J/Psi Production

E.Chudakov¹

¹JLab

For Hall C Summer Workshop, August 2006

E.Chudakov

JLab J/Psi Production

Outline

Physics Motivations

- Introduction
- Photoproduction Mechanisms
- ψ N Cross Section

Program for 12 GeV

- Overview
- Conclusion

B Appendix

Supplementary pages

< 17 ▶

Outline

Physics Motivations

- Introduction
- Photoproduction Mechanisms
- ψ N Cross Section

Program for 12 GeV

- Overview
- Conclusion

Appendix

Supplementary pages

Outline

Physics Motivations

- Introduction
- Photoproduction Mechanisms
- ψ N Cross Section

Program for 12 GeV

- Overview
- Conclusion

3 Appendix

Supplementary pages

Charm at 12 GeV

J/ψ : 32 announced on Nov, 1974

CEBAF at 12 GeV crosses the charm γN threshold:

	reaction	E_{γ} GeV	useful decay mode	BR	cross section		
		threshold			E_{γ}, GeV	σ nb	
	$\gamma p \rightarrow \eta_{c}(1S)p$	7.7 GeV	$\eta_{c}(1S) \rightarrow p\overline{p}$	0.12%	-	-	
*	$\gamma p \rightarrow J/\psi(1S)p$	8.2 GeV	$J/\psi(1S) \rightarrow e^-e^+/\mu^-\mu^+$	6.0%	11.	$0.5{\pm}0.2$	
*	$\gamma \mathbf{p} \rightarrow \mathbf{\Lambda}_{\mathbf{c}}^{+} \overline{\mathbf{D}}^{0}$	8.7 GeV	$\overline{\mathrm{D}}^0 { ightarrow} \mathrm{K}^+ \pi^-$	4.0%	20.	\sim 63. \pm 30.	
	$\gamma p \rightarrow \chi_{c0}(1P)p$	9.6 GeV	$\chi_{c1}(1P) \rightarrow K^+K^-$	0.71%			
	$\gamma p \rightarrow \chi_{c2}(1P)p$	10.3 GeV	$\chi_{c1}(1P) \rightarrow J/\psi(1S)\gamma$	13.0%	90.	$< 27\%~{ m J}/\psi$	
	$\gamma \mathbf{p} \rightarrow \psi(3770)\mathbf{p}$	11.0 GeV	$\psi(3770) \rightarrow e^{-}e^{+}/\mu^{-}\mu^{+}$	0.8%	21.	1.1±0.4	
	$\gamma p \rightarrow D\overline{D}p$	11.1 GeV			20.	\sim 63. \pm 30.	

E.Chudakov

JLab J/Psi Production

ヘロト ヘ戸ト ヘヨト ヘ

*Only a part of the experimental results are presented

E.Chudakov

J/Psi Production

.ll ab

Physics Motivations	Program for 12 GeV
00000000000	

What is special about J/ψ photoproduction?..

- No cc in nucleons: cc production only via gluons from the target
- Small size
- Important features of charm photoproduction:

- cc is a small size probe of the gluon field of the target
- VDM: ℓ_{coh} > 1 fm (E_γ > 25 GeV)
- Coherent on heavy nucleus: $\ell_{coh} > 4$ fm ($E_{\gamma} > 100$ GeV)
- $E_{\gamma} \sim 10 \text{ GeV } \ell_{coh} \ll d_{nucleus}, \ell_F < d_{nucleus}$ no shadowing effects, $c\bar{c}=J/\psi$ propagation through nuclear material イロト イポト イヨト イヨ

E Chudakov II ab I/Psi Production

Physics Motivations
000000000000000000000000000000000000000

Appendix 000000

ψ Photoproduction and ψ -N interaction

- Similarity between the two processes
- Check the model on photoproduction

Exclusive J/ψ production in *ep*: High vs. low *W*

- $W \gg M_{c\bar{c}}^2$ HERA, FNAL
- Momentum transfer $|\Delta_{\perp}| < 1$ GeV/c, Δ_{\parallel} small
- Gluon GPD $x_1 \sim x_2 \ll 1$
- "Transverse gluon imaging"

 Unique probe of small-size gluon configuration in proton

.ll ab

- Dipole moment $\sim r_{
 m c\bar{c}}$
- "Color transparency"

 $W \sim M_{c\bar{c}}^2$ - JLab

- Large Δ_{\parallel} , large $|t_{min}|$
- Gluon GPD $x_1 \neq x_2 \sim 1$ ("skewness")
- Probes transition form factor of gluon dipole moment at high t

ヘロト ヘ戸ト ヘヨト

Physics Motivation	ns
000000000000000000000000000000000000000	

Appendix 000000

t-Dependence: dipole approximation

L.Frankfurt, M.Strikman, Phys.Rev.D66:031502 (2002), M.Str., C.Weiss hep-ph/0408345

