Nucleon Form Factors

Frank R. Wesselmann

University of Virginia

Outline

Introduction

Formalism & Interpretation

- * Definitions
- * Conceptual Interpretation
- * Limiting Values & 1st order approximation
- * Modern Models

Measurements

- * Summary of Techniques
- * Jlab Experiments
- * Hall C Experiments in Detail

Summary

Form Factors

- spacial extent of charge & current (sub-structure)
 - \rightarrow anomalous magnetic moment

- Fundamental Quantities
- Test of QCD
- Required for Study of Other Physics
 - * Few-Body Structure Functions

Formalism

Sachs Form Factors for Elastic Scattering

$$\left(\frac{d\sigma}{d\Omega}\right) = \left(\frac{d\sigma}{d\Omega}\right)_{\text{Mott}} \times \left[\frac{G_E^2 + \tau G_M^2}{1 + \tau} + 2\tau G_M^2 \tan^2 \frac{\theta_e}{2}\right]$$

 $\tau = \frac{Q^2}{4M}$

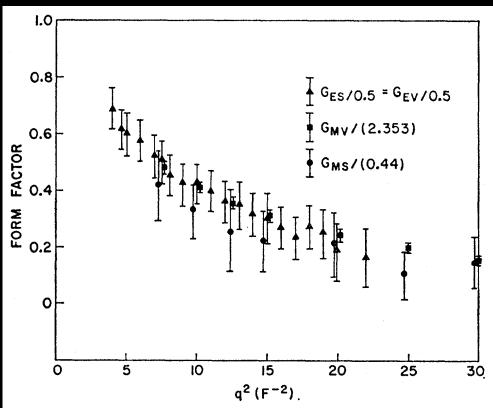
Intuitive Interpretationpoint-like probe $(Q^2 = 0)$ $G_E^p = 1$ $G_M^p = 2.79 \ \mu_N$ $G_E^n = 0$ $G_M^n = -1.91 \ \mu_N$

Breit frame (NR limit)

Fourier Transform of Charge, Current Distribution

Basic Approximation: Dipole Fit

$$G(Q^2) \approx G(Q^2=0) \times G_D(Q^2)$$


 $G_E^p \approx G_D \quad G_E^n \approx 0 \quad G_M^p \approx 2.79 \mu_N G_D \quad G_M^n \approx -1.91 \mu_N G_D$

- Based on Exponential Charge Distribution $\sim e^{-\alpha r}$
- FT fitted to Data:

$$G_D = \left(1 + \frac{Q^2}{0.71}\right)^{-2}$$

corresp. to $<\!r\!\!>_{_{\mathrm{RMS}}}=0.81 fm$

Phys. Rev. 139, B458 (1965)

Structure Functions

Form Factors for Elastic Scattering Only

More General:

Structure Functions $F_1(x, Q^2)$ and $F_2(x, Q^2)$

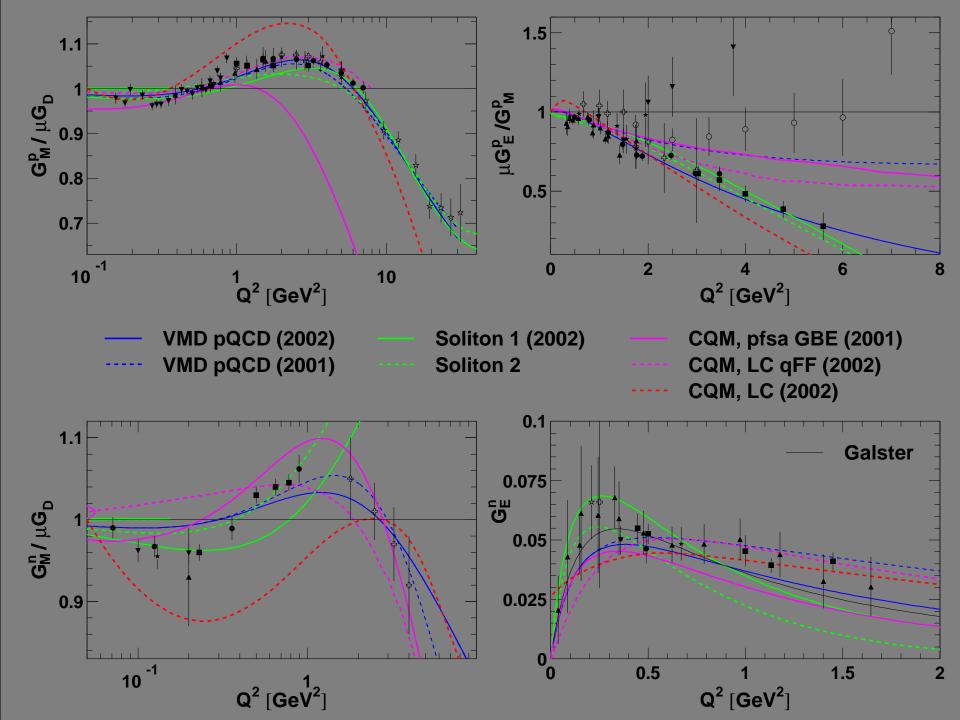
In the Limit of Elastic Scattering $(x \rightarrow 1)$:

