Q²-Dependence of the Spin Structure Functions of the Proton and the Deuteron

The data obtained in the Stanford Linear Accelerator Center (SLAC) experiment E155 cover a large range in Q², improving the available experimental data on the Q²-dependence of the spin structure functions. We present the latest results of our analysis.

For the SLAC E155 Collaboration:

Frank R. Wesselmann

Old Dominion University Norfolk, Virginia

Overview

Introduction

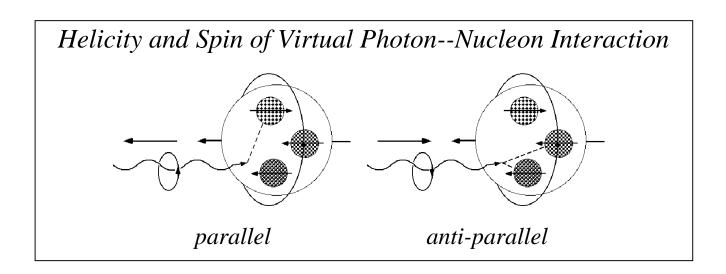
Phenomenological Study of Q²-Dependence of A₁

Motivation

Calculation of E155 Radiative Corrections

Procedure

Details of the Study


Results

Evidence of Q²-Dependence of A₁^p

Summary

Introduction

Phenomenological Study of Q^2 -Dependence of Virtual Photon Asymmetry $A_1(x_{Bjorken}, Q^2)$

$$A_{1}(x_{Bj}, Q^{2}) = \frac{\left(g_{1}(x_{Bj}, Q^{2}) - \gamma^{2}g_{2}(x_{Bj}, Q^{2})\right)}{F_{1}(x_{Bj}, Q^{2})}$$

$$g_{2}^{WW}(x_{Bj}, Q^{2}) = -g_{1}(x_{Bj}, Q^{2}) + \int_{x_{Bj}}^{1} \frac{g_{1}(y, Q^{2})}{y} dy$$

Motivation

Calculation of E155 Radiative Corrections Requires Model of $A_1(x_{Biorken}, Q^2)$ as Input

⇒ New Model (Fit), incl. E155 Data

 g_1 and F_1 have Well-Established Q^2 -Dependence, but Prior to E155, no Conclusive Answer if A_1 is Q^2 -Dependent

$$A_1 \approx \frac{g_1(x_{Bj}, Q^2)}{F_1(x_{Bj}, Q^2)}$$

Procedure

Calculation of Radiative Corrections Based on Recipe of *T. V. Kuchto* and *N. M. Shumeiko Nucl. Phys. B219(1983) 412-436*

Use A_1 Model and g_2^{ww} (Derived from A_1)

A₁ Model is Fit to Data via Iterative Process

Model Fine-Tuned with Direct Fit to Raw Asymmetries

Best Fit Requires Largest Data Set, Kinematic Coverage

⇒ Use All Available Data and Maximize Data Set:

Simultaneous Fits to A_1^p , $A_1^n & A_1^d$ Data Using Parameterization of A_1^p and A_1^n and

$$g_1^d = \frac{1}{2} \left(1 - \frac{3}{2} \omega_D \right) \left(g_1^p + g_1^n \right)$$

 $(\omega_{\mathbf{D}} = \text{D-State Probability})$

Procedure

Form of General Parameterization of A_1^p and A_1^n :

$$A_1 = x^{\alpha} \left(a + bx + cx^2 \right) \left(1 + d \cdot f(Q^2) \right)$$

Forms of $f(Q^2)$ Examined:

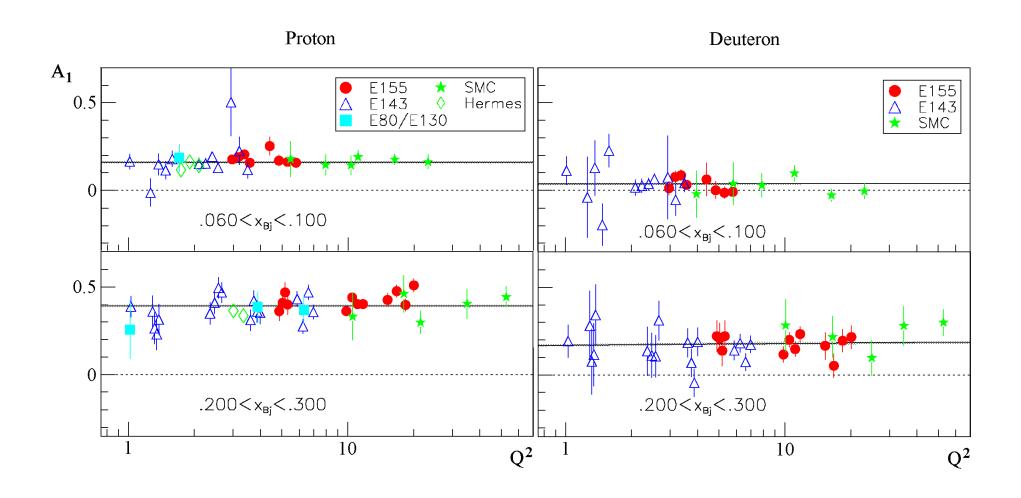
¹/_Q², ¹/_Q, log Q², None, Others, Combinations

