Cherenkov Detector Simulation

E.Chudakov¹

¹JLab

For GLUEX Collaboration Meeting, March 2007

http://www.jlab.org/~gen/gluex/gas_cher_geom.html

E.Chudakov

Jefferson Lab

・ロット (雪) (日) (日)

Outline

1 PID overview

- Goals
- TOF and Cherenkov
- 2 Gas Cherenkov Detector
 - Optical Design
 - Light Yield and Efficiency
 - Backgrounds

3 Conclusion

- Summary
- Outlook

E.Chudakov

Jefferson Lab

э

・ロト ・ 理 ト ・ 理 ト ・ 理 ト

Outline

PID overview

- Goals
- TOF and Cherenkov
- 2 Gas Cherenkov Detector
 - Optical Design
 - Light Yield and Efficiency
 - Backgrounds

Conclusion

- Summary
- Outlook

E.Chudakov

Jefferson Lab

イロト イポト イヨト イヨト

Outline

PID overview

- Goals
- TOF and Cherenkov
- 2 Gas Cherenkov Detector
 - Optical Design
 - Light Yield and Efficiency
 - Backgrounds

3 Conclusion

Summary

.ll ab

Outlook

Jefferson Lab

< 🗇 ▶

★ E > ★ E >

・ロト ・ 得 ト ・ ヨ ト ・ ヨ ト

Introduction

Purpose of this talk

- Discuss the impact of Cherenkov detector(s) on PID
- Revisit the optical design

E.Chudakov

PID goal: π^{\pm} vs K^{\pm} separation

Events with strangeness: ~ 1-5% of all events ~ 10% of non-strange BG $\Rightarrow R \sim 1 - 5 \cdot 10^{-3}$ rejection factor

Examples: multiplicity high vs low, kaons slow vs fast:

- 2 $\gamma p \rightarrow nX^+(2.2) \rightarrow nK^+\overline{K}^{\circ}(890) \rightarrow nK^+K^-\pi^+$

Components of the PID system

- dE/dx^a in CDC for $\theta > 15 20^\circ$ and P < 0.6 GeV/c;
- TOF in BCAL, resolution $\sigma \approx$ 0.25 ns;
- TOF in FTOF, resolution $\sigma \approx$ 0.08 ns;
- Cherenkov detector, with a gas and/or aerogel radiators.

^aneglected for this analysis

.ll ab

イロト 不得 トイヨト イヨト 三日

・ロット (雪) (日) (日)

TOF coverage: MC simulation

- TOF cut with an offset of $1.3 \cdot \sigma$ to lose 5% of kaons
- "hits" fraction of kaons hitting the detector
- $\bullet~$ "R" rejection factor, column \rightarrow fraction of "hits" for given R

		K+							
		BCAL			FTOF				
#	final state	hits	\overline{P}	R	hits	\overline{P}	R		
			GeV	< 0.1		GeV	< 0.1		
1	$nK^+K^-\pi^+\pi^+\pi^-$	22%	1.9	24%	48%	2.4	74%		
2	$nK^+K^-\pi^+$	52%	2.6	8%	32%	5.0	5%		

- Losses due to decays and interactions
- Process #1 40% identified, #2 6%

TOF and Cherenkov

- Gas Cherenkov with pion threshold ~3 GeV/c
- Aerogel with kaon threshold ~3 GeV/c
- Acceptance similar to FTOF

Conclusion:

.ll ab

- Gas Cherenkov is needed for processes like 2)
- Additional aerogel would help to achieve strong rejections n Lab

F Chudakov

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ○ ○ ○

Initial design by RPI

- Some features inherited from the old LASS Cherenkov
- Location at the exit of the solenoid
- Gas radiator ~2 m long: $C_4 F_{10} \Rightarrow P_{\pi} > 2.65 \text{ GeV/c}$
- Azimuthal segmentation
- PMT at $Z \sim 590$ cm, $R \sim 100$ cm, perpendicular to \vec{B}
- Two elliptical mirrors

E.Chudakov

Gas Cherenkov Detector

Conclusion

RPI Layout

・ロット (雪) (日) (日)

Simulation with GEANT(3.21)

