Charm at JLab 12 GeV

E.Chudakov¹

¹JLab

Photon-Hadron Physics with GLUEX Detector, Workshop at Jlab, March 2008

E.Chudakov PHP with GLUEX, Jlab 2008 Charm at JLab 12 GeV

Introduction

- Experimental opportunities
- Photoproduction Mechanisms
- ψN Interaction
- Program at JLab
 - Experiment in Hall C
 - Hall D Potential
- 3 Summary

Introduction

- Experimental opportunities
- Photoproduction Mechanisms
- ψN Interaction

Program at JLab

- Experiment in Hall C
- Hall D Potential

3 Summary

Introduction

- Experimental opportunities
- Photoproduction Mechanisms
- ψN Interaction

Program at JLab

- Experiment in Hall C
- Hall D Potential

3 Summary

Introduction

- Experimental opportunities
- Photoproduction Mechanisms
- ψN Interaction

Program at JLab

- Experiment in Hall C
- Hall D Potential

3 Summary

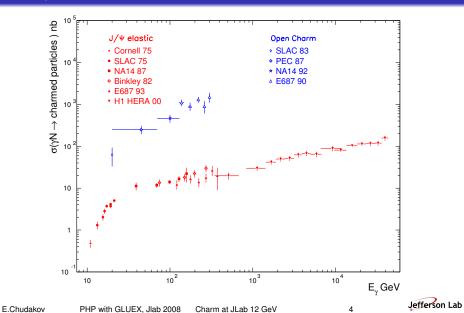
Summary

Supplementary material

Charm photoproduction at 12 GeV

Charmed particles have been studied extensively since 1974 Can be used as a tool to study the hadronic structure

- Photoproduction cross section $\sigma_{charm} \sim 10^{-5} 10^{-4} \sigma_{total}$
- Useful decays *BR* < 0.06
- Signal extraction: 2-body decay, small σ_M , leptons, vertex det.


	reaction E_{γ} GeV		useful decay mode	useful decay mode BR		cross section		
		threshold			E_{γ}, GeV	σ nb		
	$\gamma p \rightarrow \eta_c(1S)p$	7.7 GeV	$\eta_{\rm c}(1{\rm S}) \rightarrow {\sf p}\overline{{\rm p}}$	0.12%	-	-		
*	$\gamma p \rightarrow J/\psi(1S)p$	8.2 GeV	$J/\psi(1S) \rightarrow e^-e^+/\mu^-\mu^+$	6.0%	11.	$0.5{\pm}0.2$		
*	$\gamma p \rightarrow \Lambda_c^+ \overline{\mathrm{D}}^0$	8.7 GeV	$\overline{\mathrm{D}}^0 { ightarrow} \mathrm{K}^+ \pi^-$	4.0%	20.	\sim 63. \pm 30.		
	$\gamma p \rightarrow \Lambda_c^+ D^* (2010)^0$	9.4 GeV	$\mathrm{D}^{*}(2010)^{0} \rightarrow \overline{\mathrm{D}}^{0} \mathrm{X}$	100.0%	20.	\sim 63. \pm 30.		
	$\gamma p \rightarrow \chi_{c0}(1P)p$	9.6 GeV	$\chi_{c1}(1P) \rightarrow K^+K^-$	0.71%				
	$\gamma p \rightarrow \chi_{c2}(1P)p$	10.3 GeV	$\chi_{c1}(1P) \rightarrow J/\psi(1S)\gamma$	13.0%	90.	$<$ 27% ${ m J}/{ m \psi}$		
	$\gamma p \rightarrow \psi(3770)p$	11.0 GeV	$\psi(3770) \rightarrow e^- e^+ / \mu^- \mu^+$	0.8%	21.	$1.1 {\pm} 0.4$		
	$\gamma p \rightarrow D\overline{D}p$	11.1 GeV			20.	\sim 63. \pm 30.		

Summary

Supplementary material

Photoproduction measurements

Potential experimental opportunities at 12 GeV JLab

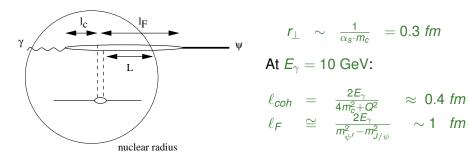
A vertex detector for Λ_c^+ , \overline{D} can hardly be used.