$$G_E(Q^2) = F_1(Q^2) - \tau \mu F_2(Q^2)$$

$$G_M(Q^2) = F_1(Q^2) + \mu F_2(Q^2)$$

Current Status

Data:


- ▶ All Form Factors Measured (G_E^p , G_M^p , G_E^n , G_M^n)
- $\triangleright \ 0 \le Q^2 < \ \sim 10 \ GeV^2$

Models:

- Several QCD-based Models
 - * Vector Meson Dominance pQCD
 - * light front CQM, Goldstone Boson Exchange CQM

* Solitons

None Well Describe all Form Factors over Entire Measured Range

Form Factor Measurements

- Traditional Methods:
- Cross Section Based
- $\begin{array}{r|l} \hline \textbf{Rosenbluth Separation} \\ \frac{d\sigma}{d\Omega} \sim \frac{G_E^2 + \tau G_M^2}{1 + \tau} + 2\tau G_M^2 \tan^2 \frac{\theta_e}{2} \end{array} \end{array}$
- Highly Sensitive to Wavefunction Models

Polarization-Based Methods:

- Polarization Observables (asymmetry, LT-ratio)
- Complex Setups
- Asymmetry Measurements Require Absolute Polarization

Form Factors at Jefferson Lab

Proposal, Hall		Form Factor	Technique, Reaction		Year
93-026	С	G_E^{n}	Asymmetry	$\overrightarrow{D}(ec{e},e'n)p$	1998,2001
93-027	А	$G_E^{\ p}/G_M^{\ p}$	Recoil	1 H $(ec{e},e'ec{p})$	1998
93-038	С	G_E^n/G_M^n	Recoil	$^{2}\mathrm{H}(\vec{e},e'\vec{n})p$	2000/2001
94-017	В	G_M^n	Ratio	$rac{d(e,e'n)p}{d(e,e'p)n}$	2000
95-001	А	G_M^n	Asymmetry	${}^{3}\overrightarrow{\operatorname{He}}(\overrightarrow{e},e')X$	1999
99-007	А	$G_E^{\ p}/G_M^{\ p}$	Recoil	1 H $(ec{e},e'ec{p})$	2000
01-001	А	$G_{\!E}^{p}$	Rosenbluth	$^{1}H(e,p)$	2002
01-109	С	$G_E^{\ p}/G_M^{\ p}$	Recoil	1 H $(ec{e},e'ec{p})$	2005
02-013	А	G_E^n	Asymmetry	${}^{3}\overrightarrow{\operatorname{He}}(\overrightarrow{e},e'n)$	2004

Hall C Form Factor Measurements

Exp. 93-026

- * measured G_E^n from polarization asymmetry
- * ran 1998 and 2001
- * 1998 measurement provided highest Q^2 point at the time

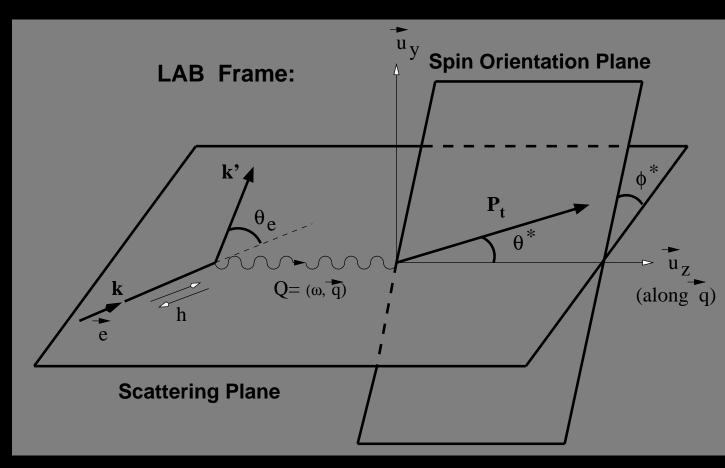
Exp. 93-038

- * measured G_E^n from recoil polarization
- * ran 2000 and 2001
- \ast currently most accurate measurement at large Q^2

