PR12-07-106 The A-Dependence of J/ψ Photoproduction Near Threshold

E.Chudakov¹ (for Collaboration)

¹JLab

JLab PAC32, Aug 6-7 2007

Collaboration

- JLab: P. Bosted, J. P. Chen, E. Chudakov, D. Gaskell, J. M. Laget
- Mississippi State University: J. A. Dunne, D. Dutta
- University of Regina: G. Huber
- 4 Yerevan Physics: H. Mkrtchyan, A. Asaturyan, A. Mkrtchyan, T. Navasardyan, V. Tadevosyan
- Duke University: W. Chen, H. Gao, X. Qian, Y. Qiang, Q. Ye, W. Z. Zheng, X. Zong, X. F. Zhu
- 6 Hampton University: M. Christy, C. Keppel, L. Tang
- University of Virginia: D. Day
- College of William and Mary: K. Griffoen
- 9 INFN: E. Cisbani, F. Cusanno, F. Garibaldi, S. Frullani, G. M. Urciuoli, M. Iodice, L. Lagamba, E. Nappi, R. De Leo, S. Marrone
- Norfolk State University: F. Wesselmann
- University of the Witwatersrand, Johannesburg: s. H. Connell

Physics Motivation

•000000000

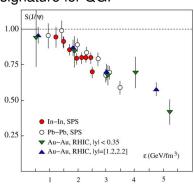
• Measure the A-dependence of $\sigma(\gamma + A \rightarrow J/\psi + X)$, extract $\sigma_{\rm abs}^{\psi N}$ at $\sqrt{s} \sim 5~{\rm GeV}$ Much improved accuracy and a cleaner interpretation.

② Measure $\frac{d\sigma}{dt}(E)$ for $\gamma+p\to J/\psi+p$ close to threshold, at $E_{\gamma}\sim 8.5-11$ GeV Low energy \Rightarrow sensitive to high-x gluons in the nucleon

ψ N Interaction: Physics

- Small size color dipole $r_{\perp} \sim \frac{1}{\alpha_s \cdot m_c} = 0.3$ fm interaction \propto color dipole moment $\propto r_{c\overline{c}}$ (small) \Leftrightarrow color transparency, $\sigma_{\rm tot}^{\nu N} \ll \sigma_{\rm tot}^{\pi N} \approx 30$ mb
- Low energy: attractive potential (Luke,Manohar,Savage,1992) similar to Van der Waals, $E_{binding} \sim 8 \; MeV$

• Absorption: breakup to \overline{DD} , $\psi+N\rightarrow \Lambda_c^+\overline{D}$


ψ N Interaction: Signature for QGP

 J/ψ suppression in AA collisions \Rightarrow signature for QGP

Range: $\sqrt{s} \sim 5 - 400 \text{ GeV}$

$$\begin{tabular}{ll} \hline \textit{deficiency found, using} \\ \hline \textit{experiment} & $\sigma^{\psi N}_{abs}$ \\ \hline \textit{SPS} & 4.18 \text{ mb} \\ \hline \textit{RHIC} & $\sim 3. \text{ mb} \\ \hline \end{tabular}$$

Interpretation: not resolved yet mixture ψ , χ_c ...; regeneration at RHIC

• JLab experiment - measure $\sigma_{\rm abs}^{\psi N}$ at lower energy $\sqrt{s} \sim 5$ GeV, in different conditions

ψ N Interaction: $\sigma^{\psi N}$ Theoretical Calculations

Various models: VMD, exchange meson currents, etc.

authors	model	\sqrt{s} , GeV	$\sigma^{\psi N}$, mb
Brodsky,Miller,1997	Van-der-Waals potential	small	7
Kopeliovich,1994	GVMD, wave functions	10-400	3-10
Gerland, 1998	VMD, data for VM Lattice	>7	3.6

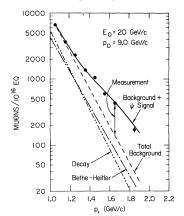
 JLab – test theoretical approaches in a new energy range; precise input for future calculations (Lattice?)