Best chances:

- $\gamma p \rightarrow p J/\psi(1S) \rightarrow e^- e^+/\mu^- \mu^+$, proved at Cornell 11 GeV
- $\gamma p \rightarrow \Lambda_c^+ \overline{D}^0 \rightarrow K^+ \pi^- M_{miss} \sim M_{\Lambda_c^+}$ seems possible
- $\gamma p \rightarrow p \eta_c(1S) \rightarrow p\overline{p} < 0.01$ of $J/\psi(1S)$ harder

Physics with J/ ψ

- Photoproduction of $J/\psi(1S)$ close to threshold
- Interaction of $J/\psi(1S)$ a "long living" particle with matter

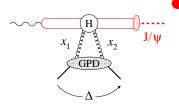

Can we use $J/\psi(1S)$ as a probe for the nucleon/nucleus?

Summary

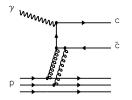
Supplementary material

J/ψ photoproduction at 10 GeV: Scales

- No coherent production on heavy nucleus: $\ell_{coh} \ll R_A$
- No shadowing effects: $\ell_{coh}, \ell_F < R_A$
- VMD not applicable: $\ell_{coh} < 1 \text{ fm}$


6

Summary

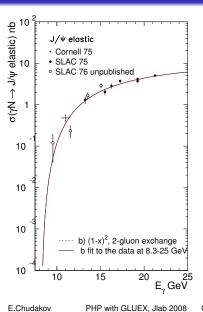

Supplementary material

J/ψ photoproduction at 10 GeV: Dynamical models

Partonic soft mechanism Frankfurt..2002..

- Well tested at high energies
- 10 GeV: gluons $x_1 \neq x_2 \sim 1$ $|t_{min}| > 0.4$ GeV/c
- 2-gluon formfactor: $\frac{d\sigma_{\gamma P \to J/\psi p}}{dt} \propto (1 - t/1.0 \, GeV^2)^{-4}$

- Hard scattering mechanism Brodsky.., 2001
 - 10 GeV: Quark counting rules
 - 2-gluon exchange $\propto (1 x)^2$
 - 3-gluon exchange $\propto (1-x)^0$


Unique probe of small-size gluon configurations in proton

Summary

Supplementary material

J/ψ photoproduction at 10 GeV: Dynamical models

Both models fit the data at 11-25 GeV:

- Frankfurt 2003
- Brodsky 2001: 2-gluon exchange (red curve)

• Brodsky 2001: 3-gluon exchange alone does not fit the data

Summary

Supplementary material

J/ψ photoproduction at 10 GeV: Dynamical models

Both models fit the data at 11-25 GeV:

- Frankfurt 2003
- Brodsky 2001: 2-gluon exchange (red curve)

Subthreshold experiment E-03-008

No J/ ψ observed Spectral functions $\otimes \sigma$ not large

Introduction

Summary

Supplementary material

Photoproduction on nucleons

• Measure $\frac{d\sigma}{dt}(E)$ for $\gamma + p \rightarrow J/\psi + p$ close to threshold, at $E_{\gamma} \sim 8.5 - 11$ GeV Low energy \Rightarrow sensitive to high-*x* gluons in the nucleon

Summary

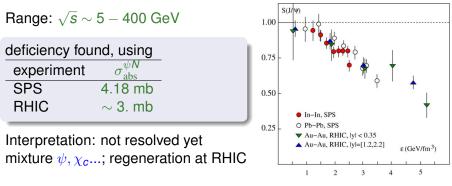
Supplementary material

ψ N Interaction: Physics

- Small size color dipole r_⊥ ~ 1/(α_s·m_c) = 0.3 fm interaction ∝ color dipole moment ∝ r_{cc̄} (small)
 ⇔ color transparency, σ^{ψN}_{tot} ≪σ^{πN}_{tot} ≈30 mb
- Low energy: attractive potential (Luke,Manohar,Savage,1992) similar to Van der Waals, *E_{binding}* ~ 8 *MeV*

• Absorption: breakup to \overline{DD} , $\psi + N \rightarrow \Lambda_c^+ \overline{D}$

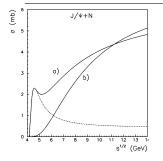
Introduction


Program at JLab

Summary

Supplementary material

ψ N Interaction: Signature for QGP


• JLab experiment - measure $\sigma_{\rm abs}^{\psi N}$ at lower energy $\sqrt{s} \sim 5~{\rm GeV}$, in different conditions

