 scintillator planes. It has a particle path of

130 cm and consists of 10 spherical mirrors of 80 cm focal length which are each

focused on a PMT.

When high-speed particles travel through the gas, they are traveling faster

than light can through the CO2. As they progress through the CO2, they give off

luminous energy through a process akin to sonic booms, only for light. The radiated

light, known as Cerenkov radiation, is collected and recorded. Since electrons are

lighter than pions, it is easier to accelerate them to velocities required for Cerenkov

radiation to occur. A cut made separating slower particles from faster ones, but

cutting on a small channel of the Cerenkov detector, easily distinguishes between

pions and electrons as is discussed in detail in Section 4.1.2.

3.3.3.4 Electromagnetic Calorimeters

The RHRS contains two layers of electromagnetic calorimeters called the “preshower”

and “shower” detectors. They are made out of lead glass blocks attached to pho-

tomultiplier tubes. Particles can be identified by how much energy they deposit

in preshower compared to the shower. This allows a separation of electrons from

hadrons. A schematic of the calorimeters is shown in Figure 3.15.

Name # of Blocks Cols Rows X (cm) Y (cm) Z (cm)
Preshower 48 2 24 10.0 35.0 10.0

Shower 75 5 15 15.0 15.0 32.5

Table 3.2: This table contains the number and dimensions of lead glass blocks used in
the Preshower and Shower detectors. ”X” denotes the dispersive plane, ”Z” is along the
average particle direction, and ”Y” is parallel to the focal plane.
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Fig. 3.15: Shower and Preshower Layout. This shows the schematics for the shower and
pre shower lead glass blocks used in the RHRS.

3.3.4 Hall A Neutron Detector

The Hall A Neutron Detector (HAND) consists of an array of plastic scin-

tillators connected to photomultiplier tubes (PMTs). Timing information is read

out through Time-to-Digital Converters (TDCs) for each PMT. HAND is made of

88 main detecting bars arranged in four layers. The thickness of each bar in these

layers is 10 cm, the length is 100 cm, and the height varies with the smaller bars

placed in front of the larger bars. There is also a thinner veto layer that contains

64 bars with dimensions of 2 x 11 x 70 cm3. The layout of these bars can be seen

in Figure 3.16.

Since neutrons do not carry charge, they are not directly measured by the

scintillator; however they sometimes will knock a proton out of H atoms in the plastic

scintillating detectors. The scattered proton then radiates light in the scintillator

which is detected. This process occurs over a distance of approximately 10 cm. Since

protons and neutrons are similar in mass, protons scattered from 3He will arrive at

the detector at approximately the same time as neutrons. In order to separate

neutrons from protons, a series of veto cuts are made in post-analysis which exclude
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Fig. 3.16: HAND Layout. This shows the arrangement of the scintillator bars in the Hall
A Neutron Detector.
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events picked up by bars in front of any given bar within the timing window for

both protons and neutrons. In particular, a proton will always deposit a signal in

the 2 cm thick veto bars whereas a neutron will most likely pass through the thin

veto counter without interacting. In addition, at higher scattering energies a 9.08

cm thick lead wall, made up of 4 cm of iron casing surrounding the 5.08 cm thick

lead, was placed in front of HAND that helps to reduce the number of protons that

make it to the detector.

3.4 Kinematics

In order to map out the quasi-elastic scattering region, the detectors mentioned

in the previous sections were placed at different angles, energy settings, and target

polarization directions. A listing of each of these kinematics settings is found in

Table 3.3. A negative angle corresponds to a component which placed to the right

of the beam line where a positive angle to one placed to the left of the beam line.

A 0◦ angle corresponds to directly downstream of the target.
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Target Pol. E0 (GeV) RHRS (◦) RHRS P0 (GeV) HAND (◦)
Vertical 1.245 -17.0 1.1759 71.0
Vertical 2.425 -17.0 2.1813 62.5
Vertical 3.605 -17.0 3.0855 54.0

Longitudinal 2.425 -16.0 2.2500 62.5
Longitudinal 2.425 -16.0 2.2250 62.5
Longitudinal 2.425 -18.0 2.1750 62.5
Longitudinal 2.425 -18.0 1.8650 62.5
Longitudinal 2.425 -18.0 0.7000 54.0
Longitudinal 2.425 -18.0 2.0250 54.0
Longitudinal 3.606 -17.0 3.0855 54.0
Transverse 2.425 -16.0 2.2250 62.5
Transverse 2.425 -18.0 2.1750 62.5
Transverse 2.425 -18.0 1.8500 62.5
Transverse 3.606 -17.0 3.0855 54.0

Table 3.3: This table contains the kinematics settings for the Quasi-Elastic family of ex-
periments. Every line corresponds to a change in the kinematics during the experiments.
This includes, respectively, the beam energy (E0), the right HRS central angle, the right
HRS central momentum (P0), the Hall A Neutron Detector (HAND) central angle, and
the target polarization direction. Please see Figure 1.3 for definitions of the polarization
directions.



Chapter 4

Particle Identification

As mentioned in Chapter 3, for this experiment the right High Resolution Spec-

trometer (RHRS) was used to detect electrons scattered from polarized 3He and the

Hall A Neutron Detector (HAND) was used to detect knocked-out neutrons. This

chapter will discuss the analysis that went in to identifying these particles.

4.1 Electron Identification

The RHRS was used to identify electrons that were quasi-elastically scattered

from the 3He nuclei. The HRS contains a gas Cerekov detector and two electromag-

netic calorimeters, called the preshower and shower, that were used to differentiate

between pions and electrons. The VDCs provided tracking information that was

used to isolate electrons aimed along a q-vector towards HAND. They were also

used to isolate events scattered from 3He from those scattered off of the glass wall of

the target cell. Combinations of these detectors were used to find the quasi-elastic

scattering peak and to separate it from the elastic scattering peak. Details of the

electron cuts are discussed below.

4.1.1 HRS Optics

In order to separate particles for identification within the high resolution spec-

trometer, the optics must be calibrated. This was done using a sieve collimator and

a multi-foil carbon target.
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The multi-foil carbon target was used to trace particles back to the origin of

their scattering. It was needed because the 3He target consists of an extended, 40

cm-long chamber instead of a point target. In order to account for the long target,

events were traced back to each of the carbon foils in the calibration of reconstruction

matrix. The foil target was made of multiple point targets placed at intervals of

approximately 6.67 cm. This is shown in Figure 4.1.
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Fig. 4.1: RHRS Extended Target Optics. This plot shows the calibration of the 40cm
target cell via the use of a carbon multi-foil target. Note that one of the carbon foils
was misplaced by a few centimeters, which is displayed towards the left. There was also
a small BeO foil shown slanted.
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A stainless steel sieve was used to calibrate the trajectory of a particle (θtg and

φtg). The sieve is a sheet of steel with a pattern of 49 holes (7 x 7) that have a radius

of 1 mm and are spaced 25 mm apart vertically and 12.5 mm apart horizontally.