ψ N Interaction: Experimental Access

 Calculated from photoproduction on nucleons using VMD/GVMD

$$\gamma$$
N >20 GeV $\sigma_{
m tot}^{\psi N} \sim$ 2.8 - 4.1 mb model dependent

Nuclear absorption: from A-dependence, Glauber model


$$\gamma$$
 A 20 GeV $\sigma_{
m abs}^{\psi N} = 3.5 \pm 0.9 \
m mb$ clean interpretation poor accuracy

$$pA$$
 >100 GeV $\sigma_{\rm abs}^{\psi N} = 4.2 \pm 0.4$ mb $\cot \psi N$: $\ell_{coh}, \ell_F \gg R_A$ contamination $\chi_{\rm C}, \psi I$

We use arguments from Farrar et al., 1990, Kharzeev et al, 2007

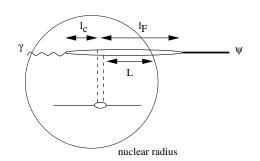
ψ N Interaction: Experiment at SLAC 1977

- The cleanest method used so far: ℓ_{coh} , $\ell_F < R_A$
- Large experimental uncertainties

- 20 GeV e⁻ on Be and Ta targets
- Detecting only μ^- , through iron
- The background was calculated (decays, Bethe-Heitler)
- Nuclear coherence not measured

$$\sigma(\textit{Be})/\sigma(\textit{Ta}) = 1.21 \pm 0.7$$

 $\Rightarrow \sigma_{\psi \textit{N}} = 3.5 \pm 0.8 \pm 0.6 \text{ mb}$

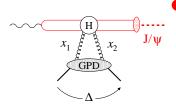

Authors: syst. errors might be larger

JLab: we can do a much more accurate experiment!

ψ N Interaction: Proposed Experiment

- Measure the A-dependence of $\gamma A \rightarrow J/\psi X$, extract $\sigma_{\rm abs}^{\psi N}$ compared with SLAC 1977:
 - low background for J/ψ
 - no coherent production
 - smaller effects from ℓ_{coh}, ℓ_F
 - several targets used
 - reconstructed kinematics of J/ψ
 - steeper σ(E_γ) dependence ⇒ stronger effect from Fermi motion (need σ(E_γ) to make correction)
- 2 Measure $\frac{d\sigma}{dt}(E)$ for $\gamma p \rightarrow J/\psi p$
 - Provide Fermi-motion correction for the A-dependence
 - Measurement in a new energy range

J/ψ photoproduction at 10 GeV: Scales


$$r_{\perp} \sim \frac{1}{\alpha_s \cdot m_c} = 0.3 \text{ fm}$$

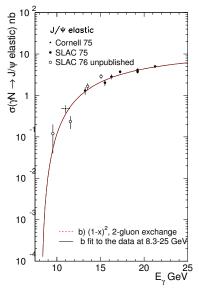
At $E_{\gamma} = 10$ GeV:

$$\begin{array}{lll} \ell_{coh} & = & \frac{2E_{\gamma}}{4m_{c}^{2}+Q^{2}} & \approx 0.4 \text{ fm} \\ \ell_{F} & \cong & \frac{2E_{\gamma}}{m_{\psi'}^{2}-m_{J/\psi}^{2}} & \sim 1 \text{ fm} \end{array}$$

- No coherent production on heavy nucleus: $\ell_{coh} \ll R_A$
- No shadowing effects: $\ell_{coh}, \ell_F < R_A$
- VMD not applicable: $\ell_{coh} < 1$ fm

J/ψ photoproduction at 10 GeV: Dynamical models

Partonic soft mechanism Frankfurt.. 2002...


- Well tested at high energies
- 10 GeV: gluons $x_1 \neq x_2 \sim 1$ $|t_{min}| > 0.4 \text{ GeV/c}$
- 2-gluon formfactor: $\frac{d\sigma_{\gamma P \to J/\psi p}}{dt} \propto (1 - t/1.0 \, GeV^2)^{-4}$

- Hard scattering mechanism Brodsky.., 2001
 - 10 GeV: Quark counting rules
 - 2-gluon exchange $\propto (1-x)^2$
 - 3-gluon exchange $\propto (1-x)^0$

11

Unique probe of small-size gluon configurations in proton

J/ψ photoproduction at 10 GeV: Dynamical models

Both models fit the data at 11-25 GeV:

- Frankfurt 2003
- Brodsky 2001: 2-gluon exchange (red curve)

 Brodsky 2001: 3-gluon exchange alone does not fit the data

Experiment: Setup

• Use decays to $e^+e^-(6\%)$, $\mu^+\mu^-(6\%)$ to identify J/ψ mass

Standard Hall C equipment

- High rate at various targets
- Low background: < 2%, scaled from Cornell, SLAC
- Reconstruction of E_{γ} , identification of $\gamma+p \rightarrow J/\psi+p$

Hall C Spectrometers

- HMS: e^- , μ^- at $\theta > 20^\circ$
- SHMS: e^+ , μ^+ at $\theta < 20^\circ$
- e⁺, e⁻ Gas Cher., Shower
- μ^+ , μ^- Gas Cher.