Introduction	Program at JLab	Summary	Supplementar

ψ N Interaction: $\sigma^{\psi N}$ Theoretical Calculations

Various models:	VMD, exchange meson currents, etc.				
authors	model	\sqrt{s} , GeV	$\sigma^{\psi N}$, mb		
Brodsky,Miller,1997	Van-der-Waals potential	small	7		
Kopeliovich,1994	GVMD, wave functions	10–400	3–10		
Gerland, 1998	VMD, data for VM	>7	3.6		
Sibirtsev, 2001	boson exchange	>4	2.2		
	Lattice				

Sibirtsev et al, 2001

- a) FF calculations, $\psi + N \rightarrow \Lambda_c^+ \overline{D} D\overline{D}$
- a) short distance QCD

12

ry material

ψ N Interaction: Experimental Access

Calculated from photoproduction on nucleons using VMD/GVMD

 γN >20 GeV $\sigma_{tot}^{\psi N} \sim$ 2.8 - 4.1 mb model dependent

Nuclear absorption: from A-dependence, Glauber model

20 GeV $\sigma_{\rm abc}^{\psi N} = 3.5 \pm 0.9$ mb clean interpretation γA poor accuracy

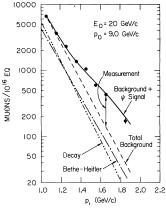
$$pA > 100 \text{ GeV}$$
 $\sigma_{abs}^{\psi N} = 4.2 \pm 0.4 \text{ mb}$ not ψN :
 $\ell_{coh}, \ell_F \gg R_A$
contamination $\chi_c, \psi I$

We use arguments from Farrar et al., 1990, Kharzeev et al, 2007

E.Chudakov PHP with GLUEX, Jlab 2008

Charm at JLab 12 GeV

13



Summary

Supplementary material

ψ N Interaction: Experiment at SLAC 1977

- The cleanest method used so far: $\ell_{coh}, \ell_F < R_A$
- Large experimental uncertainties

- 20 GeV e^- on Be and Ta targets
- Detecting only μ^- , through iron
- The background was calculated (decays, Bethe-Heitler)
- Nuclear coherence not measured

 $\sigma(Be)/\sigma(Ta) = 1.21 \pm 0.7$ $\Rightarrow \sigma_{\psi N} = 3.5 \pm 0.8 \pm 0.6 \text{ mb}$

Authors: syst. errors might be larger

• JLab: we can do a much more accurate experiment!

E.Chudakov

PHP with GLUEX, Jlab 2008

Charm at JLab 12 GeV

Summary

Supplementary material

Photoproduction on Nuclei

 Measure the A-dependence of σ(γ + A → J/ψ + X), extract σ^{ψN}_{abs} at √s ~ 5 GeV Much improved accuracy and a cleaner interpretation.

Experiment in Hall C

PR12-07-106 for Hall C: conditionally approved. Objectives:

- Accurate measurement of J/ ψ -nucleon cross-section at $\sqrt{s} = 5 \text{ GeV}$
 - Test theoretical ideas (color dipole model, Van-der-Waals force)
 - Benchmark for future calculations
 - Interest for heavy ion physics.
- 2 Measurement of J/ψ photoproduction cross section $\frac{d\sigma}{dt}(E_{\gamma})$ at $E_{\gamma} \sim 8.8 11$ GeV
 - Input for (1).
 - Probes large-x gluon GPD / small-size gluon configurations in proton.

Experiment: Setup

• Use decays to $e^+e^-(6\%), \mu^+\mu^-(6\%)$ to identify J/ ψ mass

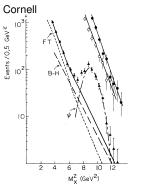
Standard Hall C equipment

- High rate at various targets
- Low background: < 2%, scaled from Cornell, SLAC
- Reconstruction of E_{γ} , identification of $\gamma + p \rightarrow J/\psi + p$

Hall C Spectrometers

Beam and target

- HMS: *e*⁻, μ⁻ at θ > 20°
- SHMS: *e*⁺, μ⁺ at θ < 20°
- e⁺, e⁻ Gas Cher., Shower
- μ^+, μ^- Gas Cher.