Two of the holes have a radius of 2 mm and are placed asymmetrically in the pattern

so that orientation is easily identified. A diagram of the sieve pattern is shown in

Figure 4.2.
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Fig. 4.2: Sieve Pattern. The schematic on the left shows the orientation of the sieve
pattern used to calibrate the RHRS. The plot on the right shows data with the sieve
plate in after calibration was completed.

By using both the sieve pattern and the multi-foil carbon target, events were

able to be calibrated to two known positions. The calibration of the reaction point

in z as well as for θtg and φtg was completed by Jin Ge [20].
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4.1.2 Pion Contamination

in order to separate pions from electrons, the gas Cerenkov, Preshower, and

Shower detectors were used. Pions appear in the output of the Cerenkov detector

as a large, sharp peak around channel 0, where electrons appear as a much wider

peak at channels above 100. This can be seen in Figure 4.3.
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Fig. 4.3: Cerenkov Pion Cut. The separation of pions from electrons was done through
the use of a cut on the gas Cerenkov detector.

In addition, the Preshower and Shower detectors were used as secondary mea-

sure to separate pions from electrons. There is a clear pion peak and electron peak

which can be seen in Figure 4.4. A linear cut was made between the peaks and only

those on the electron side were kept.

4.1.3 Glass Wall Contamination

Through the use of tracking variables, the point of scattering along the z-

direction is able to be determined. From this, it becomes clear that there is a

distinction between the 3He scattered events and those events that are scattered off
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Fig. 4.4: Preshower-Shower Pion Cut. The separation of pions from electrons was done
through the use of a cut on the lead glass calorimeters.

of the glass end walls of the target cell. In order to remove events scattered from

the walls a cut was made 3.7 sigma away from the central value of the upstream

wall peak and 3 sigma away from the downstream wall peak. The larger cut was

made on the upstream side since the magnitude of the peak is much larger than for

the downstream side, a trend that becomes more important as the beam energy is

increase. The cuts on 3He events can be seen in Figure 4.5.

4.1.4 Elastic and Quasi-Elastic Peaks

There are two energy peaks caused by different types of scattering off of 3He:

the elastic peak, where the whole 3He nucleus is scattered by the incoming electron,

and the quasi-elastic peak, where a single nucleon is scattered out of the 3He by the

electron. The contribution of elastic events decreases as the energy of the beam was

increased, but it was especially important to take the elastic peak into account for

the Q2=0.1 (GeV/c)2 data. The xBjorken variable is ideal for differentiating between
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Fig. 4.5: Reaction Point in z Cut. Separation of 3He events from glass wall events was
achieved by making a cut on the reaction point in z.

these peaks. It is defined as

xBjorken =
Q2

mν
(4.1)

where Q2 is the momentum transfer squared, m is the average mass of a nucleon,

and ν is momentum transfer. Due to its relationship with the momentum transfer

and mass, a naive interpretation of the variable is that is shows how many nucleons

are expelled during a collision.

In order ensure that there was no contamination from the elastic peak, especially

for the lowest Q2 point, a fit was made on the elastic peak in Bjorken-x as shown

in Figure 4.6. When the elastic peak was removed, as shown in Figure 4.9, it left

behind only those events that were quasi-elastically scattered. This can be further

seen in the nu plot shown in Figure 4.8.
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Fig. 4.6: Elastic Peak on Bjorken-x. This figure shows a fit on the elastic peak in
Bjorken-x. As shown in Figure 4.9, a cut was made that eliminated elastic events from
the dataset.
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Fig. 4.7: Bjorken-x Cut. The separation of the quasi-elastic from the elastic peak was
made by using a cut on Bjorken-x.
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Fig. 4.8: Effect of Bjorken-x cut on dp. This figure shows which events were kept and
which were discarded from dp when the cut on Bjorken-x was made. The red events
were removed while the blue ones were included in the dataset. The black line shows the
total events.
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4.1.5 Events Along q-vector

The RHRS has an angular acceptance of approximately 7 msr. Scattered elec-

trons were kept if they fit within this acceptance. This is allowed for an accurate

measurement to be made of the correlated knocked-out neutrons in HAND.
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Fig. 4.9: θ : φ Cut. Events along the q-vector were selected based on θ and φ in the focal
plane Selected events are enclosed in the black square.

4.2 Neutron Identification

4.2.1 Neutron Selection via Veto bars

As discussed in Section 3.3.4, the scintillators that make up HAND cannot

directly detect neutrons. Instead, they detect knocked-out protons. Another com-

plication is that knocked-out protons, having approximately the same mass as neu-

trons, will reach HAND in the same timing window. In order to differentiate between

the two, a series of “veto” bars were used. When a neutron enters HAND, it is not

detected in a scintillator bar until it knocks out a proton. This means that if there

is a signal located in one bar, but not in any of the bars in front of it, then the
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signal comes from a neutron. If instead, there is a signal in a bar and signals in the

bars in front of it, then it is a proton. Although protons and neutrons come in the

same timing peak, the TDCs of HAND were used to discriminate between protons

an neutrons. This was done by excluding events appearing in the timing window of

the veto bars that corresponds to the timing of neutrons or protons. An example is

shown in Figure 4.10.

4.2.2 Time of Flight

Through the use of veto bars, it is possible to separate protons from neutrons

in the TDC timing peaks. However, there are a number of other background events

that also need to be removed to select only neutrons. These background events

come from processes such as 3He(e, e′), dark noise in the PMTs, and other sources;

and appear as a broad background in time. In order to separate them out, the time

of flight (ToF) was used.

In the case of Q2=0.13, this was accomplished by a simple exponential fit on the

background. This allowed the neutron peak to be isolated and the number of events

to in it to be counted. This is shown in Figure 4.11. The higher Q2 points were

slightly more complicated. The background for those points were linear, however

there is a difference in the magnitude on either side of the neutron peak. In order

to account for this, a linear fit was made under the neutron peak to bridge the gap

between the constant background on either side. This is shown in Figures 4.12 and

4.13. The uncertainty due to background subtraction is discussed in more detail in

Section 5.4.
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Fig. 4.10: HAND Veto Example. For each bar in HAND, the bars in front of, above,
and below were identified as ”veto” bars to isolate neutrons from protons. For example,
Plane 2 Bar 11 uses Bars 13, 14, and 15 in the first plane and bars 10 and 12 in the
second plane as veto bars. The larger, black peak shows the TDCs before the veto cuts
are made and the smaller purple peaks show the TDC after the veto cut is made. The
larger peak is protons and neutrons, where the smaller purple peak is only neutrons.
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Fig. 4.11: ToF for Q2=0.1. The upper plot is the ToF for target spin up events and the
lower plot is the ToF for target spin down events. BGL, BGR, and T are used in the
uncertainty analysis as described in Section 5.4. Events highlighted in purple above the
blue fit line were considered “good” events.
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Fig. 4.12: ToF for Q2=0.5. The upper plot is the ToF for target spin up events and the
lower plot is the ToF for target spin down events. BGL, BGR, and T are used in the
uncertainty analysis as described in Section 5.4. Events highlighted in purple above the
blue fit line were considered “good” events.
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Fig. 4.13: ToF for Q2=1.0. The upper plot is the ToF for target spin up events and the
lower plot is the ToF for target spin down events. BGL, BGR, and T are used in the
uncertainty analysis as described in Section 5.4. Events highlighted in purple above the
blue fit line were considered “good” events.