Appendix 000000

t-Dependence: dipole approximation

L.Frankfurt, M.Strikman, Phys.Rev.D66:031502 (2002), M.Str., C.Weiss hep-ph/0408345

HERA: exponential provides a better fit

.ll ab

$$\begin{split} & x \ll 1 \quad \frac{d\sigma_{\gamma P \to J/\psi p}}{dt} \propto \frac{H_g(x,t)^2}{H_g(x,0)^2} \\ \Rightarrow & \mathsf{FT} \Rightarrow \mathsf{spacial \ distribution} \\ & \mathsf{Argued: \ dipole \ approximation:} \\ & H_g(x,t) \propto (1-t/m_g^2)^{-2} \\ & m_g^2 \approx 1.1 \ \mathsf{GeV}/\mathsf{c}^2 \ \mathsf{at} \ \mathsf{x}{\sim} \mathbf{0.1} \\ & \langle \rho^2 \rangle = 8/m_g^2 \approx 0.28 \ \mathsf{fm}^2 \\ & \frac{d\sigma_{\gamma P \to J/\psi p}}{dt} \propto (1-t/1.0 \ \mathsf{GeV}^2)^{-4} \end{split}$$

E.Chudakov

Appendix 000000

Calculation of $\sigma(\psi N)_{tot}$ and ψ Photoproduction

B.Kopeliovich, J.Raufeisen LA-UR-03-3079, hep-ph/0305094 Hufner,Kopeliovich

- VDM extended to a multi-channel case (account for J/ψ ψ/ mixing)
- dipole interaction
- accurate setting of the wave functions etc
- no tune to ${\sf J}/\psi$ data
- Photoproduction: good agreement at high energies
- σ(ψN) extrapolation to low energies?

E.Chudakov

JLab J/Psi Production

Appendix

Experiment: Low Energy Photoproduction

Cornell and SLAC:

SLAC: Double Arm: published Single arm: unpublished large errors <12 GeV σ : SLAC \approx Cornell $\frac{d\sigma}{dt} = A \cdot \exp Bt$ E_{γ} GeV 11. 19 B (GeV)⁻² 1.13±0.18 2.9±0.3

Indication: a slow decrease of cross section towards the threshold

Production near threshold

Should probe the particle distributions at high *x*. Several constituents from the target should take part. No detailed calculation exists so far. Qualitative arguments on $\sigma(E_{\gamma})$ (S.Brodsky, E.Ch., P.Hoyer, J.-M. Laget PL B498, 23 2001):

Appendix 000000

Production near threshold

- "2-gluon" fit to high E points
 "3-gluon" fit to 2 low energy
- "3-gluon" fit to 2 low energy points

.ll ab

Appendix 000000

Production near threshold

- "2-gluon" fit to high E points
 "3-gluon" fit to 2 low energy
- "3-gluon" fit to 2 low energy points

Subthreshold experiment E-03-008

No J/ψ observed Large cross section at threshold ruled out

Are the old data correct?

.ll ab

ψ N Interactions

 ψ N interactions: attention from theorists Practical interest: J/ ψ deficit = signature for QGP

Features:

- small color dipole interacting with nuclear matter
- breakup by excitation to $\overline{DD} \Delta E \sim 0.6 \ GeV$
- possible loss due to ψ +N \rightarrow A_c⁺ \overline{D} at P_{ψ} > 1.8 GeV/c

At low energy:

- attractive potential (Van der Waals) (Luke,Manohar,Savage,1992) $E_{binding} \sim 8 \ MeV$
- $\sigma(\psi N)_{tot} \sim 7 \text{ mb}$ (Brodsky,Miller,1997), falling with energy

How to compare these predictions with experiment?

ヘロト ヘ戸ト ヘヨト ヘ

ψ N measurements and interpretations

Experimental situation: was confusing. Now improving. Methods:

- $\circ\,$ From photoproduction, using VDM, optical theorem and assumptions on Re(A)/Im(A) $(\sim\,0)$
 - 20 GeV: $d\sigma(J/\psi N \rightarrow J/\psi N)/dt \mid t=0 \sim 25 \ \mu b$
 - 20-200 GeV: σ (J/ψN)_{tot} \sim 1 mb \Rightarrow 2.8 4.1 mb
- From A-dependence of photo and hadro-production, using Glauber model and considering : color transparency effects at l_{coh}, l_F > R_{target}
 - 20 GeV γ A: σ (J/ ψ N)_{abs} \approx 3.5 \pm 0.8 \pm 0.6 mb
 - 80-150 GeV *pA*: σ(J/ψN)_{abs} ≈ 7 mb ⇒ 3.6 mb
 - 400-450 GeV *pA*: $\sigma(J/\psi N)_{abs} \approx$ 4.3±0.3 mb