- Bremsstrahlung by 50 μ A beam
- 6 targets *A* = 9 197, 10% r.l. thick
- Each target: 3 plates $\sim 5 \mbox{ cm}$ apart
- 20 cm LH₂ with a 7% radiator
- 20 cm LD_2 with a 7% radiator

Experiment: Counting rates, Backgrounds

Rates

- Single arm: < 250 kHz
- $\bullet\,$ Coinc. (100 ns): \sim 200 Hz

 $\Delta M = 0.5 \text{ GeV } BG = 15\%$

Resolutions

Mass 7.4 MeV/c²

For $\gamma + \mathbf{p} \rightarrow \mathbf{J}/\psi + \mathbf{p}$:

- Photon energy 0.2%
- t: $\sigma_t \sim 0.015 \; (\text{GeV/c})^{-2}$

Backgrounds

• Accidentals < 0.2 per hour

Physics: Bethe-Heitler dominated

- Calculated
- Scaled (Cornell, SLAC) < 2%

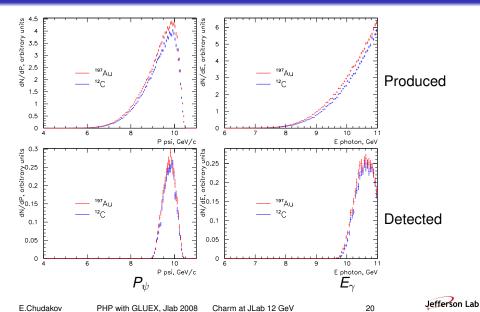
Supplementary material

Experiment: Rates on Nuclear Targets

- Acceptance $\epsilon \approx 0.03\%$
- Internal Bremsstrahlung 1.6%
- No nuclear absorption is assumed for the moment

	¹ H	² H	Be	С	Al	Cu	Ag	Au
A	1	2	9	12	27	63.5	108	197
Z	1	1	4	6	13	29	47	79
T/T_{RL}	0.022	0.027	0.10	0.10	0.10	0.10	0.10	0.10
J/ψ per h	170	340	560	370	208	112	78	55
Time*, h	24	12	7	11	19	36	51	72

* – in order to detect 4000 events per target

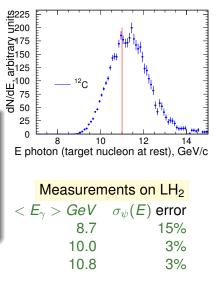

• 200 hours on nuclear targets

Summary

Supplementary material

Hall C: acceptance

Summary


Supplementary material

Fermi motion Correction and Hydrogen Measurements

Fermi motion $\otimes \sigma_{\gamma N \to \psi X}(E_{\gamma})$: $Au/C \approx 1.10$ sensitive to $\sigma(E_{\gamma})$ Need to measure $\sigma(E_{\gamma})$

Plan for $\sigma_{\gamma p \rightarrow \psi p}(E_{\gamma})$ measurement

3 endpoints at 8.8, 10.2, 11.0 GeV "Elastic" $\gamma p \rightarrow \psi p$ dominates Use reconstructed photon energy \mathcal{E}_{γ} $\mathcal{E}_{\gamma} > E_{e^-} - 0.3$ GeV: pure "elastic" Constraints from SLAC $E_{\gamma} > 15$ GeV Simulation shows: $\delta(Au/C) < 0.01$

Summary

Supplementary material

Hall C setup evaluation

The Good

- High rate
- High mass resolution
- Low background

The Bad

Small acceptance:

- Many kin. points
- Hard to measure *E*, *t*, cos θ dependence
- No way to measure the recoil

The Ugly

Radiation budget

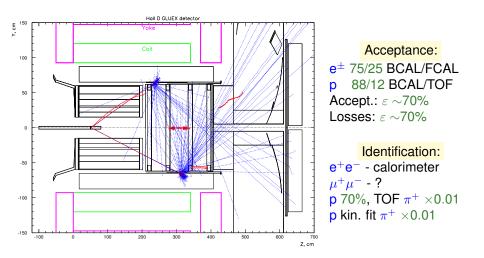
Hall D Potential for Heavy Quark Physics

Obvious advantages

- Large uniform acceptance for all particles, including the recoil: potentially a good measurement of $\frac{d\sigma}{d\Omega}(E, t, \cos \theta)$
- 2 Separation "elastic"/"inelastic" $\gamma p \rightarrow \psi p$ vs $\gamma p \rightarrow \psi N \pi$
- Tagged photon beam of the highest flux usable
- Possibility to run in parallel with the main program
- Fast DAQ no need for a special trigger

Questions

- Is the production rate sufficient?
- What are the mass/energy resolutions?
- What is the expected background?
- Is linear polarization useful?


