Charged Particle Identification in GLUEX

E.Chudakov for GLUEX Collaboration

JLab

GLUEX PID Review, March 2008

http://www.jlab.org/~gen/gluex/talk_pid_rev.pdf

E.Chudakov JLab

GLUEX PID

1

Outline

PID performance

- Simulation
- Proton PID

.ll ab

- Kaon PID
- Reconstruction of events with kaons

3 Summary

Outline

- Simulation
- Proton PID

.ll ab

- Kaon PID
- Reconstruction of events with kaons

3 Summary

Outline

- Simulation
- Proton PID

- Kaon PID
- Reconstruction of events with kaons

GLUEX and physics goals

The main goal of GLUEX: search for hybrid mesons:

- $\gamma p \rightarrow pX^{\circ}(1.8 2.4), \gamma p \rightarrow nX^{+}(1.8 2.4)$
- Various decay modes to charged and neutral products
- Expected: $\frac{d\sigma}{dt} \propto e^{\beta t}$, where $\beta \sim 5 \ {
 m GeV^{-2}}$
- Exclusivity

The goal of PID:

- First stage: identify the recoil proton
- Next stage: identify the charged kaons

PID components

- dE/dx in CDC for $\theta > 15^{\circ}$ and P < 0.6 GeV/c;
- 2 TOF in BCAL, resolution $\sigma \approx 200 \text{ ps}$;
- **IDENTIFY and STOP TOP TOP TOP TOP TOP TOP TOP TOP TOP TOP TOPTOP TOP TOP TOP TOP TOP TOP TOP TOP TOP TOP TOP TOP TOP TOP TOP TOP TOP TOP TOP TOP TOP TOP TOP TOP TOP TOP TOP**

An additional PID will be considered at the next stage.

Detector is cylindrically symmetric about the beamline

Evaluation of the PID performance

PID performance:

- Recoil proton identification in a typical reaction
- Charged kaon identification in a typical reaction
- I Full identification of a reaction including p, π^{\pm} , K[±]
 - PID

.ll ab

 Kinematical constraints, as (E, P)_{total} in reactions with recoil protons

Reactions considered

- Recoil proton spectrum depends on M_X and β we should check various cases
- Reactions with K[±] pairs are the most promising in the strange sector
- Backgrounds: come from generic photoproduction ("minimum bias events")

Reactions

- PYTHIA for simulating minimum bias events (BG)

Background simulation using PYTHIA

- PYTHIA has been tuned at higher energies E > 20 GeV
- At our energies E ~ 8 GeV PYTHIA results should be compared with measurements, in particular for strange particles.

PYTHIA vs experiment - non-strange sector

Partial cross section normalized to: $\sigma_{tot}^{\gamma p} = 120 \ \mu b$

process		Experiment		PYTH	IA
$\gamma \rho \rightarrow$	via	E_{γ} , GeV	$\sigma, \mu b$	E_{γ} , GeV	$\sigma, \mu {\sf b}$
1 prong		9.3	8.5±1.0	9.0	6.2
3 prong		9.3	$64.4 {\pm} 1.5$	9.0	59.0
5 prong		9.3	$34.2{\pm}0.9$	9.0	44.0
7 prong		9.3	$6.8{\pm}0.3$	9.0	8.3
$p\pi^+\pi^-$		9.3	14.7±0.6	9.0	14.5
	$p ho^\circ$	9.3	$13.5{\pm}0.5$	9.0	13.0
$p\pi^+\pi^-\pi^\circ$		9.3	7.5±0.8	9.0	7.0
	$\mathbf{p}\omega$	9.3	$1.9{\pm}0.3$	9.0	1.4
ρ 2π+2π-		9.3	4.1±0.2	9.0	3.7

Reasonably good agreement!

PYTHIA vs experiment - strange sector

Partial cross section normalized to: $\sigma_{tot}^{\gamma p} = 120 \ \mu b$

process		Expe	eriment	PYTHIA	
$\gamma p \rightarrow$	via	E_{γ} , GeV	σ, μ b	E_{γ} , GeV	$\sigma, \mu {\sf b}$
strange		5.6	8.7±0.9	9.0	24.0
pK+K−		9.3	$0.58{\pm}0.05$	9.0	0.47
	${oldsymbol{p}}\phi$	9.3	$0.27{\pm}0.03$	9.0	0.26
$pK^+K^-\pi^+\pi^-$		9.3	$0.46{\pm}0.05$	9.0	0.60

Full strange cross section is \times 3 larger Partial strange cross sections are reasonable

Simulation

- Simplified model of geometry in GEANT
- GEANT: tracking, decays and interactions with the matter
- No track reconstruction
- Momentum/angular resolutions in a tabulated form

 $\begin{array}{l} \gamma \textbf{p} \rightarrow \textbf{p} K^{+} \pi^{-} K^{-} \pi^{+} \\ \text{Beam: coh. brem. 7.5-9.5 GeV} \end{array}$

Acceptance:

Track requirement: hits CDC or BCAL or TOF Accept.: $\varepsilon \sim 50\%$ Losses: decays, interactions

Simulation of TOF

$$t_{measured} = t_{RF} + \frac{z_{\circ}}{c} + \frac{L_{trajectory}}{c\beta}$$

Simulated TOF

• MC: track origin \vec{x}_o

- MC: hit coordinates \vec{x}_h
- Trajectory length $L^2 = (\vec{x}_h \vec{x}_o)^2$
- TOF randomized due to the basic resolution