Exp. 01-109

- * scheduled to run 2005
- * will measure G_E^{p}/G_M^{p} through recoil polarization
- * extension of spectacular Hall A results

Asymmetry Measurement – Formalism

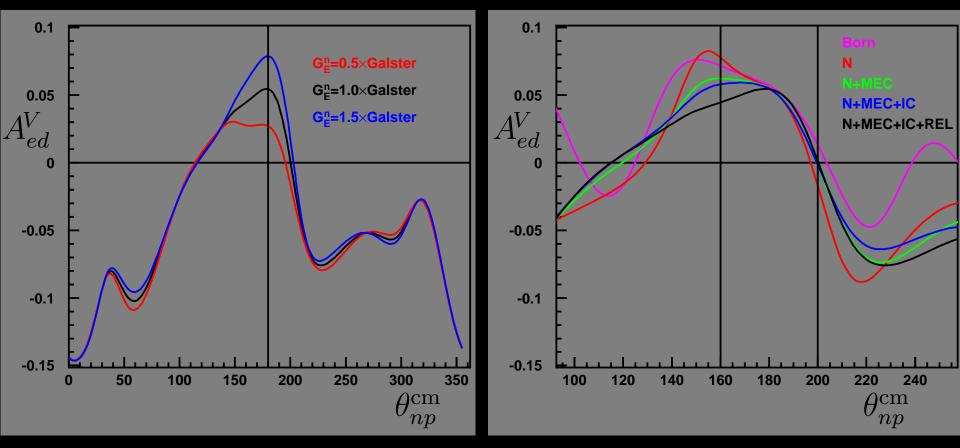

$$\left(\frac{d\sigma}{d\Omega}\right)^{pol} = \left(\frac{d\sigma}{d\Omega}\right)_{\text{Mott}} \times \left[\Sigma + h \mathcal{P}_{\text{target}} \Delta\right]$$

$$\Sigma = \left[\frac{G_E^2 + \tau G_M^2}{1 + \tau} + 2\tau G_M^2 \tan^2 \frac{\theta_e}{2}\right]$$

$$\Delta = -2 \tan \frac{\theta_e}{2} \sqrt{\frac{\tau}{1 + \tau}} \times \left[\sqrt{\tau \left(1 + (1 + \tau) \tan^2 \frac{\theta_e}{2}\right)} \cos \theta^* G_M^2 + G_E G_M \sin \theta^* \cos \phi^*\right]$$

Measurement via Vector Asymmetry $A^V = \frac{\Delta}{\Sigma} = \frac{\sigma_+ - \sigma_-}{\sigma_+ + \sigma_-}$

Asymmetry Measurement – Formalism


for quasi-free, $\mathcal{P}_{target} \perp \vec{q}$ $(\theta^* = 90^o)$ and \mathcal{P}_{target} in scattering plane $(\phi^* = 0)$,

$$A^{V} = \frac{-2\sqrt{\tau(1+\tau)} \tan\frac{\theta_{e}}{2} G_{E} G_{M}}{G_{E}^{2} + \tau [1 + 2(1+\tau) \tan^{2}\frac{\theta_{e}}{2}] G_{M}^{2}}$$

Gen01 at QE Kinematics

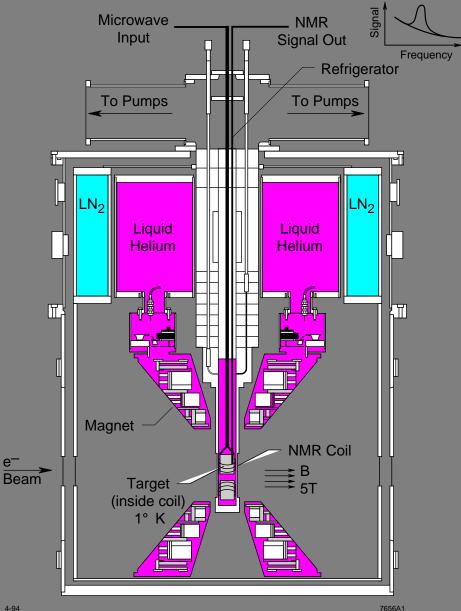
E93-026 Measured G_E^n via Polarization Asymmetry in QE Scattering off Deuterium