Introduction

Program at JLab

Summary

Supplementary material

Hall D: detecting $\gamma + p \rightarrow p + J/\psi \rightarrow e^+e^-$

Summary

Supplementary material

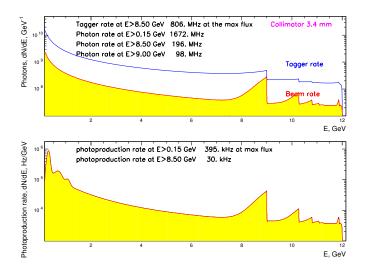
Hall D: detecting J/ψ , resolutions

- Track momentum, angular resolutions from reconstruction
- Track fit assumes the beam $\sigma_X = \sigma_Y = 1 \text{ mm}$
- Tagger energy resolution 60 MeV / $\sqrt{12}$ = 17 MeV

	Variable				
Event fit	M_{ψ}	E _{beam}	M _{recoil}		
	GeV/c ² GeV		GeV/c ²		
	e+,e-	e+,e-,p	e+,e-,tagger		
none	0.045	0.190	0.100		
Using <i>E</i> tagger	0.022	-	-		
Using M_{ψ}	-	0.080	0.032		

- M_{ψ} window (no fit) $5\sigma \sim 0.230 \text{ GeV/c}^2$: BG \sim 7%
- Tagger window $5\sigma \sim 1 \text{ GeV}$ (no fit), 0.4 GeV (M_{ψ} fit)

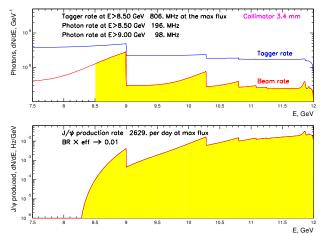
E.Chudakov


Charm at JLab 12 GeV

Summary

Supplementary material

Hall D high intensity beam, standard collimation



Summary

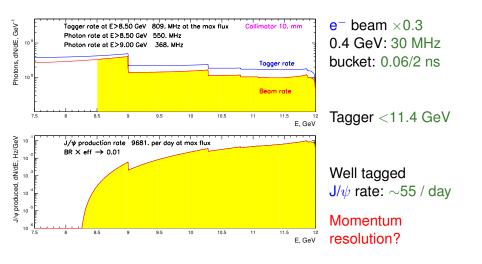
Supplementary material

Hall D J/ ψ rate, standard collimation

Tagger rate: 0.4 GeV: 100 MHz bucket: 0.2/2 ns

Tagger <11.4 GeV Upgrade to \sim 11.8 ?

High beam rate J/ψ rate: \sim 50 / day Low beam rate J/ψ rate: \sim 5 / day


E.Chudakov

Summary

Supplementary material

Hall D J/ ψ rate, wide collimation

Introduction			Supplementary material
Summary			

- The cross section for ψN and for photoproduction (limited coverage): Hall C has an advantage
- 2 Hall D: first 2 years (240 days $\times 0.7$) low flux beam on LH
 - Well tagged events, in parallel with the main program
 - Expected J/ψ : ~ 800 events total, ~ 50 for E_{beam} < 9.5 GeV
 - Measurements:
 - "elastic"/"inelastic"
 - $\frac{d\sigma}{d\Omega}(E, t, \cos\theta)$ for $9.5 < E_{beam} < 11.4$ GeV, accuracy $\sim 10\%$ / bin
 - Linear polarization in $8 < E_{beam} < 9$ GeV is unusable
- 3 Hall D: running at high flux(\sim 240 days \times 0.7) on LH, LD
 - Options: linear polarization vs good tagging with wide collimation
 - Cross section mapping down to low energies, better accuracy
 - Production on LD hidden color?

29

At 12 GeV JLab is capable of using $c\overline{c}$ as a probe of nuclear matter:

(1) Measurements of ψ -Nucleon cross-section. The expected errors are about 10% statistical and 15% systematic. This measurements are aiming to test if there is a considerable gluonic potential between colorless states. This cross-section has also been of a considerable interest for heavy ion physics.

(2) Measurements of $\frac{d\sigma}{dt}(E_{\gamma})$ of $J/\psi(1S)$ is needed in order to fulfill (1). It is also of independent interest, probing compact, coherent states of valence quarks.