Chapter 5

Dilutions and Uncertainties

5.1 Polarization of Target and Beam

5.1.1 Target Polarization

Target polarization was measured by two independent methods: nuclear mag-

netic resonance (NMR) at the target chamber and electron paramagnetic resonance

(EPR) in the pumping chamber. For the A0
y experiment, there were five EPR mea-

surements taken and NMR measurements were taken every 20 minutes after the spin

was flipped. For the AT experiment, there were 9 EPR measurements and for the

AL experiment there were 6 EPR measurements. NMR measurements were taken

at intervals of approximately four hours for both AT and AL. Each of the EPR

measurements are found in Figure 5.1. The EPR measurements allow for a mea-

surement of a calibration constant that can be used with the NMR measurements

to find the target polarization.

The description of the polarization used for a correction factor is

Ptc =
dtc

dtc + Γtc
Pp (5.1)

where Ptc is the polarization in the target chamber, dtc is the reduced diffusion con-

stant, Γtc is the depolarization rate in the target chamber, and Pp is the polarization

in the pumping chamber. The reduced diffusion constant for the target chamber is

67
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Fig. 5.1: EPR Measurements. This plot shows the EPR measurements that occurred for
the A0

y, AT and AL experiments.

defined as

dtc =
AttDtc

VtcLtt
K (5.2)

where

Dtc = DT0

(
Ttc

T0

)(m−1)
n0

ntc

, (5.3)

K =
(2 −m)(t− 1)

t2−m − 1
, (5.4)

t = Tpc/Ttc, (5.5)

Att is the transfer tube cross section, Vtc is the volume of the target chamber, T is

the temperature, n is the density, Ltt is the length of the transfer tube, and Dtc is

the diffusion constant. The depolarization rate in the target chamber is defined as

Γtc = ΓHe + ΓWall
tc + ΓBeam + ΓAFP + Γ∆B (5.6)

where ΓHe is the nuclear dipole interaction, ΓWall is the relaxation of polarization
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due to the glass walls, ΓBeam is the depolarization due to the beam, ΓAFP is the

loss from the adiabatic fast passage, and Γ∆B is the relaxation of the magnetic field

gradient. Taking all this into account, the beam polarization was measured and

can be seen in Figures 5.2 and 5.3. This work was done by Yawei Zhang. The

polarization dilution factors used in this experiment are shown in Table 5.2.
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Fig. 5.2: Target Polarization Measurements for A0
y. This plot shows the target polariza-

tion measurements that occurred for the A0
y experiment.

5.1.2 Beam Polarization

The beam polarization was measured with a Møller polarimeter. The Møller

measurements are invasive and require beam time separate from production run-

ning. The polarimeter utilizes the fact that Møller scattering ( ~e− + ~e− → e− + e−)

cross section depends on beam and target polarizations. A thin, magnetically-

saturated ferromagnetic foil is used as a target. The saturation leads to an elec-

tron polarization of approximately 8% in the target. The foil can be rotated to

±20◦ with respect to the beam which causes the effective target polarization to be
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Fig. 5.3: Target Polarization Measurements for AT and AL. This plot shows the target
polarization measurements that occurred for the AT and AL experiments.

Items Rel. Pol. Error
K-3He EPR κ0 2.8%

Pumping Chamber Pumping Chamber Density 1.5%
EPR Signal Fit 0.6%
NMR Signal Fit 0.6%
Diffusion Rate 1.2%

Target Chamber Target Chamber Intrinsic Life-Time 1.4%
Beam Depolarization 2.6%

Spin Flip Loss 0.1%
Total 4.6%

Table 5.1: Target Polarization Systematic Uncertainty Budget. This table shows the un-
certainties involved in obtaining the target polarization for the AT and AL experiments.

Experiment Tgt. Pol. (%) Stat. Err. (Abs. %) Sys. Err. (Abs. %)
A0

y 51.4 0.4 2.8
AT 49.6 0.4 2.3
AL 54.7 0.4 2.5

Table 5.2: Target Polarization Dilution. This table shows the values used for the dilution
due to the target polarization for the A0

y, AT and AL experiments.
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Ptarget = Pfoil · cos θtarget. Since the target polarization is known, a beam-target

double-spin asymmetry measurement is taken which allows the beam polarization

to be determined by

P beam
Z =

N+ −N−

N+ +N−
· 1

P foil
· cos θtarget · 〈AZZ〉 (5.7)

where 〈AZZ〉 is the average analyzing power. 〈AZZ〉 is dependent only on the center

of mass angle scattering and was determined via a Monte Carlo calculation of the

spectrometer acceptance. Five Møller measurements were taken over the course of

the entire run period, which can be seen in Figure 5.4. Individually, each run has

a statistical uncertainty of 0.2% and a systematic uncertainty of 2.0%. Taking the

average and standard deviation, the polarization was 84.5 ± 3.9% which is used as

a dilution factor for the AT and AL double-spin asymmetries. Since A0
y is a target

single-spin asymmetry, the beam was treated as being unpolarized.
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Fig. 5.4: Beam Polarization Measurements. This plot shows the Møller measurements
taken to determine the beam polarization for the A0

y, AT and AL experiments.
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5.2 Proton Contamination

Since neutrons and protons have roughly the same mass, if an electron knocks

out either one, it can be difficult to tell them apart based only on the timing in-

formation. Although veto cuts were applied to identify neutrons, as discussed in

Section 4.2, protons will occasionally make it past those cuts. This can be due to a

number of reasons. The largest contributor is charge-conversion, where the proton

knocks out a neutron along the flight path toward HAND which is then detected by

HAND. The significance of this problem increases with Q2 as it becomes more likely

that protons make it to the detector. At the highest Q2 points, a lead wall was

placed in front of the neutron detector to reduce the number of protons reaching

the detector, however it also acts as a converter for protons to knockout neutrons.

5.2.1 Nucleons Along the q-vector

In order to estimate the number of protons that make it to HAND, we first need

to get an estimate of the number of protons being emitted along the q-vector. For

hydrogen data, this is simply the number of particles detected. For 3He, however,

it becomes a bit more complicated. If it is assumed that the 3He nucleus is made

up of two free protons and one free neutron, we can use the Rosenbluth equation to

estimate the cross section.