Large Sensitivity to G_E^n

Small Model Dependence

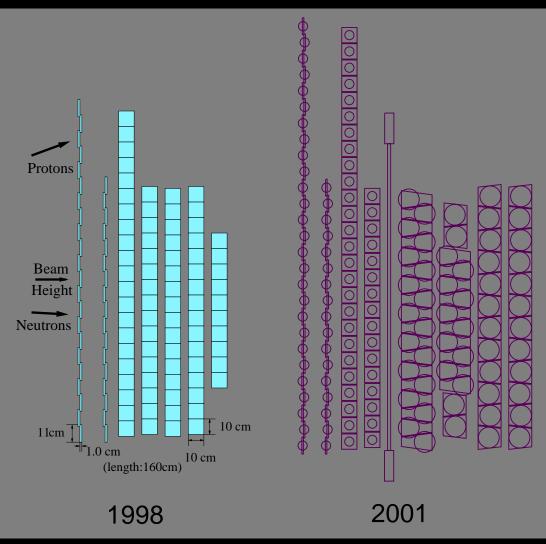
High Momentum Spectrometer

neutron detector

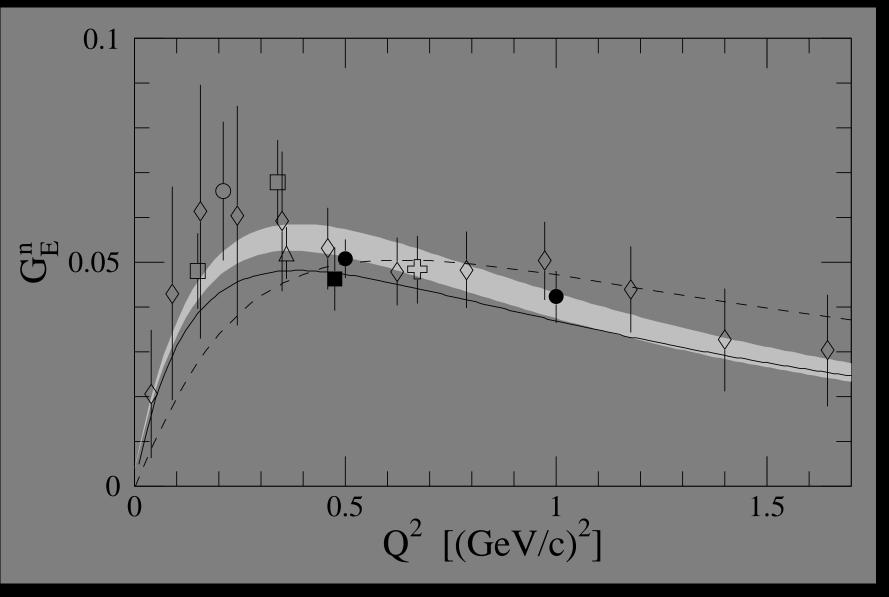

Gen01

polarized target

incoming beam line, chicane magnet

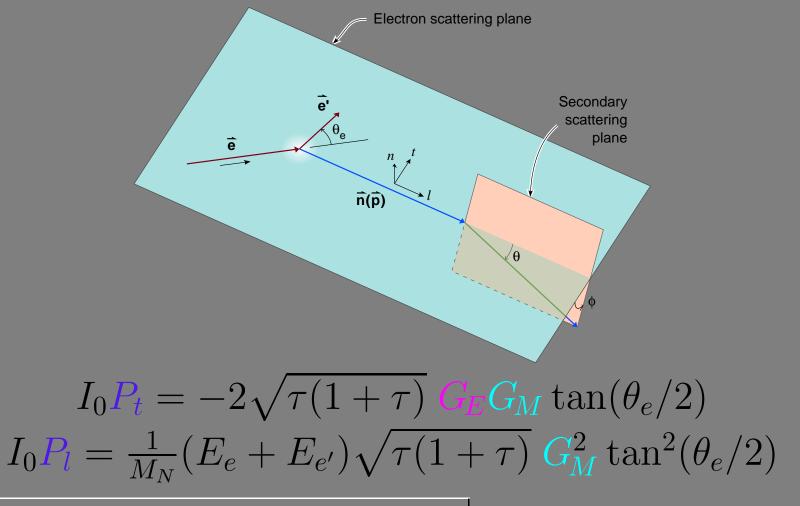

Gen01 – Polarized Target

- frozen ND₃
- ▶ ⁴He evaporation refrigerator
- \blacktriangleright 5T polarizing field
- remotely movable \bigtriangledown insert
- dynamic nuclear \triangle polarization driven by microwaves