Beam and target

- Bremsstrahlung by 50 μA beam
- 6 targets A = 9 197, 10% r.l. thick
- Each target: 3 plates ~ 5 cm apart

- 20 cm LH₂ with a 7% radiator
- 20 cm LD₂ with a 7% radiator

Experiment: γA – kinematics optimization

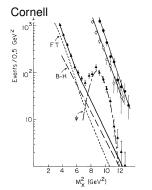
- $\frac{d\sigma}{dt} = C(E_{\gamma}) \cdot e^{b \cdot t}$, 2–gluon exchange, fit to data
- t-slope b varied in 1.1-3.0 (GeV/c)⁻² range
- Decay distribution $(1 + \cos^2 \theta_{CM})$
- Fermi motion spectral functions for C, Fe and Au used
- Beam energy 11 GeV

Acceptance optimized for γA

set	I	HMS	SHMS			
	θ	P, GeV/c	θ	P, GeV/c		
1	21.0°	4.20	15.0°	5.80		

Experiment: Rates on Nuclear Targets

- Acceptance $\epsilon \approx 0.03\%$
- Internal Bremsstrahlung 1.6%
- No nuclear absorption is assumed for the moment


	¹ H	² H	Ве	С	Al	Cu	Ag	Au
Α	1	2	9	12	27	63.5	108	197
Z	1	1	4	6	13	29	47	79
T/T_{RL}	0.022	0.027	0.10	0.10	0.10	0.10	0.10	0.10
J/ψ per h	170	340	560	370	208	112	78	55
Time*, h	24	12	7	11	19	36	51	72

- * in order to detect 4000 events per target
 - 200 hours on nuclear targets

Experiment: Counting rates, Backgrounds

Rates

- Single arm: < 250 kHz
- Coincidence $\Delta t \sim$ 100 ns: \sim 200 Hz

Resolutions

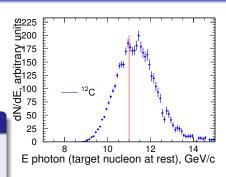
Mass 7.4 MeV/c²
 For γ+p→J/ψ+p:

- Photon energy 0.2%
- t: $\sigma_t \sim 0.015 \, (\text{GeV/c})^{-2}$

Backgrounds

Accidentals < 0.2 per hour

Physics: Bethe-Heitler dominated


- Calculated
- Scaled using Cornell, SLAC
 2%

Fermi motion Correction and Hydrogen Measurements

Fermi motion $\otimes \sigma_{\gamma N \to \psi X}(E_{\gamma})$: $Au/C \approx 1.10$ sensitive to $\sigma(E_{\gamma})$ Need to measure $\sigma(E_{\gamma})$

Plan for $\sigma_{\gamma p \to \psi p}(E_{\gamma})$ measurement

3 endpoints at 8.8, 10.2, 11.0 GeV "Elastic" $\gamma p \rightarrow \psi p$ dominates Use reconstructed photon energy \mathcal{E}_{γ} $\mathcal{E}_{\gamma} > E_{e^-} - 0.3$ GeV: pure "elastic" Constraints from SLAC $E_{\gamma} > 15 \text{ GeV}$ Simulation shows: $\delta(Au/C) < 0.01$

Measurements on LH₂

$$<$$
 E_{γ} $>$ GeV $\sigma_{\psi}(E)$ error 8.7 15% 10.0 3% 10.8 3%

Experiment: Expected Results on $\sigma^{\psi N}$

Total error per target \sim 3%

- beam flux ∼ 1%
- target thickness < 1.5%
- Fermi correction < 1.%

- statistics ~ 1.5%
- · acceptance: nearly cancels

18

• other $\sim 0.5\%$

Glauber model used to extract $\sigma^{\psi N}$ Expected transparencies $T_N(A) = \sigma_A/A\sigma_N$

	$\sigma^{\psi N}$		A									
	mb	9	12	27	63	108	197	mb				
	1.0	0.982	0.980	0.974	0.963	0.952	0.931	0.29				
Т	3.5	0.938	0.931	0.908	0.870	0.833	0.760	0.25				
	7.0	0.876	0.863	0.816	0.740	0.665	0.519	0.18				

$$\sigma^{\psi N} \approx (3.5) \pm 0.12 \pm 0.20 \text{ mb}$$
 at $\sqrt{s} \sim 5 \text{ GeV}$