・ロト ・四ト ・ヨト ・ヨ

SLAC results on $\gamma A \rightarrow \psi + X$

Single spectrometer measurements (From: R.Andersen et al PRL 38, 263 (1977))

.ll ab

- 20 GeV e⁻ on Be and Ta targets
- 20 GeV spectrometer, μ^- , μ -filter
- High statistics on a high background
- The background was calculated:
 - decays
 - Bethe-Heitler

$$\sigma(Be)/\sigma(Ta) = 1.21 \pm 0.7$$
$$\Rightarrow \sigma_{\psi N} = 3.5 \pm 0.8 \text{ mb}$$

Attempts to measure the cross section down to 9 GeV: unpublished

E.Chudakov

J/Psi Production

Program for JLab at 11 GeV

- (1) Measure $\sigma(J/\psi N)_{abs}$ using A-dependence of $\sigma(\gamma A \rightarrow J/\psi X)$ Advantages (to SLAC):
- lower energy smaller effects from ℓ_{coh}, ℓ_F
- low background for J/ψ
- reconstructed kinematics of J/ψ
- separation of coherent and incoherent production
- several targets used

Disadvantages comparing to the SLAC experiment:

 lower energy - stronger effect from Fermi motion (2) Measure $\frac{d\sigma}{dt}(E)$ for $\gamma p \rightarrow J/\psi p$ Goals:

- Provide Fermi-motion correction for (1)
- Measurement in a new energy range (3-gluon exchange?)
- (3) Look for more exotic effects:
- "Hidden color" $\gamma D \rightarrow J/\psi pn$
- Bound state: peak in σ/V at x=1 (threshold)

ヘロト ヘ戸ト ヘヨト ヘ

$J/\psi(1S)$ on nuclear targets

 $\sigma_{\Psi N}$ can be derived from the A-dependence of the cross-section Hall C setup:

- LH,LD 15 cm, with a 6%RL radiator
- Heavy targets of 7.7% RL (\approx 6% radiator + LH target)
- For $J/\psi(1S)$ production $\sigma_A \approx A \cdot \sigma_N$
- Beam 11 GeV, 50 μA
- − HMS 21°, 4.3 GeV/c, SHMS 15°, 6.1 GeV/c \Rightarrow E_{γ} > 10.5 GeV, |t| < 1.2 (GeV/c)², acceptance 1.2 · 10⁻⁴
- Assume $\frac{d\sigma}{dt}(E_{\gamma} = 10.5 11) = 0.6 \cdot e^{1.1 \cdot t} \text{ nb/GeV}^2$ (Cornell)
- Combined efficiency 50%
- Coherent production excluded by kinematics and ${\rm J}/\psi$ angle

target	¹ H	² H	Be	С	Al	Cu	Pb
$J/\psi(1S)/day (1-x)^2$	160	320	550	360	210	110	60

1000 events per target: \sim 50 days run

(日)

Extraction of $\sigma_{\psi N}$

• Nuclear transparency: $T = \sigma_{\gamma A} / (A \cdot \sigma_{\gamma N})$

SLAC model: semi-classical eikonal approximation of nuclear rescattering

Assumed: statistical error for each target 3%

.ll ab

Conclusion

At 12 GeV JLab is capable of using $c\overline{c}$ as a probe of nuclear matter:

(1) Measurements of ψ -Nucleon cross-section. The expected errors are about 10% statistical and 15% systematic. This measurements are aiming to test if there is a considerable gluonic potential between colorless states. This cross-section has also been of a considerable interest for heavy ion physics.

(2) Measurements of $\frac{d\sigma}{dt}(E_{\gamma})$ of $J/\psi(1S)$ is needed in order to fulfill (1). It is also of independent interest, probing compact, coherent states of valence quarks.

Experimental possibilities:

- The part (1) SHMS+HMS in 2 months
- The part (2) longer time (several options)

A D N A B N A B N

Physics Motivations	Program for 12 GeV

Appendix •00000

$J/\psi(1S)$ Photoproduction on Nuclei

Vertex detectors:

- NA14: ⁶Li 50-150 GeV
- E687: ⁹*Be* 120-370 GeV
- A large coherent production: ${\approx}40\%$
- "Coherent" slopes: NA14 and E687 are inconsistent
- NA14 and E687 good t resolution, recoil undetected
- full cross-section A-dependence $\approx {\cal A}^1$
- $L_{coh} > 2 \text{ fm } E_{\gamma} > 50 \text{ GeV}$

Generalized VDM

L.Frankfurt, M.Strikman...hep-ph/030430

Physics Motivations	Program for 12 GeV

Appendix 00000

Calculation of $\sigma(\psi N)_{tot}$ and ψ Photoproduction

(From: D.Kharzeev et al Eur.Phys.J. C 9,459 (1999))

Calculation of $\sigma(\psi N)_{tot}$ (rigorous in heavy quark limit):

- short-distance QCD (similar to DIS)
- using gluon PDF of the nucleon
- Is *m_c* large enough?