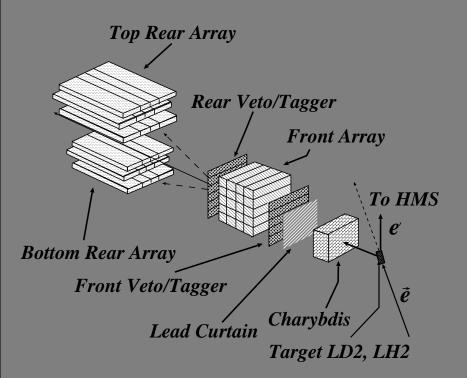
Gen01 – Neutron Detector

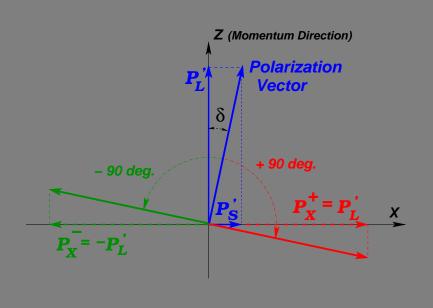
- segmented scintillator
 * 2 p⁺ VETO layers
 * 6 conversion layers
 * high rate: ~100 kHz
- vertically extended for symmetric proton acceptance
- provides 3 space coords, time & energy



Gen01 – Results

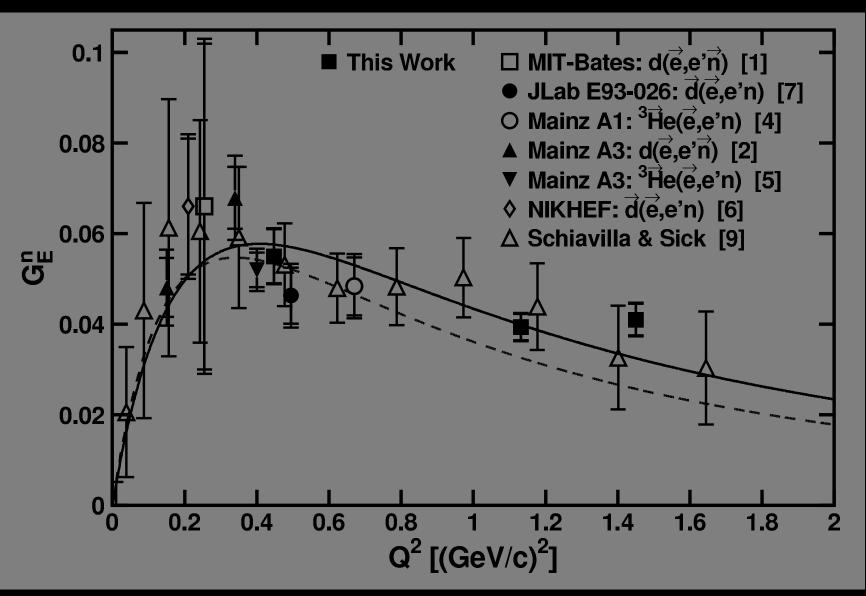
nucl-ex/0308021


Recoil Polarimetry – Formalism


 $\frac{G_E}{G_M} = -\frac{P_t}{P_l} \frac{(E_e + E_{e'})}{2M_N} \tan(\frac{\theta_e}{2})$

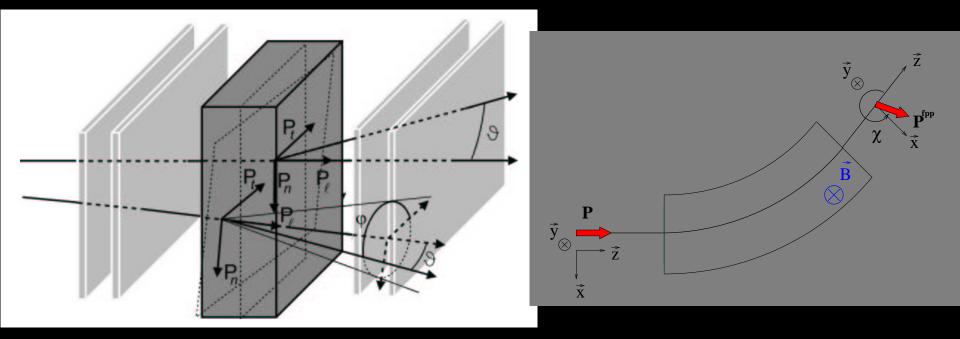
Direct measurement of form factor ratio by measuring the ratio of the transfered polarization P_t and P_l