Experimental possibilities:

- The part (1) SHMS+HMS in 2 months
- The part (2) longer time (several options)

*ψ*N Interaction: Proposed Experiment

- **(**) Measure the A-dependence of $\gamma A \rightarrow J/\psi X$, extract $\sigma_{abs}^{\psi N}$ compared with SLAC 1977:
 - low background for J/ψ
 - no coherent production
 - smaller effects from l_{coh}, l_F
 several targets used

 - reconstructed kinematics of J/ψ
 - steeper $\sigma(E_{\gamma})$ dependence \Rightarrow stronger effect from Fermi motion (need $\sigma(E_{\gamma})$ to make correction)
 - EMC effect could make a stronger impact $x \sim 0.3 \rightarrow 0.5$
- 2 Measure $\frac{d\sigma}{dt}(E)$ for $\gamma \mathbf{p} \rightarrow \mathbf{J}/\psi \mathbf{p}$
 - Provide Fermi-motion correction for the A-dependence
 - Measurement in a new energy range

Introduction

Summary

Supplementary material

Spectrometers

spectr.	P range	$\Delta P/P$	$\sigma P/P$	θ^{in} range	$\Delta \theta^{in}$	$\Delta \theta^{out}$	ΔΩ	$\sigma \theta^{in}$	$\sigma \theta^{out}$
	GeV/c				mrad	mrad	msr	mrad	mrad
HMS	0.4–7.4	-10 + 10%	0.1%	10.5°–90°	±24	± 70	8	0.8	1.0
SHMS	2.5–11.	-15 + 25%	0.1%	5.5°–25°	± 20	± 50	4	1.0	1.0

Supplementary material

Settings for hydrogen measurements

	HMS SHMS s				sele	selection			rate J/ ψ	
set	θ	Р	θ	Р	$\langle P_{\psi} \rangle$	$\langle P_t^2 \rangle$	$\langle \cos \theta_{CM} \rangle$	$\langle E_{\gamma} \rangle$	per	hour
		GeV/c		GeV/c	GeV/c	(GeV/c) ²		GeV	total	elas.
$E_{e^-} = 11 \text{ GeV}$										
1	21.0°	4.20	15.0°	5.80	9.7	0.08	-0.15	10.8	170	66
2	21.5°	4.00	16.3°	5.90	9.7	0.12	-0.15	10.8	106	17
3	28.0°	2.95	10.7°	7.50	9.7	0.08	-0.45	10.8	136	65
4	37.0°	1.90	8.0°	8.50	9.7	0.08	-0.65	10.8	72	40
5	23.4°	3.89	16.3°	5.30	8.9	0.08	-0.15	9.8	60	
$E_{e^-} = 10.2 { m GeV}$										
5	23.4°	3.89	16.3°	5.30	8.9	0.08	-0.15	10.0	60	30
$E_{e^-} = 8.8 { m GeV}$										
6	28.1°	3.24	19.1°	4.50	7.3	0.08	-0.15	8.7	0.70	0.70

Experiment: γA – kinematics optimization

- $\frac{d\sigma}{dt} = C(E_{\gamma}) \cdot e^{b \cdot t}$, 2–gluon exchange, fit to data
- t-slope b varied in 1.1-3.0 (GeV/c)⁻² range
- Decay distribution $(1 + \cos^2 \theta_{CM})$
- Fermi motion spectral functions for C, Fe and Au used
- Beam energy 11 GeV

Acceptance optimized for γA						
Γ	set	ł	HMS	S	HMS	
		θ	P, GeV/c	θ	P, GeV/c	
	1	21.0°	4.20	15.0°	5.80	

Summary

Supplementary material

Experiment: Expected Results on $\sigma^{\psi N}$

Total error per target \sim 3%

- beam flux $\sim 1\%$
- target thickness < 1.5%
- Fermi correction < 1.%

- statistics $\sim 1.5\%$
- acceptance: nearly cancels
- other $\sim 0.5\%$

Glauber model used to extract $\sigma^{\psi N}$ Expected transparencies $T_N(A) = \sigma_A / A \sigma_N$

	$\sigma^{\psi N}$		$\delta(\sigma^{\psi N})$					
	mb	9	12	27	63	108	197	mb
	1.0	0.982	0.980	0.974	0.963	0.952	0.931	0.29
Т	3.5	0.938	0.931	0.908	0.870	0.833	0.760	0.25
	7.0	0.876	0.863	0.816	0.740	0.665	0.519	0.18

$$\sigma^{\psi N} \approx (3.5) \pm 0.12 \pm 0.20 \text{ mb}$$
 at $\sqrt{s} \sim 5 \text{ GeV}$
SLAC: 0.80 ± 0.60

E.Chudakov

PHP with GLUEX, Jlab 2008 Charm at JLab 12 GeV

Supplementary material

Experiment: Photoproduction

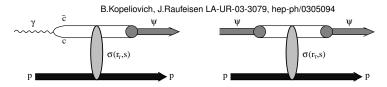
- Main measurements on hydrogen
 - 3 endpoints: 8.8,10.2 and 11.0 GeV expected accuracy $\sigma_{\psi} \sim$ 3% for 10.2 and 11 GeV
- Additional measurements at 11 GeV
 - Increase the range of t to measure $\frac{d\sigma}{dt}$
 - Increase the range of θ_{decay} to measure the absolute cross section
 - LD₂ for isoscalarity correction