(
dσ

dΩ

)
=

(
dσ

dΩ

)

Mott

[
G2

E(Q2) + τG2
M(Q2)

1 + τ
+ 2τG2

M(Q2) tan2 θ

2

]
(5.8)

For the above equation, θ=the electron scattering angle, GE=nucleon electric
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form factor, GM=nucleon magnetic form factor,

(
dσ

dΩ

)

Mott
=

(
E ′

E

)(
4Z2α2(~c)2E ′2

|~qc|4 cos2 θ

2

)
in the limit β → 1, (5.9)

τ =

(
Q2

4M2c2

)
, (5.10)

E ′ =

(
E

1 + E
Mc2

(1 − cos θ)

)
, (5.11)

E=incoming electron energy, E ′=outgoing electron energy, M=nucleon mass, Z=1,

|Q|2=|~q|2=four-momentum transfer squared, β=the velocity of the electron divided

by the speed of light, and α=the fine structure constant. The Kelly parametrization

[25] was used to find the values of the form factors at various Q2. Using the cross

sections, the ratio of protons to neutrons at any value of Q2 can be calculated by

taking the ratio

rp:n =

(
2
(

dσ
dΩ

)
p(

dσ
dΩ

)
n

)
. (5.12)

All of this was calculated for Q2=0.1, 0.5, and 1.0 (GeV/c)2 and can be found

in Table 5.3.

Q2 (GeV2/c2) E (GeV) θ (◦) dσ
dΩ
|p (m2) dσ

dΩ
|n (m2) rp:n

0.1 1.245 17.0 7.19×10−34 6.28×10−35 22.91:1
0.5 2.425 17.0 3.03×10−35 8.43×10−36 7.196:1
1.0 1.245 17.0 5.26×10−34 2.00×10−36 5.252:1

Table 5.3: This table shows the Rosenbluth cross sections for each of the nucleons at
various Q2, electron energies (E), and scattered electron angles (θ). It also shows the
estimated ratio of protons:neutrons if it is assumed that 3He consists of three free nucle-
ons.

If every scattered electron detected came from a nucleon, then we can calculate
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how many of each particle was sent towards HAND along the q-vector by taking

those scattered electrons that make it past the acceptance cuts (see Sections 4.1 and

4.2) and multiplying it by the ratio rp:n such that

Ne = Np +Nn (5.13)

Np = rp:nNn (5.14)

Ne = (1 + rp:n)Nn (5.15)

Nn =
Ne

rp:n + 1
(5.16)

where Nn=number of knocked-out neutrons, Np=number of knocked-out protons,

and Ne=number of scattered electrons. Results of this with the data taken are found

in Table 5.4.

Experiment Q2 (GeV2/c2) Ne rp:n Np Nn

0.1 35,496,060 22.91 :1 3.401 × 107 1.485 × 106

A0
y 0.5 52,758,650 7.196 :1 4.632 × 107 6.437 × 106

1.0 55,623,240 5.252 :1 4.673 × 107 8.897 × 106

AT 0.5 51,550,460 7.196 :1 4.526 × 107 6.290 × 106

1.0 13,416,160 5.252 :1 1.127 × 107 2.146 × 106

AL 0.5 22,130,450 7.196 :1 1.943 × 107 2.700 × 106

1.0 10,910,390 5.252 :1 0.9165 × 107 1.745 × 106

Table 5.4: Estimated Number of Nucleons Along q-vector. This table shows the esti-
mated number of protons and neutrons that were scattered along the q-vector towards
HAND.

5.2.2 Protons Detected by HAND

From Section 5.2.1, we know how many protons were headed towards HAND.

This occurred in large part by the scattering of the knocked-out protons on the target
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glass walls, the plastic around the target enclosure, the air between the target and

HAND, and the lead wall during the times it was installed. However, only a fraction

of these are actually detected. In order to calculate the proton dilution in 3He, a

calibration was done using 1H. Using the hydrogen data, all of the particles detected

in HAND are protons, so it can be used to find how many protons make it to HAND

and how many are converted into neutrons along the way.

Three values are necessary to calculate how many protons are diluting the

neutron data: the number of protons that make it past neutron cuts from the

hydrogen data (Pn), the total number of protons headed along the q-vector from

the hydrogen data (TotP ), the charge accumulation of the hydrogen data (CP ), the

estimated number of protons along the q-vector for 3He data (Np), and the charge

accumulation of the 3He data (C3He). For any given Q2, the number of protons

misidentified as neutrons is defined as

Ep =
Pn

TotP
·Np ·

CP

C3He

. (5.17)

From this, we can find the percentage of misidentified protons (%P ) by

%P =
Ep

En
(5.18)

where En is the number of 3He scattered events that are identified as neutrons using

the cuts described in Section 4.2. The calculated percentage of protons and neutrons

is found in Table 5.5 where %N = 100 − %P . The percentage of neutrons in the

3He data is used as the proton dilution factor.
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Experiment Q2 (GeV2/c2) %P %N
0.1 7.025 92.97

A0
y 0.5 7.205 92.79

1.0 0.9388 99.06
AT 0.5 4.144 95.86

1.0 2.153 97.85
AL 0.5 9.033 90.97

1.0 2.498 97.50

Table 5.5: Proton Contamination. This table shows the dilution factor of protons for all
of the asymmetry measurements taken.

5.3 Nitrogen Contamination

The 3He target becomes polarized due to spin-exchanges processes between Rb,

K, and 3He, as discussed in Section 3.3.2. Unfortunately, excited K atoms will also

give off photons that can depolarize the 3He within minutes. In order to combat this,

a small amount of nitrogen was added to the target cell to absorb these photons.

Contamination due to events scattered from this N2 must be taken into account.

Dilution from N2 was calculated using the pressure curve method. Using a

reference cell filled with N2 and comparing it to the production 3He cell, a dilution

can be found. The relationship between the two cells can be described as

Y prod
N2

= k · P prod
N2

, (5.19)

where Y prod
N2

is the charge and live-time normalized nitrogen yield of the 3He pro-

duction cell, P prod
N2

is the nitrogen pressure in the 3He production cell, and

k =
Y ref

N2

P ref
N2

, (5.20)
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where Y ref
N2

is the charge and live-time normalized yield of a N2-filled reference cell

and P ref
N2

is the pressure in that cell. The value of k was determined by taking the

slope of a linear fit of Y ref
N2

against P ref
N2

for each Q2 value. An example of this fit is

shown in Figure 5.5.

Fig. 5.5: Pressure Curve Fit Example. For each Q2 value, a pressure curve was fit to
determine k in the analysis of the nitrogen dilution factor. Presented is a pressure scan
when Q2=0.5 (GeV/c)2.