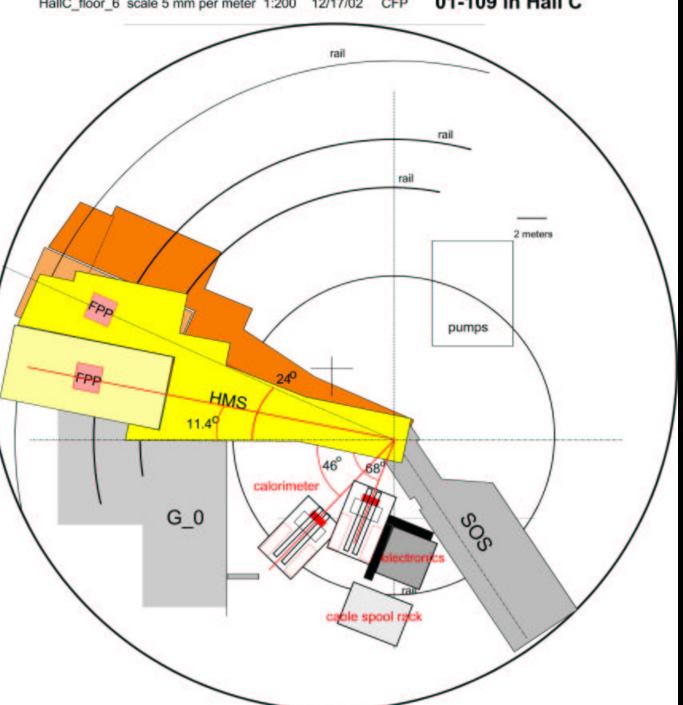
Recoil Polarimetry – E93-038



→ rotate longitudinal pol with Charybdis magnet want to determine P_l and P_t at target polarimeter sensitive to transverse pol only

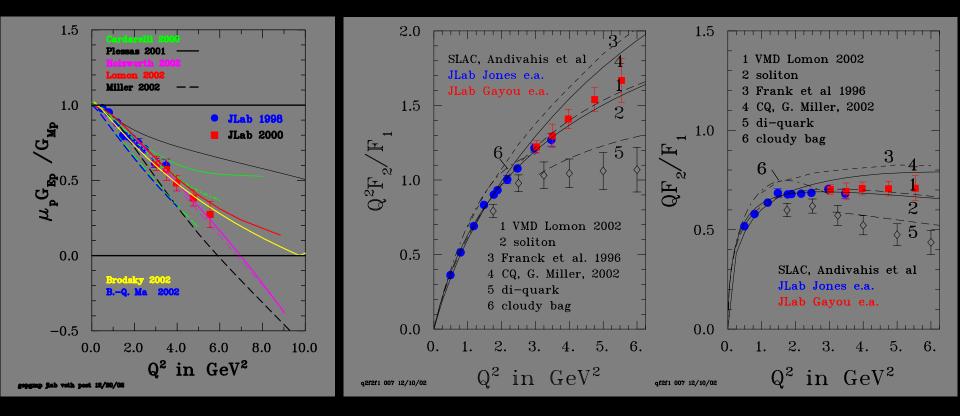
 $P_t^{\rm pol} = P_l \sin \chi + P_t \cos \chi$


E93-038 – Results


nucl-ex/0308007

Recoil Polarimetry – E01-109

- Detect proton in HMS, Scattered e⁻ in Custom Calorimeter
- HMS spectrometer rotates polarization vector



Transverse Polarization is Affected (Quads!)

01-109 in Hall C HallC_floor_6 scale 5 mm per meter 1:200 12/17/02 CFP

G_E^p in Hall A

More to come...

Summary

- Form Factors are Vital to Our Understanding of Nature
- Many Experiments have Already been Undertaken * limited kinematic range
- Significant Contribution from Hall C, other Halls
 - * two recent G_E^n measurements
 - * upcoming G_E^p/G_M^p

Polarization Observables Provide High Accuracy