Goal : Optimize the optics and check various options

Standalone GEANT3.21 simulation

- Ellipsoidal shapes included
- General sizes, materials and the magnetic field as in HDDS
- Geometry less detailed than in HDDS

E.Chudakov

Optics

Trajectories at P > 3 GeV/c in the Cherenkov

- Straight in R-projection
- Have very little azimuthal (φ) component
- Nearly point-like source

Threshold detector: minimize the size of the light spot

.ll ab

- Light spot size $D \approx \theta_{light} \times f$
- $\theta_{\mathit{Cher}} < 0.05 < \Delta \theta_{\mathit{traj}} pprox 0.08$
- Elliptical mirror point-to-point
- Spherical mirror Cherenkov-to-ring

・ ロ ト ・ 雪 ト ・ 目 ト ・

• Elliptical mirror - sensible choice

Gas Cherenkov Detector

Optics Optimization

E.Chudakov

Cherenkov Detector

.ll ab

Results of Optimization

Two iterations have been done. The first one with small f - A demonstrated a cross-talk between azimuthal sectors (M1 \rightarrow M2).

- f A as large as needed to avoid the cross-talk
- Angles of the mirrors defined by the box size and the median particle trajectory.
- Results: mirror M1 is strongly elliptical, M2 nearly spherical
- Rotational symmetry of the ellipsoids

object	<i>R_Z</i> , cm	R_R , cm	Z _{cent} , cm	<i>R_{cent}</i> , cm	angle
mirror M1	335.2	179.1	277.5	57.3	11.6°
mirror M2	93.3	92.2	567.0	112.3	33.1°
PMT window			590.	120.	138.0°

E.Chudakov

Cherenkov Detector

.ll ab

(日)

Gas Cherenkov Detector

Conclusion

Azimuthal segmentation

One sector view

Gas Cherenkov Detector

Conclusion

Jefferson Lab

э

Light spot on the PMT

э.

< 🗇 🕨

э

Choice of the Gas

We need as high refractive index as reasonable.

 $C_4 F_{10}$ seems to be the best choice:

- The highest index for gases which do not need heating
- Second only to nitrogen in transparency in the UV region
- Needs recycling (cost), but widely used (CLAS, Hall C)

Light absorption in various elements

F Chudakov

.ll ab

Cherenkov Detector

Cherenkov yield and its calibration

Conventional parametrization: $N_{pe} = N_{\circ} \cdot L(cm) \cdot sin^2 \theta_{Cher}$ World experience for 1-reflection detectors:

- $N_{\circ} \sim 50$ glass PMTs
- $N_{\circ} \sim 100$ quartz PMTs

MC gives N_{\circ} 90/160/240 for glass/UV-enhanced/quartz PMTs.

18

Pion detection efficiency vs momentum

Light splitting : a pion gives light on average to 1.3 PMTs. Assumption: no losses due to wrong assignment of signals 1-pe spectrum taken from Photonis Threshold \sim 3.pe

・ロト ・ 雪 ト ・ ヨ ト ・

Backgrounds

There are various possible sources of background:

- e⁺e⁻ pairs from the photon beam: 50 kHz for 100 MHz beam, from the central ring of mirrors
- Other accidentals: pion photoproduction ?
- Same event: $\pi^{\circ} \rightarrow \gamma \gamma$ conversion and showers: ?
- Other

Summary

Gas Cherenkov Design

- The initial design has been studied and extended
- The mirrors have been optimized (35 in total)
- The choice of $C_4 F_{10}$ for the radiator is reasonable
- We may expect $N_{pe} \sim 50$ from 180 cm radiator, at γ =1
- We would need 15 quartz 4-5" PMTs
- Magnetic shielding of PMTs should be revisited

Gas Cherenkov Impact on PID

- Essential for PID of small multiplicity events with kaons
- An extension to a momentum range 2-3 GeV/c would help

Jefferson Lab

・ロット (雪) (日) (日)

Outlook

Further Studies

- Magnetic shielding issues
- Optics for PMTs parallel to \vec{B} in a lower field area
- Optics for a RICH similar to HERMES
- Consider a standalone aerogel *n* = 1.02 diffusive detector
- Consider a combined gas+aerogel detector (HERMES)

E.Chudakov

イロト イポト イヨト イヨト