The density of the 3He production cells was measured in amagat, which is

defined as

η =

(
p

p0

)(
T0

T

)
amg, (5.21)

where η is the number density, p is the pressure of the cell, p0 is 1 atm (or 14.7 psi),

T is the temperature of the target cell, and T0 is 273.15 K. The 3He production cell

for A0
y has a N2 density of 0.0783 amg and the cell for both AT and AL has a N2

density of 0.1132 amg. The 3He production cell was held at a temperature of 46 C

for A0
y and 45 C for AT and AL. This leads to P prod

N2
= 1.345 psi for A0

y, 1.938 psi

for AT and AL. This analysis leads to the dilution values shown in Table 5.6.
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Asymmetry Type Q2 N2 Dilution Factor Dilution Uncertainty
0.13 0.9468 0.0077

A0
y 0.46 0.9788 0.0029

0.95 0.9721 0.0120
AT 0.51 0.9454 0.0075

0.95 0.9390 0.0262
AL 0.51 0.9711 0.0040

0.95 0.9380 0.0267

Table 5.6: N2 Dilution Factors. This table shows the dilution factors due to nitrogen
contamination that were used for each of the asymmetries at each energy.

5.4 Uncertainty Analysis

Since this dissertation examines two different types of asymmetry, target single-

spin asymmetry in the case of A0
y and target-beam double-spin asymmetry in the

case of AL and AT , the uncertainty analysis is handled differently for each. The

single-spin asymmetry uncertainty analysis is expanded upon in Section 5.4.1 while

the double-spin asymmetry’s is in Section 5.4.2.

5.4.1 A0
y Uncertainty Analysis

The measured target single-spin asymmetry, A0
y, is defined as

A0
y =

1

|Py|

(
Y↑ − Y↓
Y↑ + Y↓

)
. (5.22)

where

Y↑(↓) =
S↑(↓)

C↑(↓) · LT↑(↓)
, (5.23)

S↑(↓) = T↑(↓) − B↑(↓) = # of Signal Events↑(↓), (5.24)

T↑(↓) = Total # of Events Under Peak↑(↓), (5.25)
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and

B↑(↓) = Background Fit↑(↓). (5.26)

If a new variable, r, is defined as

r =
Y↑
Y↓
, (5.27)

then

A0
y =

1

|Py|

(
r − 1

r + 1

)
. (5.28)

Propagating the errors in Py and r in quadrature, we find

δr = r

[(
δY↑
Y↑

)2

+

(
δY↓
Y↓

)2
] 1

2

(5.29)

and

δA0
y =

(
A2

yδP
2
y

P 2
y

+
1

P 2
y

4

(r + 1)4
δr2

) 1

2

. (5.30)

If we replace r with the yields, we find

δA0
y =



A2

yδP
2
y

P 2
y

+
1

P 2
y

4
(

Y↑

Y↓
+ 1
)4 ·

(
Y↑
Y↓

)2

·
[(

δY↑
Y↑

)2

+

(
δY↓
Y↓

)2
]


1

2

(5.31)

or, more simply,

δA0
y =

(
ǫ2PT

+ ǫ2S
) 1

2 (5.32)

where ǫPT
and ǫS are defined as in Table 5.7.

In order to use Eq. 5.31, we need to look at the error in the yields (Y↑(↓), defined

in Eq. 5.23). Since the error on the charge and live-time are negligible, this leads to

δY =
δS

C · LT (5.33)
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Uncertainty Type Equation

Statistical (ǫS) 1
Py

· 2
„

Y↑

Y↓
+1

«

2 ·
(

Y↑

Y↓

)
·
[(

δY↑

Y↑

)2

+
(

δY↓

Y↓

)2
] 1

2

Target Polarization (ǫPT
)

A0
yδPy

Py

Total (δA0
y)

√
ǫ2PT

+ ǫ2S

Table 5.7: A0
y Uncertainties. This table shows the equations used to calculate the uncer-

tainties for A0
y .

where

δS =
√
δT 2 + δB2. (5.34)

Since T deals with the statistical fluctuations of the signal and background,

δT =
√
T . (5.35)

Things are more complicated with the error in the background fit. Since the time-

200 400 600 800 1000 1200
131

133

135

137

139

×103
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n
ts

BGL

BGR

T

Fig. 5.6: ToF Background Example. For each ToF plot, the background was fit to the
left and right of the peak. In order to estimate the error from background contributions,
three sections were used. BGL and BGR consist of the number of events within the same
number of bins on the left and right side of the peak. T consists of the total number of
events under the peak which includes both the signal and background. Signal events are
those events in T that are above the blue fit line.
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of-flight background was measured over a large range, a fit was made for each Q2

as defined in Section 4.2.2. A equal range of bins (RBG/2) was integrated on the

background left of the signal (BGL) and right of the signal (BGR). An example of

this is shown in Figure 5.6 and is shown for each Q2 for A0
y in Figures 4.11 through

4.13. In order to find δB, the fractional error was multiplied by the range of bins

used to define the signal (RS),

δB =

(√
BGL +BGR

BGL +BGR

)
·
(
RS

RBG

)
. (5.36)

Taken all together, we get

δY =
1

C · LT ·

√
(√

T
)2

+

[(√
BGL +BGR

BGL +BGR

)
·
(
RS

RBG

)]2

(5.37)

which can then be used in Eq. 5.31 to complete the full error analysis. The total

uncertainty budget is shown in Table 5.8.

Q2 Uncertainty Type Amount
0.1 Statistical (ǫS) 0.12617
0.1 Target Polarization (ǫT ) 0.03042
0.1 Total (δA0

y) 0.12979

0.5 Statistical (ǫS) 0.00121
0.5 Target Polarization (ǫT ) 0.01087
0.5 Total (δA0

y) 0.01093

1.0 Statistical (ǫS) 0.001321
1.0 Target Polarization (ǫT ) 0.000298
1.0 Total (δA0

y) 0.001354

Table 5.8: A0
y Uncertainties. This table shows the magnitude of the uncertainties for A0

y.
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5.4.2 AL and AT Uncertainty Analysis

The measured target single-spin asymmetry, AL, is defined as

Ax(z) =
1

|PT · PB|

(
Y↑ − Y↓
Y↑ + Y↓

)
. (5.38)

where PT is the target polarization, PB is the beam polarization, and Y , S, T , and

B are defined as in Section 5.4.1. Following similar to logic to Section 5.4.1, we get

δAx(z) =
(
ǫ2PB

+ ǫ2PT
+ ǫ2S

) 1

2 (5.39)

where ǫPB
, ǫPT

, and ǫS are defined as in Table 5.9. The background fluctuations

are included in the statistical uncertainty as in Section 5.4.1 and in particular as in

Eq. 5.37. The uncertainty from polarization for AT and AL is shown in Table 5.10.

The full uncertainties, which include terms based on the asymmetries, are shown in

Sections 6.3 and 6.4.