In total 290 hours are requested

Request

- Standard Hall C spectrometers
- New nuclear targets
- Radiators for cryo targets

beam		
11.0 GeV	standard	16 days
10.8 GeV	non-standard	2 days
8.8 GeV	standard	3 days
		21 days


Introduction

Program at JLab

Summary

Supplementary material

ψ Photoproduction and ψ -N interaction

- Similarity between the two processes
- Check the model on photoproduction

Supplementary material

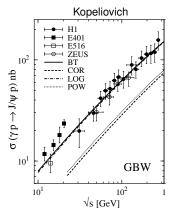
$\sigma^{\psi N}$ Theoretical Calculations

Various models used \Rightarrow exchange meson currents, color dipole interactions etc.

- Low energy (Van-der-Waals): $\sigma_{\rm tot}^{\psi N} \sim 7 \; {\rm mb}$ (Brodsky,Miller,1997), falling with energy
- Scaling from other VM: $\sigma_{\rm abs}^{\psi N} \sim$ 3.6 mb (Gerland et al,1998)
- GVMD, wave func, $\sigma_{\rm tot}^{\psi N} \sim$ 3 mb (Kopeliovich,Raufeisen,1994)

Exclusive reactions

Summary


Supplementary material

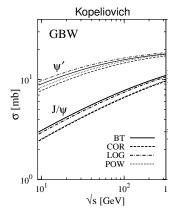
$\sigma^{\psi N}$ Theoretical Calculations

Various models used \Rightarrow exchange meson currents, color dipole interactions etc.

- Low energy (Van-der-Waals): $\sigma_{\rm tot}^{\psi N} \sim 7~{\rm mb}$ (Brodsky,Miller,1997), falling with energy
- Scaling from other VM: $\sigma_{\rm abs}^{\psi N} \sim$ 3.6 mb (Gerland et al,1998)
- GVMD, wave func, $\sigma_{\rm tot}^{\psi N} \sim$ 3 mb (Kopeliovich,Raufeisen,1994)

Exclusive reactions

Summary


Supplementary material

$\sigma^{\psi N}$ Theoretical Calculations

Various models used \Rightarrow exchange meson currents, color dipole interactions etc.

- Low energy (Van-der-Waals): $\sigma_{\rm tot}^{\psi N} \sim 7~{\rm mb}$ (Brodsky,Miller,1997), falling with energy
- Scaling from other VM: $\sigma_{\rm abs}^{\psi N} \sim$ 3.6 mb (Gerland et al,1998)
- GVMD, wave func, $\sigma_{\rm tot}^{\psi N} \sim$ 3 mb (Kopeliovich,Raufeisen,1994)

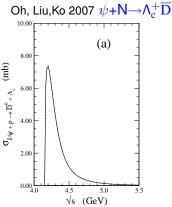
Exclusive reactions

Supplementary material

$\sigma^{\psi N}$ Theoretical Calculations

Various models used \Rightarrow exchange meson currents, color dipole interactions etc.

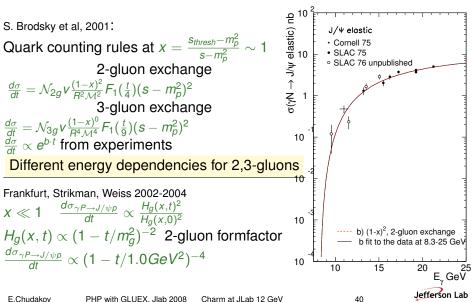
- Low energy (Van-der-Waals): $\sigma_{\rm tot}^{\psi N} \sim 7 \; {\rm mb}$ (Brodsky,Miller,1997), falling with energy
- Scaling from other VM: $\sigma_{\rm abs}^{\psi N} \sim$ 3.6 mb (Gerland et al,1998)
- GVMD, wave func, $\sigma_{\rm tot}^{\psi N} \sim$ 3 mb (Kopeliovich,Raufeisen,1994)
- Exclusive reactions


Summary

Supplementary material

$\sigma^{\psi N}$ Theoretical Calculations

Various models used \Rightarrow exchange meson currents, color dipole interactions etc.


