Threshold J/ ψ **Production**

Presented by E.Chudakov, JLAB

 J/ψ : 30 announced on Nov, 1974

CEBAF at 12 GeV crosses the charm γN threshold:

	reaction	$E_\gamma{ m GeV}$	useful decay mode	BR	cross	s section
		threshold			E_γ , GeV	σ nb
	$\gamma p ightarrow \eta_{ m c}(1{ m S}) p$	7.7 GeV	$\eta_{ m c}(1{ m S}){ ightarrow}{ m p}{ m \overline{p}}$	0.12%	-	-
*	$\gamma {\sf p} ightarrow { m J}/\psi(1{ m S}){\sf p}$	8.2 GeV	$J/\psi(1S) {\rightarrow} e^- e^+/\mu^- \mu^+$	6.0%	11.	0.5±0.2
*	$\gamma p ightarrow \Lambda_{ m c}^+ \overline{ m D}^0$	8.7 GeV	$\overline{\mathrm{D}}^{0} \rightarrow \mathrm{K}^{+} \pi^{-}$	4.0%	20.	$\sim 63.\pm$ 30.
	$\gamma \mathbf{p} \rightarrow \chi_{c0}(1P) \mathbf{p}$	9.6 GeV	$\chi_{c1}(1P) \rightarrow K^+K^-$	0.71%		
	$\gamma \mathbf{p} \rightarrow \chi_{c2}(1P) \mathbf{p}$	10.3 GeV	$\chi_{ m c1}(1{ m P}){ ightarrow}{ m J}/\psi(1{ m S})\gamma$	13.0%	90.	$< 27\%~{ m J}/\psi$
	$\gamma \mathbf{p} ightarrow \psi(3770) \mathbf{p}$	11.0 GeV	$\psi(3770) \rightarrow e^{-}e^{+}/\mu^{-}\mu^{+}$	0.8%	21.	1.1±0.4
	$\gamma p ightarrow D \overline{\mathrm{D}} p$	11.1 GeV			20.	$\sim 63.\pm$ 30.

What is special about J/ ψ etc?..

 \Rightarrow A "new" probe to study the nucleon/nucleus

- No $c\overline{c}$ in nucleons: $c\overline{c}$ production only via gluons from the target
- Small size
- Important features of charm photoproduction:

• $c\overline{c}$ is a small size probe of the gluon field of the target

Existing Data on Charm Photoproduction

*Only a part of the experimental results are presented

Theory: Open Charm Photoproduction

Factorization

- hadronization ignored
 Exclusive production:
- fragmentation from e^+e^-
- final state interaction

S.Frixione, M.Mangano, P.Nason, G.Ridolfi CERN-TH/97-16

Theory: Charmonium Photoproduction

Color Singlet

 $c\overline{c}$ must combine into a colorless state.

Pomeron Exchange

Underestimates the rise $\sigma(E_{\gamma})$ 2 pomerons

- "soft" and "hard"

All is calculable Underestimates Tevatron data by $\times 50$

Color Octet

Soft: phenomenology Tevatron calibration:

 $\sigma_{\gamma p \to \psi X} \gg \text{exper. } z \sim 1$ Polarization problems

High energy: probes the gluon PDF at low x.

In order to verify the models:

- Cross sections
- Polarization
- Measuring Singlet/Octet ($\Rightarrow \Delta G \dots$)

Experiment: Low Energy Photoproduction

Cornell and SLAC:

SLAC: Double Arm: published Single arm: unpublished large errors <12 GeV σ : SLAC \approx Cornell $\frac{d\sigma}{dt} = A \cdot \exp Bt$ E_{γ} GeV 11. 19 B (GeV)⁻² 1.13\pm0.18 2.9\pm0.3

Indication: a slow decrease of cross section towards the threshold

Production near threshold

Should probe the particle distributions at high x.

Several constituents from the target should take part.

No detailed calculation exists so far.