Uncertainty Type Equation

Statistical (ǫS) 1
PT PB

· 2
„

Y↑

Y↓
+1

«

2 ·
(

Y↑

Y↓

)
·
[(

δY↑

Y↑

)2

+
(

δY↓

Y↓

)2
] 1

2

Target Polarization (ǫPT
) AδPT

PT

Beam Polarization (ǫPB
) AδPB

PB

Total (δA)
√
ǫ2PB

+ ǫ2PT
+ ǫ2S

Table 5.9: AL and AT Uncertainties. This table shows the equations used to calculate
the uncertainties for AL and AT .
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Experiment Uncertainty Type Amount (Abs. %)
AT Target Polarization (δPT ) 2.33

Beam Polarization (δPB) 3.9
AL Target Polarization (δPT ) 2.53

Beam Polarization (δPB) 3.9

Table 5.10: Uncertainties in AT and AL. This table shows the magnitude of the uncer-
tainties in the beam and target polarization for AT and AL.



Chapter 6

Results and Discussion

6.1 Asymmetry Measurements

Three different asymmetries were measured for this dissertation. Of them,

there are two types: target single-spin asymmetries and beam-target double-spin

asymmetries. Although both use the same mathematic form for the asymmetries,

A =
1

P

Y↑ − Y↓
Y↑ + Y↓

, (6.1)

the variables are subtly different. In the case of the single-spin asymmetries (A0
y),

Y↑(↓) =
NT↑(↓)

CT↑(↓)LTT↑(↓)

, (6.2)

where P = target polarization, NT↑(↓) = the number of neutrons counted with the

target spin oriented up (down), CT↑(↓) = the charge accumulated with the target

spin up (down), and LTT↑(↓) = the live-time with the target spin up (down).

In the case of the double-spin asymmetries (AT and AL),

Y↑(↓) =
NB↑(↓)

CB↑(↓)LTB↑(↓)

, (6.3)

where P = target polarization times the beam polarization, NB↑(↓) = the number of

neutrons counted with the beam helicity oriented up (down), CB↑(↓) = the charge

accumulated with the beam helicity up (down), and LTB↑(↓) = the live-time with

84
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the beam helicity up (down).

6.2 Vertical 3He(e, e′n) Asymmetries

Taking into account the error analysis and dilution factors from Chapter 5,

as well as the particle identification for identifying only neutrons that were quasi-

elastically from vertically polarized 3He as discussed in Chapter 4, Equation 6.1 was

used to find the target single-spin asymmetry. The results are presented in Tables

6.1 and 6.2. They are plotted against ν in Figures 6.1 through 6.3 and are plotted

against Q2 along with the world data and current theory estimates in Figure 6.4.

 (GeV)ν
0.00 0.05 0.10 0.15 0.20

A
y 

fo
r 

Q
2=

0.
12

7 
(G

eV
/c

)2

-0.5

0.0

0.5

1.0

1.5

Fig. 6.1: A0
y Measurements for Q2 = 0.127 (GeV/c)2. This plot shows the current

measurements for A0
y when Q2 = 0.5 (GeV/c)2. The green dashed line shows the central

value of the quasi-elastic peak.

As discussed in Chapter 1, A0
y is useful for extracting information on the final-

state interactions (FSI) and meson-exchange currents (MEC) from neutrons knocked
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Q2 ν A0
y Stat. Error Sys. Error

0.127 0.028 1.3142 1.3625 0.1449
0.127 0.040 0.6948 1.1505 0.0849
0.127 0.064 0.6992 0.4428 0.0394
0.127 0.076 0.8220 0.4079 0.0343
0.127 0.088 0.6026 0.2063 0.0260
0.127 0.100 0.5284 0.2463 0.0299
0.456 0.138 0.3228 0.0398 0.0163
0.456 0.163 0.1810 0.0111 0.0091
0.456 0.188 0.2021 0.0061 0.0102
0.456 0.213 0.2504 0.0038 0.0127
0.456 0.238 0.2114 0.0027 0.0107
0.456 0.263 0.2074 0.0024 0.0105
0.456 0.288 0.1869 0.0024 0.0094
0.456 0.313 0.1853 0.0027 0.0094
0.456 0.338 0.2211 0.0061 0.0112
0.953 0.360 -0.0109 0.0346 0.0006
0.953 0.400 0.0069 0.0092 0.0004
0.953 0.440 0.0059 0.0049 0.0003
0.953 0.480 0.0039 0.0034 0.0002
0.953 0.520 0.0072 0.0028 0.0004
0.953 0.560 0.0005 0.0027 0.0000
0.953 0.600 0.0087 0.0029 0.0005
0.953 0.640 0.0087 0.0040 0.0005

Table 6.1: A0
y Measurements vs. ν. These are the values for A0

y that were measured in
this experiment against ν.

Q2 A0
y Stat. Error Sys. Error

0.13 0.72686 0.11466 0.08731
0.46 0.20234 0.00102 0.00189
0.98 0.00518 0.000686 0.000076

Table 6.2: A0
y Measurements. These are the values for A0

y that were measured in this
experiment.
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Fig. 6.2: A0
y Measurements for Q2 = 0.456 (GeV/c)2. This plot shows the current

measurements for A0
y when Q2 = 0.456 (GeV/c)2. The green dashed line shows the

central value of the quasi-elastic peak.
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Fig. 6.3: A0
y Measurements for Q2 = 0.953 (GeV/c)2. This plot shows the current

measurements for A0
y when Q2 = 0.953 (GeV/c)2. The green dashed line shows the

central value of the quasi-elastic peak.
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Fig. 6.4: A0
y World Data. This plot shows the current measurements on top of the world

data for A0
y. The points at 0.46 and 0.98 (GeV/c)2 have error bars smaller than the size

of the data point. The error range for these points can be found in Table 6.2.
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out of polarized 3He. The original Laget calculation, which was done using PWIA

with contributions from FSI and MEC, indicates that FSI and MEC were expected

to contribute to A0
y largely at low Q2 and drop off at higher Q2. Although the

magnitude of these contributions was vastly underestimated, the qualitative under-

standing agrees with the data presented. Full Faddeev calculations provided by the

Bochum group came much closer to predicting A0
y values to both the historical and

current data, although still appear to underestimate FSI contributions around Q2

of 0.5 (GeV/c)2. This measurement is also unique in that it contains data at the

high Q2 value of 0.98 (GeV/c)2 where no measurement has gone before. A0
y is only

around 0.5% in this region which indicates that any higher than this that FSI can

be considered negligible and PWIA holds.

6.3 Transverse 3He(e, e′n) Asymmetries

Taking into account the error analysis and dilution factors from Chapter 5,

as well as the particle identification for identifying only neutrons that were quasi-

elastically from transversely polarized 3He as discussed in Chapter 4, Equation 6.1

was used to find the target-beam double-spin asymmetry. The results are presented

in Table 6.3 and plotted in Figures 6.5 and 6.6.

Although theoretical calculations are available from Misak and the Bochum

group to compare with the experimental values measured for AT , they have not yet

been been calculated at the kinematics presented in this dissertation. However, these

measurements will provide an important test on these calculations when available.