- Low energy (Van-der-Waals): $\sigma_{\rm tot}^{\psi N} \sim 7~{\rm mb}$ (Brodsky,Miller,1997), falling with energy
- Scaling from other VM: $\sigma_{\rm abs}^{\psi N} \sim 3.6 \ {\rm mb}$ (Gerland et al,1998)
- GVMD, wave func, $\sigma_{\rm tot}^{\psi N} \sim$ 3 mb (Kopeliovich,Raufeisen,1994)
- Exclusive reactions

Supplementary material

J/ψ photoproduction at 10 GeV: Dynamical models

E.Chudakov PHP with GLUEX, Jlab 2008 Charm at JLab 12 GeV

Exclusive J/ ψ production in γp and ep: High vs. low W

Frankfurt, Strikman, Weiss

 $W \gg M_{c\bar{c}}^2$ - HERA, FNAL

- Momentum transfer $|\Delta_{\perp}| < 1$ GeV/c, Δ_{\parallel} small
- Gluon GPD x₁ ∼ x₂ ≪ 1
- "Transverse gluon imaging"

 $\begin{array}{c} & H \\ & X_1 \\ & X_2 \\ \hline \\ & GPD \\ \hline \\ & A \end{array}$

 $W \sim M_{c\bar{c}}^2$ - JLab

- Large Δ_{\parallel} , large $|t_{min}|$
- Gluon GPD $x_1 \neq x_2 \sim 1$ ("skewness")
- Probes transition form factor of gluon dipole moment at high *t*

- Unique probe of small-size gluon configuration in proton
- Dipole moment $\sim r_{c\bar{c}}$
- "Color transparency"

Supplementary material

Theoretical Calculations for J/ψ Production

The full phenomena has not been described.

- At $E_{\gamma} > 50 \text{ GeV}$
 - Models exploiting VMD
- 2 At threshold $E_{\gamma} < 12 \text{ GeV}$
 - No rigorous calculations so far
 - A model based on quark counting rules, used for guidance

Supplementary material

$\sigma^{\psi N}$ Theoretical Calculations

At low energy:

- attractive potential (Van der Waals) (Luke,Manohar,Savage,1992) $E_{binding} \sim 8 MeV$
- $\sigma_{\rm tot}^{\psi N} \sim$ 7 mb (Brodsky,Miller,1997), falling with energy

In a wide range of energies:

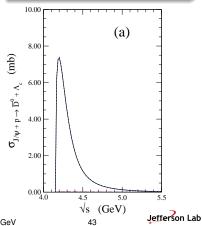
- Various models: exchange meson currents, color dipole interaction, etc
- VMD \rightarrow link to photoproduction

Summary

Supplementary material

$\sigma^{\psi N}$ Theoretical Calculations

At low energy:


- attractive potential (Van der Waals) (Luke,Manohar,Savage,1992) $E_{binding} \sim 8 \ MeV$
- $\sigma_{\rm tot}^{\psi N} \sim$ 7 mb (Brodsky,Miller,1997), falling with energy

In a wide range of energies:

- Various models: exchange meson currents, color dipole interaction, etc
- VMD \rightarrow link to photoproduction

ψ +N \rightarrow $\Lambda_{c}^{+}\overline{D}$

Meson exchange current Oh, Liu,Ko 2007

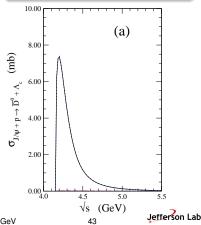
E.Chudakov PHP with GLUEX, Jlab 2008 Charm at JLab 12 GeV

Summary

Supplementary material

$\sigma^{\psi N}$ Theoretical Calculations

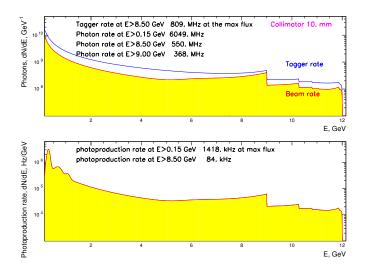
At low energy:


- attractive potential (Van der Waals) (Luke,Manohar,Savage,1992) $E_{binding} \sim 8 \ MeV$
- $\sigma_{\rm tot}^{\psi N} \sim$ 7 mb (Brodsky,Miller,1997), falling with energy

In a wide range of energies:

- Various models: exchange meson currents, color dipole interaction, etc
- VMD \rightarrow link to photoproduction

ψ +N \rightarrow $\Lambda_{c}^{+}\overline{D}$


Meson exchange current Oh, Liu,Ko 2007

Summary

Supplementary material

Hall D high intensity beam, wide collimation

Charm at JLab 12 GeV