Qualitative arguments on $\sigma(E_{\gamma})$

(S.Brodsky, E.Ch., P.Hoyer, J.-M. Laget PL B498, 23 2001):

• The factors $\mathcal N$ - fit to the data

Production near threshold

- "2-gluon" fit to high E points
- "3-gluon" fit to 2 low energy points

t-Dependence

L.Frankfurt, M.Strikman, Phys.Rev.D66:031502 (2002), M.Str., C.Weiss hep-ph/0408345

Argued: dipole approximation:

$$H_g(x,t) \propto (1 - t/m_g^2)^{-2}$$

 $m_g^2 \approx 1.1 \text{ GeV/c}^2 \text{ at } x{\sim}0.1$

$$\langle \rho^2 \rangle = 8/m_g^2 \approx 0.28 ~{\rm fm}^2$$

$J/\psi(1S)$ Photoproduction on Nuclei

Vertex detectors:

- NA14: ⁶*Li* 50-150 GeV
- E687: ⁹Be 120-370 GeV
- A large coherent production: $\approx 40\%$
- "Coherent" slopes: NA14 and E687 are inconsistent
- NA14 and E687 good t resolution, recoil undetected
- full cross-section A-dependence $\approx A^1$
- $L_{coh} > 2 \text{ fm } E_{\gamma} > 50 \text{ GeV}$

Generalized VDM

L.Frankfurt, M.Strikman...hep-ph/0304301

 $\psi \mathbf{N}$ Interactions

 ψ N interactions: attention from theorists Practical interest: J/ ψ deficit = signature for QGP

Features:

- small color dipole interacting with nuclear matter
- breakup by excitation to $\overline{\mathrm{DD}} \ \Delta E \sim 0.6 \ GeV$
- possible loss due to $\psi + N \rightarrow \Lambda_c^+ \overline{D}$ at $P_{\psi} > 1.8 \ GeV/c$

At low energy:

- attractive potential (Van der Waals) (Luke, Manohar, Savage, 1992) $E_{binding} \sim 8 \ MeV$
- $\sigma(\psi N)_{tot} \sim 7 \text{ mb}$ (Bordsky, Miller, 1997), falling with energy

How to compare these predictions with experiment?

 ψ in nuclear medium

Several calculations

Features:

- $\Delta M(J/\psi) \sim 3 \text{ MeV}$
- $\Delta M(\psi \prime) \sim$ 30 MeV

Not measurable (long lifetime - decay outside of the nucleus)

- Similarity between the two processes
- Check the model on photoproduction

Calculation of $\sigma(\psi \mathbf{N})_{tot}$ and ψ **Photoproduction**

B.Kopeliovich, J.Raufeisen LA-UR-03-3079, hep-ph/0305094 Hufner, Kopeliovich

- VDM extended to a multi-channel case (account for $J/\psi \ \psi'$ mixing)
 - dipole interaction
 - accurate setting of the wave functions etc $\frac{10^{10^{1}}}{\frac{10^{1}}{6}}$

⊢**●**⊣ H1

→ H1

$\psi \mathbf{N}$ measurements and interpretations

Experimental situation: was confusing. Now improving. Methods:

- From photoproduction, using VDM, optical theorem and assumptions on ${\rm Re}({\rm A})/{\rm Im}({\rm A})~(\sim 0)$
 - 20 GeV: $d\sigma(J/\psi N \rightarrow J/\psi N)/dt \mid t=0 \sim 25 \ \mu b$
 - 20-200 GeV: $\sigma(J/\psi N)_{tot} \sim 1 \text{ mb} \Rightarrow 2.8 \text{ } 4.1 \text{ mb}$
- From A-dependence of photo and hadro-production, using Glauber model and considering : color transparency effects at ℓ_{coh} , $\ell_F > R_{target}$
 - 20 GeV γA : $\sigma(J/\psi N)_{abs} \approx 3.5 \pm 0.8 \pm 0.6$ mb
 - − 80-150 GeV *pA*: $\sigma(J/\psi N)_{abs} \approx 7 \text{ mb} \Rightarrow 3.6 \text{ mb}$
 - 400-450 GeV pA: $\sigma(J/\psi N)_{abs} \approx 4.3 \pm 0.3$ mb

SLAC results on $\gamma A \rightarrow \psi + X$

Single spectrometer measurements.