It is important to note that measurements for both Q2 values are non-zero and

negative. For Q2 of 0.5 (GeV/c)2, the asymmetry fluctuates around -0.15. For Q2 of

1.0 (GeV/c)2, the asymmetry is much smaller but remains non-zero and fluctuates
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Q2 nu (GeV) AT Stat. Error Sys. Error
0.5 0.175 -0.2738 0.1766 0.0072
0.5 0.205 -0.0868 0.0365 0.0023
0.5 0.235 -0.1151 0.0162 0.0030
0.5 0.265 -0.1918 0.0094 0.0050
0.5 0.295 -0.1876 0.0064 0.0049
0.5 0.325 -0.1686 0.0057 0.0044
0.5 0.355 -0.1391 0.0066 0.0036
1 0.360 -0.0002 0.0318 0.0000
1 0.400 -0.0363 0.0084 0.0010
1 0.440 -0.0157 0.0044 0.0004
1 0.480 -0.0399 0.0030 0.0010
1 0.520 -0.0311 0.0025 0.0008
1 0.560 -0.0276 0.0024 0.0007
1 0.600 -0.0267 0.0026 0.0007
1 0.640 -0.0290 0.0036 0.0008

Table 6.3: AT Measurements. These are the values for AT that were measured in this
experiment.
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Fig. 6.5: AT Measurements for Q2 = 0.5 (GeV/c)2. This plot shows the current mea-
surements for AT when Q2 = 0.5 (GeV/c)2. The green dashed line shows the central
value of the quasi-elastic peak.
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Fig. 6.6: AT Measurements for Q2 = 1 (GeV/c)2. This plot shows the current measure-
ments for AT when Q2 = 1 (GeV/c)2. The green dashed line shows the central value of
the quasi-elastic peak.
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around -0.03.

6.4 Longitudinal 3He(e, e′n) Asymmetries

Taking into account the error analysis and dilution factors from Chapter 5,

as well as the particle identification for identifying only neutrons that were quasi-

elastically from longitudinally polarized 3He as discussed in Chapter 4, Equation 6.1

was used to find the target-beam double-spin asymmetry. The results are presented

in Table 6.4 and plotted in Figures 6.7 and 6.8.

Q2 nu (GeV) AL Stat. Error Sys. Error
0.5 0.145 -0.7804 0.1003 0.0224
0.5 0.175 0.1160 0.0217 0.0033
0.5 0.205 -0.0824 0.0108 0.0024
0.5 0.235 -0.0530 0.0060 0.0015
0.5 0.265 -0.0191 0.0041 0.0005
0.5 0.295 -0.0828 0.0037 0.0024
0.5 0.325 -0.0664 0.0042 0.0019
1 0.400 -0.0105 0.0068 0.0003
1 0.440 0.0003 0.0036 0.0000
1 0.480 -0.0084 0.0024 0.0002
1 0.520 0.0059 0.0020 0.0002
1 0.560 0.0049 0.0020 0.0001
1 0.600 -0.0236 0.0021 0.0007
1 0.640 -0.0152 0.0029 0.0004
1 0.360 -0.0549 0.0254 0.0016

Table 6.4: AL Measurements. These are the values for AL that were measured in this
experiment.

Similarly to AT , although theoretical calculations are available from Misak and

the Bochum group to compare with the experimental values measured for AL, they

have not yet been been calculated at the kinematics presented in this dissertation.

However, these measurements will provide an important test on these calculations

when available. It is important to note that measurements for both Q2 values are
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Fig. 6.7: AL Measurements for Q2 = 0.5 (GeV/c)2. This plot shows the current mea-
surements for AL when Q2 = 0.5 (GeV/c)2. The green dashed line shows the central
value of the quasi-elastic peak.
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Fig. 6.8: AL Measurements for Q2 = 1 (GeV/c)2. This plot shows the current measure-
ments for AL when Q2 = 1 (GeV/c)2. The green dashed line shows the central value of
the quasi-elastic peak.
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non-zero and change sign with ν. For Q2 of 0.5 (GeV/c)2, the asymmetry at low

ν is both large and positive which indicates contributions from the elastic peak.

As ν increases, the quasi-elastic region is reached where AL becomes negative and

fluctuates around -0.05. For Q2 of 1.0 (GeV/c)2, the asymmetry is much smaller but

also changes sign. The quasi-elastic region is positive and fluctuates around 0.005.

At higher ν the asymmetry becomes negative and fluctuates around -0.035 which is

most likely due to an excited state of the neutron causing the spin to flip sign.

6.5 Summary

For this dissertation, polarized 3He(e, e′n) asymmetries were measured with the

beam polarized in three orthogonal directions.The target single-spin asymmetry was

measured with the target polarized vertically (A0
y) while target-beam double-spin

asymmetries were measured with the target polarized transversely (AT ) and longi-

tudinally (AL). For A0
y, this experiment provides the most precise measurements to

date at Q2=0.48 and extends up to 0.98 (GeV/c)2. This experiment also provides

the first measurements of AT and AL performed in this reaction and this is also the

first time that all three measurements have been done in the same experiment. The

A0
y measurements are in general agreement with earlier measurements from NIKHEF

and MAMI. Comparisons with early theory calculations show qualitative agreement,

however all theoretical calculations currently underestimate the measurement as one

goes to higher Q2. The non-zero results indicate FSI and MEC contributions that

are under-predicted by current theoretical calculations.

Although theoretical calculations are available for both the AT and AL mea-

surements presented here, they have not yet been done at the kinematics presented.

However, these new measurements will provide important tests of those theory cal-
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culations once they are performed.

In summary, these results help us to better understand the 3He(e, e′n) reaction,

especially regarding the importance of FSI and MEC. This understanding is impor-

tant for using the reaction to measure Gn
E and for understanding the wave function

of 3He better in general.
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Quasi-Elastic Family (E05-102, E05-015, E08-005)
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S. Frullani13, F. Garibaldi13, H. Gao14, S. Gilad15, R. Gilman11, O. Glamazdin34, S.

Golge6, J. Gomez1, O. Hansen1, D. Higinbotham1, T. Holmstrom28, J. Huang15, H.

Ibrahim32, C. W. de Jager1, E. Jensen16, X. Jiang17, G. Jin9, M. Jones1, H.
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B. E. Norum9, K. Pan15, D. Parno23, E. Piasetzky24, M. Posik12, V. Punjabi30, A.