Data Set

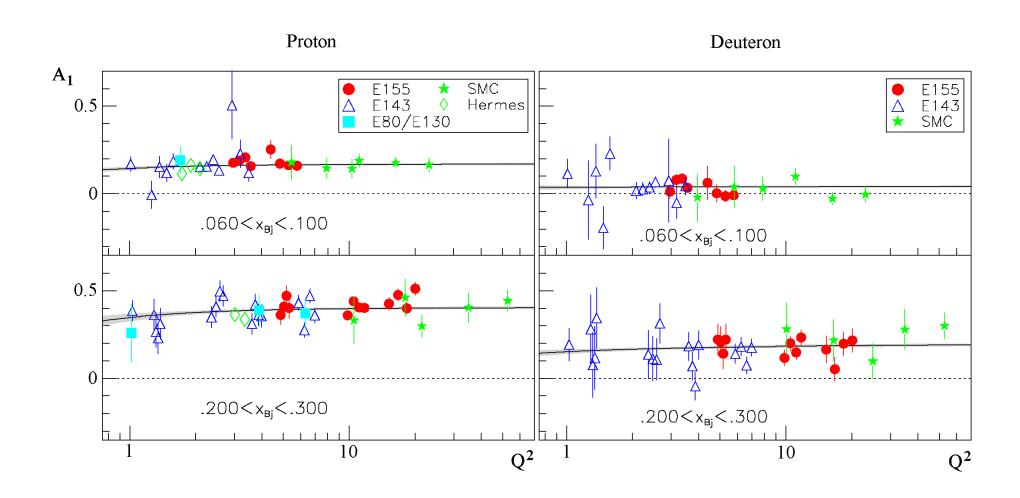
(only points with $Q^2 > 1.0 \text{ GeV}^2$, not in Resonance Region)

Proton (N=268)

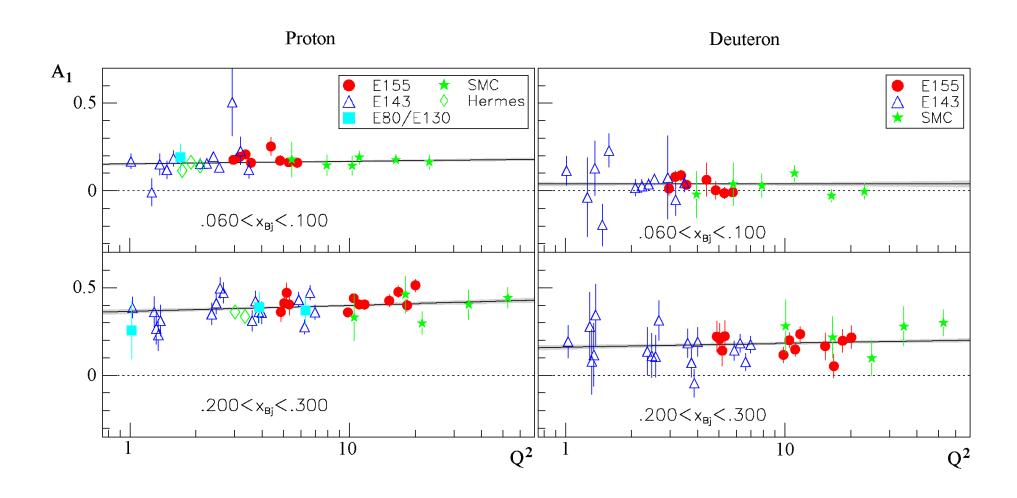
E155, E143, E130, E80, Hermes, SMC, EMC


Deuteron (N=224)

E155, E143, SMC


Neutron (N=35)

E154, E142, Hermes


A_1 vs. Q^2 — No Q^2 -Dependent Term

$A_1 \text{ vs. } Q^2 - \frac{1}{Q^2}$

$\mathbf{A}_1 \text{ vs. } \mathbf{Q}^2 - \log \mathbf{Q}^2$

Results

 χ^2 of Fits

	$\mathbf{A_1}^{\mathrm{p}}$	$\mathbf{A_1}^{\mathrm{d}}$
N	268	224
None	273.5	256.3
$1/Q^2$	266.9	256.8
$\log Q^2$	266.1	256.7

Change to A_1^p Due to $1+d \cdot f(Q^2)$

Q^2	1	10	100
$1/Q^2$	-14%	-1%	0
$\log Q^2$	0	9%	18%

Summary

For $Q^2 > 1$ GeV² and Based on Currently Available Data, $^{1}/Q^2$ Form Improves χ^2 of Fit to A_1^p by ~2.5 σ , Compared to No Q^2 Term

Below $Q^2 = 1 \text{ GeV}^2$, Strong Q^2 Dependence, as Expected

No Significant Q² Dependence of A₁^d Evident

Newly Obtained Global Fit to World A_1 Data with Overall χ^2 of 539.0 for 527 Data Points Provides Good Model for RC Calculation