SLAC: 0.80 ± 0.60

PR12-07-106: J/\psi Photoproduction

Experiment: Photoproduction

- Main measurements on hydrogen
 - 3 endpoints: 8.8,10.2 and 11.0 GeV expected accuracy $\sigma_{\psi} \sim$ 3% for 10.2 and 11 GeV
- Additional measurements at 11 GeV
 - Increase the range of t to measure $\frac{d\sigma}{dt}$
 - Increase the range of $\theta_{\textit{decay}}$ to measure the absolute cross section
 - LD₂ for isoscalarity correction

In total 290 hours are requested

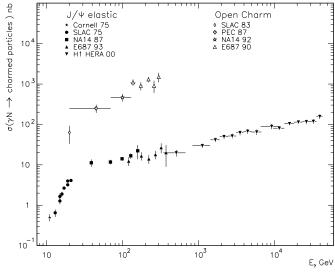
Request

- Standard Hall C spectrometers
- New nuclear targets
- Radiators for cryo targets

beam		
11.0 GeV	standard	16 days
10.8 GeV	non-standard	2 days
8.8 GeV	standard	3 days
		21 days

Summary

- Accurate measurement of J/ ψ -nucleon cross-section at $\sqrt{s}=5~{\rm GeV}$
 - Test theoretical ideas (color dipole model, Van-der-Waals force)
 - Benchmark for future calculations
 - Interest for heavy ion physics.
- 2 Measurement of J/ ψ photoproduction cross section $\frac{d\sigma}{dt}(E_{\gamma})$ at $E_{\gamma}\sim$ 8.8 11 GeV
 - Input for (1).
 - Probes large-x gluon GPD / small-size gluon configurations in proton.

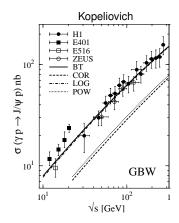

Spectrometers

spectr.	P range	$\Delta P/P$	$\sigma P/P$	θ^{in} range	$\Delta heta^{in}$	$\Delta heta^{out}$	ΔΩ	$\sigma heta^{ ext{in}}$	$\sigma \theta^{out}$
	GeV/c				mrad	mrad	msr	mrad	mrad
HMS	0.4-7.4	-10 + 10%	0.1%	10.5°-90°	±24	±70	8	0.8	1.0
SHMS	2.5–11.	-15 + 25%	0.1%	5.5°-25°	± 20	± 50	4	1.0	1.0

Settings for hydrogen measurements

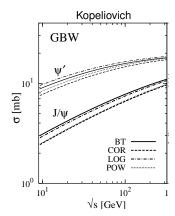
	H	ИS	SH	MS		seled	rate J/ ψ			
set	θ	Р	θ	Р	$\langle P_{\psi} \rangle$	$\langle P_t^2 \rangle$	$\langle \cos \theta_{CM} \rangle$	$\langle E_{\gamma} \rangle$	per	hour
		GeV/c		GeV/c	GeV/c	(GeV/c) ²		GeV	total	elas.
	E _e - = 11 GeV									
1	21.0°	4.20	15.0°	5.80	9.7	0.08	-0.15	10.8	170	66
2	21.5°	4.00	16.3°	5.90	9.7	0.12	-0.15	10.8	106	17
3	28.0°	2.95	10.7°	7.50	9.7	0.08	-0.45	10.8	136	65
4	37.0°	1.90	8.0°	8.50	9.7	0.08	-0.65	10.8	72	40
5	23.4°	3.89	16.3°	5.30	8.9	0.08	-0.15	9.8	60	
				Е	$e^{-} = 10$.2 GeV				
5	23.4°	3.89	16.3°	5.30	8.9	0.08	-0.15	10.0	60	30
				I	$\Xi_{e^{-}} = 8.8$	8 GeV				
6	28.1°	3.24	19.1°	4.50	7.3	0.08	-0.15	8.7	0.70	0.70

Photoproduction measurements



Various models used \Rightarrow exchange meson currents, color dipole interactions etc.

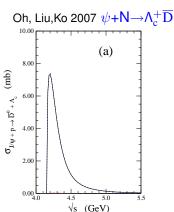
- Low energy (Van-der-Waals): $\sigma_{\rm tot}^{\psi N} \sim 7~{\rm mb}$ (Brodsky,Miller,1997), falling with energy
- Scaling from other VM: $\sigma_{
 m abs}^{\psi N} \sim$ 3.6 mb (Gerland et al,1998)
- GVMD, wave func, $\sigma_{\mathrm{tot}}^{\psi N} \sim$ 3 mb (Kopeliovich,Raufeisen,1994)
- Exclusive reactions


Various models used \Rightarrow exchange meson currents, color dipole interactions etc.