20 GeV e⁻ on Be and Ta targets 20 GeV spectrometer, μ^- , μ -filter High statistics on a high background The background was calculated: - decays

– Bethe-Heitler

Cross-section per nucleon: $\sigma(Be)/\sigma(Ta) = 1.21 \pm 0.7 \Rightarrow \sigma_{\psi N} = 3.5 \pm 0.8$ mb.

Attempts to measure the cross-section down to 9 GeV: unpublished

Program for JLab at 6 GeV

Hall C E-03-008 - pilot experiment:

- Sub-threshold J/ψ production
- A few hundred events (depending on the cross section at threshold)
- May see an indication of an abnormally high cross section

Program for JLab at 11 GeV

(1) Measure $\sigma(J/\psi N)_{abs}$ using A-dependence of $\sigma(\gamma A \rightarrow J/\psi X)$ Advantages (to SLAC):

- lower energy smaller effects from ℓ_{coh}, ℓ_F
- low background for $J/\psi(1S)$
- reconstructed kinematics of ${
 m J}/\psi(1{
 m S})$
- separation of coherent and incoherent production
- several targets used

Disadvantages comparing to the SLAC experiment:

 lower energy - stronger effect from Fermi motion (2) Measure $\frac{d\sigma}{dt}(E)$ for $\gamma \mathbf{p} \rightarrow \mathbf{J}/\psi \mathbf{p}$ Goals:

- Provide Fermi-motion correction for (1)
- Measurement in a new energy range (3-gluon exchange?)
- (3) Look for more exotic effects:
- "Hidden color" $\gamma D \rightarrow J/\psi pn$
- Bound state: peak in σ/V at x=1 (threshold)

SLAC results on $\gamma \mathbf{p} \rightarrow \psi \mathbf{p}$ at 13-21 GeV

Double spectrometer measurements.

5% RL, 30 cm 1 H, 2 H

20, 8 GeV spectrometers

 $J/\psi(1S) \rightarrow e^+e^-, \mu^+\mu^-$

1200 J/ $\psi(1S)$ and 13 $\psi(3770)$

at 13 GeV: $\frac{d\sigma}{dt} \mid tmin = 3.8 \pm 0.8 \text{ nb/GeV}^2$ at 20 GeV: $\sigma: \psi(3100)/\psi(3770) \sim 6.8 \pm 2.4$ From VDM: $d\sigma(\psi N \rightarrow \psi N)/dt \mid_{t=0} \approx 25\mu \text{b}$

80 60 MUON PAIR ELECTRON PAIR K ≈ 19 GeV 40 INVARIANT MASS INVARIANT MASS b = 2.9 (Gev/,)² 80 dovch [nb/(Ge)()²] (C) 35 (O)20 EVENTS/5 MEV 70 (b) 30 60 25 50 8 20 40 6 30 15 Ю 20 4 10 5 †min 3Ю0 360 3050 3100 3000 3050 3000 360 3200 0.2 0.1 0.3 0.4 0 0.5 3.0

E.Chudakov, JLab

Cornell Results at 11.8 GeV

- $J/\psi(1S) \rightarrow e^+e^-$ detected with lead-glass calorimeters ($\sigma E/E = 0.16/\sqrt{E}$)
- $\langle \text{photon flux} \rangle \ 1 \cdot 10^9 / \text{s for } 8.5 < \mathsf{E}_{\gamma} < 11.8 \text{ GeV}, \text{ duty cycle} = 7\%, \text{ Be } 2.9 \text{g/cm}^2$