J. R. Puckett17, X. Qian14, Y. Qiang1, X. Qui21, S. Riordan9, A. Saha1, B.

Sawatzky1, M. Shabestari9, A. Shahinyan26, B. Shoenrock25, S. Sirca27, J. St.
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Appendix B

Veto Bars used for HAND

As discussed in Section 4.2.1, particle identification of neutrons in the Hall A

Neutron Detector required the use of “veto” bars in order to separate neutrons from

protons. This cannot be done through timing information alone, as the time-of-

flight peaks overlap. Tables B.1 through B.4 show, in detail, which bars were used

as vetoes for any given “good” bar.
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TDC Veto 1 Veto 2 Veto 3 Veto 4 Veto 5 Veto 6
Pl Bar Pl Bar Pl Bar Pl Bar Pl Bar Pl Bar Pl Bar
1 0 0 0 0 1 1 1
1 1 0 0 0 1 1 0 1 2
1 2 0 1 0 2 1 1 1 3
1 3 0 2 0 3 1 2 1 4
1 4 0 3 0 4 1 3 1 5
1 5 0 4 0 5 1 4 1 6
1 6 0 5 0 6 1 5 1 7
1 7 0 6 0 7 1 6 1 8
1 8 0 7 0 8 0 10 1 7 1 9
1 9 0 8 0 9 0 10 0 11 1 8 1 10
1 10 0 9 0 11 0 12 1 9 1 11
1 11 0 9 0 12 0 13 1 10 1 12
1 12 0 13 0 14 1 11 1 13
1 13 0 13 0 14 0 15 1 12 1 14
1 14 0 14 0 15 0 16 1 13 1 15
1 15 0 15 0 16 0 17 1 14 1 16
1 16 0 16 0 17 0 18 1 15 1 17
1 17 0 17 0 18 0 19 1 16 1 18
1 18 0 18 0 19 0 20 0 22 1 17 1 19
1 19 0 19 0 20 0 22 1 18 1 20
1 20 0 20 0 21 0 22 0 23 1 19 1 21
1 21 0 21 0 23 0 24 1 20 1 22
1 22 0 24 0 25 1 21 1 23
1 23 0 25 0 26 1 22 1 24
1 24 0 26 0 27 1 23 1 25
1 25 0 27 0 28 1 24 1 26
1 26 0 27 0 28 0 29 1 25 1 27
1 27 0 28 0 29 0 30 1 26 1 28
1 28 0 29 0 30 0 31 1 27 1 29
1 29 0 30 0 31 1 28

Table B.1: This table shows, for any given scintillator bar of HAND in the first plane,
which surrounding bars were used in the veto cut. Each is labeled by Plane (Pl) and Bar
number. The maximum number of vetoes for any given bar is six, however most of the
bars have less than six. This is why there are blank spaces.
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TDC Veto 1 Veto 2 Veto 3 Veto 4 Veto 5 Veto 6
Pl Bar Pl Bar Pl Bar Pl Bar Pl Bar Pl Bar Pl Bar
2 0 1 0 1 1 2 1
2 1 1 1 1 2 2 0 2 2
2 2 1 2 1 3 2 1 2 3
2 3 1 3 1 4 1 5 2 2 2 4
2 4 1 4 1 5 1 6 2 3 2 5
2 5 1 6 1 7 2 4 2 6
2 6 1 7 1 8 2 5 2 7
2 7 1 8 1 9 1 10 2 6 2 8
2 8 1 9 1 10 1 11 2 7 2 9
2 9 1 11 1 12 2 8 2 10
2 10 1 12 1 13 2 9 2 11 1 11 1 14
2 11 1 13 1 14 1 15 2 10 2 12
2 12 1 14 1 15 1 16 2 11 2 13
2 13 1 16 1 17 2 12 2 14 2 14
2 14 1 17 1 18 2 13 2 15 2 15
2 15 1 18 1 19 1 20 2 14 2 16
2 16 1 19 1 20 1 21 2 15 2 17
2 17 1 21 1 22 2 16 2 18 2 18
2 18 1 22 1 23 2 17 2 19
2 19 1 23 1 24 1 25 2 18 2 20
2 20 1 24 1 25 1 26 2 19 2 21
2 21 1 26 1 27 2 20 2 22
2 22 1 27 1 28 2 21 2 23
2 23 1 28 1 29 2 22

Table B.2: This table shows, for any given scintillator bar of HAND in the second plane,
which surrounding bars were used in the veto cut. Each is labeled by Plane (Pl) and Bar
number. The maximum number of vetoes for any given bar is six, however most of the
bars have less than six. This is why there are blank spaces.



106

TDC Veto 1 Veto 2 Veto 3 Veto 4 Veto 5
Pl Bar Pl Bar Pl Bar Pl Bar Pl Bar Pl Bar
3 0 2 0 2 1 3 1
3 1 2 1 2 2 3 0 3 2
3 2 2 2 2 3 3 1 3 3
3 3 2 3 2 4 3 2 3 4
3 4 2 4 2 5 2 6 3 3 3 5
3 5 2 5 2 6 2 7 3 4 3 6
3 6 2 7 2 8 3 5 3 7
3 7 2 8 2 9 3 6 3 8
3 8 2 9 2 10 3 7 3 9
3 9 2 10 2 11 3 8 3 10
3 10 2 11 2 12 3 9 3 11
3 11 2 11 2 12 3 10 3 12
3 12 2 12 2 13 2 14 3 11 3 13
3 13 2 13 2 14 3 12 3 14
3 14 2 14 2 15 3 13 3 15
3 15 2 15 2 16 3 14 3 16
3 16 2 16 2 17 2 18 3 15 3 17
3 17 2 17 2 18 2 19 3 16 3 18
3 18 2 19 2 20 3 17 3 19
3 19 2 20 2 21 3 18 3 20
3 20 2 21 2 22 3 19 3 21
3 21 2 22 2 23 3 20

Table B.3: This table shows, for any given scintillator bar of HAND in the third plane,
which surrounding bars were used in the veto cut. Each is labeled by Plane (Pl) and Bar
number. The maximum number of vetoes for any given bar is six, however most of the
bars have less than six. This is why there are blank spaces.
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TDC Veto 1 Veto 2 Veto 3 Veto 4 Veto 5 Veto 6
Pl Bar Pl Bar Pl Bar Pl Bar Pl Bar Pl Bar Pl Bar
4 0 3 0 3 1 3 1 4 1
4 1 3 1 3 2 3 3 4 0 4 2
4 2 3 3 3 4 3 5 4 1 4 3
4 3 3 4 3 5 3 6 4 2 4 4
4 4 3 6 3 7 3 8 4 3 4 5
4 5 3 8 3 9 3 10 3 11 4 4 4 6
4 6 3 10 3 11 3 12 3 13 4 5 4 7
4 7 3 13 3 14 3 15 4 6 4 8
4 8 3 15 3 16 3 17 4 7 4 9
4 9 3 16 3 17 3 18 4 8 4 10
4 10 3 18 3 19 3 20 4 9 4 11
4 11 3 20 3 21 3 21 4 10

Table B.4: This table shows, for any given scintillator bar of HAND in the fourth plane,
which surrounding bars were used in the veto cut. Each is labeled by Plane (Pl) and Bar
number. The maximum number of vetoes for any given bar is six, however most of the
bars have less than six. This is why there are blank spaces.