.ll ab

"Reconstructed" TOF

- MC: reconstructed vertex \vec{x}_{v}
- MC: hit coordinates \vec{x}_h
- Trajectory length $(\vec{x}_h \vec{x}_v)^2$
- Trajectory length randomized
- "Measured" momenta used

basic	trajectory	vertex	momentum	total
			momentum	iolal
σ_T	σ_L	$\sigma_{X,Y,Z}$, cm	resolution	for π
0 ps	2 cm	$2 \times 0.1, 1.0$	yes	${\sim}70~{ m ps}$
0 ps	1 cm	same	yes	${\sim}50~{ m ps}$
)	0 ps 0 ps	0 ps 2 cm 0 ps 1 cm	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

E.Chudakov

GLUEX PID

Recoil proton: kinematics and tracking

CDC requirement trajectory in gas $\ell_{gas} > 20 \text{ cm}$

GLUEX PID

Recoil proton in TOF (BCAL)

PID performance

Recoil proton in CDC

Summary on recoil proton PID

The results may depend on:

- t-distribution
- Mass M_X , via t_{min}

Reactions tried:

- a) $\beta = 5 \text{ GeV}^{-2}$ $\gamma p \rightarrow pX(2.2)$ "harder" proton
- b) $\beta = 8 \text{ GeV}^{-2}$ $\gamma p \rightarrow pX(1.8)$ "softer" proton

c) PYTHIA for minimum bias

Combined TOF (BCAL) and CDC:

		a)	b)		
assumed	in PID	accepted	in PID	accepted	
		by PID		by PID	
proton	\sim 92%	$\sim 95\%$	$\sim 76\%$	$\sim 97\%$	
pion	-	$\sim 0.4\%$	-	$\sim 0.2\%$	

PYTHIA: p enrichment $\times 10$ to $p/\pi = 3/1$ A good performance!

E Chudakov JI ab GLUEX PID

Kaon identification with TOF in BCAL and FTOF

Event Reconstruction

Global event (E, \vec{P}) resolution (true combinations):

		initial			
	<i>p</i> _X	p _Y	pz	E	tagger
σ , MeV	15	15	150	150	10

Kinematic fitting

Global event fitting using constraints:

- high precision initial parameters $(E, \vec{P})_{total}$
- secondary particle masses

4C fits for $(E, \vec{P})_{total}$

- 30% better accuracy for track parameters
- 2 Strongly improved $\triangle E$ separation \Rightarrow PID

Reaction

Process: $\gamma p \rightarrow pX^{\circ}(2.2) \rightarrow pK^{\circ}(890)\overline{K}^{\circ}(890) \rightarrow pK^{+}\pi^{-}K^{-}\pi^{+}$ A large background can be expected:

- events with no strangeness dominate by a factor of ×10
- 12 mass combinations per event

Event identification with kinematic fitting

- **③** 3-momentum balance $\Delta \vec{P} CL(\chi^2) > 0.01$
- 2 4C fit with the given mass assignment $CL(\chi^2) > 0.01$
- ID:
 - *TOF* protons: $\Delta T < 3\sigma$, kaons/pions: $\Delta T < 2\sigma$
 - CDC $0.5 < \frac{\Delta E_{meas}}{\Delta E_{pred}} < 1.5$

Signal and background from PYTHIA

	cuts						
combinations	kinem.		PID			all	
	3-mom	4C	р	K	both]	
efficiency	0.99	0.99	0.80	0.84	0.67	0.65	
BG suppression	10.	20.	6.0	13.	80	16000	
(true ID)/comb	0.01	0.20	-	-	0.93	0.93	

Kinematic fitting is the key element in PID! Without fitting, the BG is about 5 times worse

E.Chudakov

JLab GLUEX PID

Jefferson Lab

Robustness of the method

Checks for robustness:

۲	Slow de	pendence	on the	track	variances:	

all errors	BG/total
×1	0.07
×2	0.30
$\times 4$	0.70

- Additional ways to increase the BG suppression have been investigated:
 - stronger CL cuts
 - checking other mass asignments
 - selecting the best combination in the event

Possible limitations against large suppression factors:

- non-Gaussian errors, long tails in the residuals, or flat backgrounds (coming from pattern recognition)
- poor understanding of the track covariances

Used by many at $E \sim 10$ GeV: bubble chmbs. \Rightarrow CLEO/BaBar etc...

E.Chudakov

JLab GLUEX PID

Summary

- The first stage of GLUEX: non-strange mesonic resonances The first-stage PID is very good for the recoil protons:
 - efficiency to protons $\sim 90\%$
 - pions suppression factor \sim 200
 - pion BG from PYTHIA events $\sim 4\%$ (recoil range) $\sim 30\%$ (all positive tracks)

Internet stage of GLUEX may involve strange resonances.

- Overdefined kinematics (all final particles detected): Kinematic fitting with the PID appear to be sufficient for identification of events with K^{\pm} , to BG< 10%.
- Missing particles:

1C fit for the recoil: kaon events: BG> 80% An additional PID will be required for physics with K^{\pm}

The combination of kinematic fitting with the simple PID allows to carry out the first stage and a part of the second stage program.