- Background: neutrals $\times 10$ charged, charged BH
- Signal/background $\sim 470/70$
- Results: $\frac{d\sigma}{dt} = 0.9 \pm 0.1 \ nb/GeV^2 \cdot e^{1.13 \pm 0.18 \ GeV^2 \cdot t}$

E.Chudakov, JLab

Threshold \mathbf{J}/ψ Production

JLab spectrometers

hall	beam	setup	$\Delta \Omega$	$ heta_{min}$	P_{max}	$\frac{\Delta P}{P}$	$\frac{\sigma P}{P}$	$\sigma heta_{in}$	$\sigma heta_{out}$
	μA		ster	deg	GeV	%	%	mrad	mrad
Hall A	100	HRS	0.006	12.5	4.0	4.5	0.01	0.6	2.0
		HRS	0.006	12.5	3.2	4.5	0.01	0.6	2.0
		MAD	0.030	12.0	8.0	15	0.3	1.0	2.0
			0.006	12.0	8.0	15	0.3	1.0	2.0
Hall C	100	HMS	0.008	10.5	7.5	10.0	0.1	0.8	0.8
		SOS	0.009	-	1.8	40.0	0.1	1.0	1.0
		SHMS	0.004	10.0	11.0	0.1	1.0	1.0	1.0
Hall B	0.01	CLAS	$\sim 2\pi$	-	-	0.5			
Hall D	γ		$\sim 4\pi$	-	_	<1.			

Specialized Setup

Specialized setup "ECAL":

- Solenoidal magnet R \sim 0.6 m, L \sim 1.5 m
- Calorimeter \sim 2000 channels
- Hodoscope
- GEM(?)

Luminosity and Acceptance

Possible photon flux:

- Halls A,C: 50 μA at 6% RL radiator: $6\cdot 10^{12}\gamma/
 m s/
 m GeV$ 8.5-11 GeV on 15 cm LH
- A,C ECAL: $2\mu A$ at 6% RL radiator: $2 \cdot 10^{11} \gamma/s/GeV$ 8.5-11 GeV on 15 cm LH
- Halls B: no tagging forseen
- Halls B: $\mathcal{L} < 10^{35} \text{ cm}^{-2} \text{s}^{-1}$: $8 \cdot 10^8 \gamma/\text{s}/\text{GeV}$ 8.5-11 GeV on 15 cm LH
- Halls D, tagged:

 $\sim 2 \cdot 10^7/s$ in $8.4 < E_{\gamma} < 9.1$ GeV coherent $\sim 2 \cdot 10^7/s$ in $8.4 < E_{\gamma} < 11$.GeV incoherent

• "Standard" 12 GeV equipment: acceptance A/B/C/D/ECAL $0.6 \cdot 10^{-3}$ / 0.2 / $0.4 \cdot 10^{-3}$ / 0.4 / 0.4

Measuring the photon energy

Measuring $\frac{d\sigma}{dt}(E_{\gamma})$: ~ 6 bins of ~ 0.4GeV in E_{γ} . E_{γ} should be measured to about 1%.

- Hall D tagger: $\sigma E_{\gamma}/E_{\gamma} < 0.1\%$
- Hall A,C no tagging:
 - 2-body decay of $J/\psi(1S)$ or \overline{D}^0 , (assuming the 2-body "elastic" reaction!) $\sigma E_{\gamma}/E_{\gamma} \approx 0.2\%$
 - Since the recoil particle is not detected, one can not be sure that the reaction is indeed defined, apart from a narrow energy band - just above the threshold.
 - Subtraction method: measuring several (~ 6) end-points.
 - Time/measurement selected to equalize the errors at different energies
 - Direct (no subtraction) measurement at low energy, example: $\gamma p \rightarrow \overline{D}$ X in a range 8.7-9.4 GeV, is limited to the $\Lambda_c^+ \overline{D}^0$ final state.