- Low energy (Van-der-Waals): $\sigma_{\rm tot}^{\psi N} \sim 7$ mb (Brodsky,Miller,1997), falling with energy
- Scaling from other VM: $\sigma_{\rm abs}^{\psi N} \sim$ 3.6 mb (Gerland et al,1998)
- GVMD, wave func, $\sigma_{\mathrm{tot}}^{\psi N} \sim$ 3 mb (Kopeliovich,Raufeisen,1994)
- Exclusive reactions

Various models used \Rightarrow exchange meson currents, color dipole interactions etc.

- Low energy (Van-der-Waals): $\sigma_{\rm tot}^{\psi N} \sim 7$ mb (Brodsky,Miller,1997), falling with energy
- Scaling from other VM: $\sigma_{\rm abs}^{\psi N} \sim$ 3.6 mb (Gerland et al,1998)
- GVMD, wave func, $\sigma_{\mathrm{tot}}^{\psi N} \sim$ 3 mb (Kopeliovich,Raufeisen,1994)
- Exclusive reactions



Various models used \Rightarrow exchange meson currents, color dipole interactions etc.

- Low energy (Van-der-Waals): $\sigma_{\rm tot}^{\psi N} \sim 7~{\rm mb}$ (Brodsky,Miller,1997), falling with energy
- Scaling from other VM: $\sigma_{\rm abs}^{\psi N} \sim$ 3.6 mb (Gerland et al,1998)
- GVMD, wave func, $\sigma_{\mathrm{tot}}^{\psi N} \sim$ 3 mb (Kopeliovich,Raufeisen,1994)
- Exclusive reactions

Various models used \Rightarrow exchange meson currents, color dipole interactions etc.

- Low energy (Van-der-Waals): $\sigma_{\rm tot}^{\psi N} \sim 7 \; {\rm mb} \; ({\rm Brodsky,Miller,1997}),$ falling with energy
- Scaling from other VM: $\sigma_{\rm abs}^{\psi N} \sim$ 3.6 mb (Gerland et al,1998)
- GVMD, wave func, $\sigma_{\mathrm{tot}}^{\psi N} \sim$ 3 mb (Kopeliovich,Raufeisen,1994)
- Exclusive reactions

J/ψ photoproduction at 10 GeV: Dynamical models

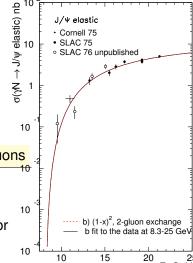
S. Brodsky et al, 2001:

Quark counting rules at
$$x = \frac{s_{thresh} - m_p^2}{s - m_p^2} \sim 1$$

2-gluon exchange
$$\frac{d\sigma}{dt} = \mathcal{N}_{2g} v \frac{(1-x)^2}{B^2 M^2} F_1(\frac{t}{4}) (s - m_p^2)^2$$

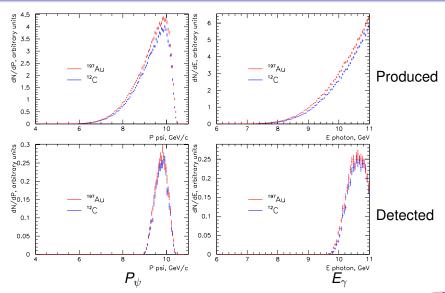
3-gluon exchange
$$\frac{d\sigma}{dt} = \mathcal{N}_{3g} V \frac{(1-x)^0}{R^4 M^4} F_1(\frac{t}{9}) (s-m_p^2)^2$$

 $\frac{d\sigma}{dt} \propto e^{b \cdot t}$ from experiments


Different energy dependencies for 2,3-gluons

Frankfurt, Strikman, Weiss 2002-2004

$$X \ll 1 \quad \frac{d\sigma_{\gamma P \to J/\psi p}}{dt} \propto \frac{H_g(x,t)^2}{H_g(x,0)^2}$$


$$H_g(x,t) \sim (1 - t/m^2)^{-2} \text{ 2-aluan formf}$$

$$H_g(x,t) \propto (1-t/m_g^2)^{-2}$$
 2-gluon formfactor $\frac{d\sigma_{\gamma P \to J/\psi p}}{dt} \propto (1-t/1.0 \, GeV^2)^{-4}$

Jefferson Lab

Spectra