Test:

- $\psi N \Rightarrow \gamma p \rightarrow \psi p$, using:
- VDM: Ε_γ >25 GeV
- optical theorem
- dispersion relations

Discrepancy at 17 GeV \times 10 Fast drop at E<20 GeV At E \sim 10 GeV - decisive

.ll ab

SLAC results on $\gamma p \rightarrow \psi p$ at 13-21 GeV

Double spectrometer measurements (From: U.Camerini et al PRL 35, 483 (1975)) at 13 GeV:

5% RL, 30 cm ¹H, ²H 20, 8 GeV spectrometers $J/\psi(1S) \rightarrow e^+e^-, \mu^+\mu^-$ 1200 $J/\psi(1S)$ and 13 $\psi(3770)$ $rac{d\sigma}{dt}\mid{}_{tmin}=3.8\pm0.8~\text{nb/GeV}^2$ at 20 GeV:

 σ : ψ (3100)/ ψ (3770) \sim 6.8 \pm 2.4

From VDM: $d\sigma(\psi N \rightarrow \psi N)/dt \mid_{t=0} \approx 25\mu b$

Physics Motivations	Program for 12 GeV

Appendix 000000

Cornell Results at 11.8 GeV

- $J/\psi \rightarrow e^+e^-$ detected with lead-glass calorimeters $\left(\frac{\sigma E}{E} = \frac{0.16}{\sqrt{E}}\right)$
- $\langle \gamma$ -flux \rangle 1.10⁹/s for 8.5<E $_{\gamma}$ < 11.8 GeV, duty cycle=7%, Be 2.9g/cm²

.ll ab

- Background: neutrals ×10 charged, charged BH
- Signal/background ~470/70

• Results:

$$rac{\sigma}{t} = 0.9 \pm 0.1 \; {
m nb/GeV^2} \cdot e^{1.13 \pm 0.18 \cdot t}$$

No dependence of cross-section on E_{γ} observed!

E.Chudakov

J/Psi Production

JLab spectrometers

hall	beam	setup	ΔΩ	θ_{min}	P _{max}	$\pm \frac{\Delta P}{P}$	$\frac{\sigma P}{P}$	$\sigma heta_{in}$	$\sigma \theta_{out}$
	μA		ster	deg	GeV	%	%	mrad	mrad
Hall A	100	HRS	0.006	12.5	4.0	-5./+5.	0.02	0.6	1.0
		HRS	0.006	12.5	3.2	-5./+5.	0.02	0.6	1.0
		MAD	0.030	35.0	8.0	-15./+30.	0.1	1.0	1.0
			0.006	12.0	8.0	-15./+30.	0.1	1.0	1.0
Hall C	100	HMS	0.008	10.5	7.3	-10./+10.	0.1	0.8	1.0
		SOS	0.009	-	1.8	40.0	0.1	1.0	1.0
		SHMS	0.004	10.0	11.0	-15./+25.	0.2	3.0	1.5
Hall B	0.03	CLAS	$\sim 2\pi$	-	-	0.5			
Hall D	γ		\sim 4 π	-	-	<1.			

(日) (四) (日) (日) (日)

Luminosity and Acceptance

Possible photon flux:

- Halls A,C: 50 μ A at 6% RL radiator: 6 \cdot 10¹² γ /s 8.5-11 GeV on 10 cm LH
- A,C ECAL: $2\mu A$ at 6% RL radiator: $3 \cdot 10^{11} \gamma$ /s 8.5-11 GeV on 4 cm LH
- Halls B: no tagging forseen
- Halls B: $\mathcal{L} < 10^{35}~\text{cm}^{-2}\text{s}^{-1}$: 1.2 \cdot $10^9 \gamma/\text{s}$ 8.5-11 GeV on 10 cm LH
- Halls D, tagged:

 $\sim 2 \cdot 10^{\overline{7}}/s$ in 8.4 < E_{γ} < 9.1GeV coherent $\sim 2 \cdot 10^{7}/s$ in 8.4 < E_{γ} < 11.GeV incoherent

• "Standard" 12 GeV equipment: acceptance A/B/C/D/ECAL $0.2\cdot10^{-3}$ / 0.2 / $0.1\cdot10^{-3}$ / 0.4 / 0.2

E.Chudakov

JLab J/Psi Production

25