Resolution, obtained using the $J/\psi(1S)$ mass in the fit or the tagger:

setup	$\sigma M/M$	$\sigma E_{\Psi}/E_{\Psi}$	$\sigma E_{\gamma}/E_{\gamma}$	$\sigma t (GeV/c)^2$
ECAL	0.035	0.007	0.01	0.11
HRS+MAD	0.002	0.001	0.002	0.014
Hall B,D no tag	0.010	0.004	0.001	0.03

setup	recoil	BG/sig^*	$d\sigma/dt \propto (1-x)^2$		$d\sigma/dt \propto (1-x)^0$			
			events/	days	events/	days		
			90 days	needed**	90 days	needed**		
$\gamma p o \mathrm{J}/\psi(1\mathrm{S})p$								
ECAL	yes	0.10	$0.6 \cdot 10^5$	10	$3.0 \cdot 10^5$	0.2		
HRS+MAD	no	<0.02	$2.4 \cdot 10^3$	190	$2.8 \cdot 10^4$	45		
HMS+SHMS	no	<0.02	$1.5 \cdot 10^3$	300	$1.6 \cdot 10^4$	70		
D tag	yes	0.07	$2.6 \cdot 10^2$	640	$2.1 \cdot 10^3$	100		
$\gamma p ightarrow \Lambda_{ m c}^+ \overline{ m D}^0$								
HRS+MAD	no	0.05	$2.9 \cdot 10^3$	_	$2.9 \cdot 10^4$	_		
D tag	yes	0.25	5.4 $\cdot 10^2$	_	$3.4 \cdot 10^3$	_		

* – at about 11 GeV

** – to reach at least 10% accuracy in the energy range $> thresh + 0.4 {\rm GeV}$

Expected Results

- Hall D does not plan to use nuclear targets for the first stage.
- Hall A,C (say, MAD+HRS) can use nuclear targets for A-dependence measurements. No need to detect the recoil.

 $\sigma_{\Psi N}$ can be derived from the A-dependence of the cross-section Assume for MAD+HRS:

- LH,LD 15 cm, with a 6%RL radiator
- Heavy targets of 7.7% RL (\approx 6% radiator + LH target)
- For $J/\psi(1S)$ production $\sigma_A \approx A \cdot \sigma_N$
- End point of 11 GeV

tar	^{1}H	^{2}H	Be	С	AI	Cu	Pb	
$\mathrm{J}/\psi(\mathrm{1S})$	$(1-x)^2$	160	320	550	360	210	110	60
/day	$(1-x)^0$	×5.4						

1000 events per target: \sim 50 days run

Extraction of $\sigma_{\psi N}$

• Nuclear transparency: $T = \sigma_{\gamma A}/(A \cdot \sigma_{\gamma N})$

SLAC model: semi-classical eikonal approximation of nuclear rescattering Assumed: statistical error for each target 3%

$\sigma_{\psi N}$ A								$\sigma(\sigma_{\psi N})$
r	nb	9	12	27	63	108	207	mb
	1.0	0.982	0.980	0.974	0.963	0.952	0.929	0.28
Т	3.5	0.938	0.931	0.908	0.870	0.833	0.751	0.24
	7.0	0.876	0.863	0.816	0.740	0.665	0.502	0.17

• Fermi-motion correction.

Conclusion

At 12 GeV JLab is capable of using $c\overline{c}$ as a probe of nuclear matter:

(1) Measurements of ψ -Nucleon cross-section. The expected errors are about 10% statistical and 15% systematic. This measurements are aiming to test if there is a considerable gluonic potential between colorless states. This cross-section has also been of a considerable interest for heavy ion physics.

(2) Measurements of $\frac{d\sigma}{dt}(E_{\gamma})$ of J/ $\psi(1S)$ is needed in order to fulfill (1). It is also of independent interest, probing compact, coherent states of valence quarks.

Experimental possibilities:

- The part (1) MAD+HRS / SHMS+HMS in 2 months
- The part (2) MAD+HRS / SHMS+HMS in 3 months
- The part (2) on $J/\psi(1S)$ Hall D in 2 years.
- Dedicated setup (ECAL) + search for more rare phenomena ("hidden color", bound states ...)