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Abstract

This document describes a novel proposal of using polarized atomic hydrogen gas, stored
in an ultra-cold magnetic trap, as the target for electron beam polarimetry based on Møller
scattering. Such a target of practically 100% polarized electrons could provide a superb
systematic accuracy of about 0.5% for beam polarization measurements. The physics of
ultra-cold atomic hydrogen in the magnetic traps is briefly outlined, the main characteris-
tics are optimized to the task of using the stored hydrogen as the target for polarimetry.
Although such traps have been built for particle physics applications, the storage cell has
not been used so far as the target in a high power beam. Possible impacts the CEBAF beam
can make on such a target are discussed, including heating by ionization losses and the im-
pact of the beam electromagnetic (RF) radiation. The conclusion is, although the beam
would change slightly the gas properties, as temperature and density, no large depolariza-
tion effects should happen, or they can be easily avoided, and the achievable luminosity
should be sufficient for beam polarimetry. Finally, such a device has a potential for being
used as a target of polarized protons, since the proton polarization gradually and sponta-
neously increases in the stored hydrogen, up to ∼ 80%.
The project was first proposed in 2002 and reported on two conferences [1].
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Chapter 1

Introduction

Of two electromagnetic processes widely used for electron beam polarimetry, the Møller
scattering seems to have an advantage over the Compton scattering. Its counting rate does
not depend on the energy, the analyzing power is high (about 80%) and neither depends
on the energy, nor is changing considerably in the range of the polarimeter acceptance, and
two electrons with high energies in the final state make it easy to detect their coincidence
and reduce the background no negligible values. Nevertheless, Compton polarimetry is
considered more accurate.

Møller polarimeters utilize magnetized ferromagnetic foils as the polarized electron tar-
get [2,3,4,5,6,7,8]. Such targets provide electron polarization of about 8%, known typically
with an accuracy of about 2-3% relative. There are also other systematic errors associated
with the ferromagnetic targets. These targets are heated up by the beam, and, since heat-
ing affects the foil polarization, the beam current must be limited to 2-3 µA. In contrast,
the physics experiments often require a much higher current up to 100 µA. Therefore, the
polarization measurements can not run simultaneously with the experiment and have to use
a different beam regime, which may be a source of systematic errors, difficult to evaluate.

Another source of the errors are heavy atoms used for the target. Møller scattering
off electrons from the internal atomic shells has a distorted energy-angle correlation of the
secondary electrons, with respect to scattering off electrons from the external shells. A
difference of the polarimeter acceptance to these two classes of events is the source of a sys-
tematic error (so-called Levchuk effect [9]), typically of about 1%. This effect forbids using
a strong optical collimation of the secondary particles, favorable otherwise for background
suppression. In most cases, the background is dominated by electron-nucleus scattering
and contains one electron in the final state. It can be efficiently suppressed by detecting
both secondary Møller electrons in coincidence. However, for most of the existing Møller
polarimeters, this leads to a dead time of about several percent, providing a systematic
error hardly much better than 1%. Although, it is possible to reduce considerably the
systematic error of the foil polarization by using a very high magnetization field [8], it is
difficult to reduce the other errors, in particular the one associated with the beam current
limitations.

With all this in mind it seems very attractive to use atomic hydrogen gas, held in an
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CHAPTER 1. INTRODUCTION 4

ultra-cold magnetic trap [10], with 100% polarized electrons, since it would remove all
the accuracy limitations discussed above. Here, a feasibility study of such an option is
presented. The main questions addressed are:

• Target construction and parameters;

• Target density and polarimeter statistical accuracy;

• The beam influence on the target parameters;

• Possible interference of the target with the beamline and polarimeter operations at
Jefferson Lab.



Chapter 2

Polarized Atomic Hydrogen Target

2.1 General Description

The magnetic field BS splits the ground states of hydrogen into four states with different
energies, their properties are summarized in Tab.2.1 and the energy splitting is shown on
Fig. 2.1.

name wave function relative energy E E/k, in K, at BS = 8 T

|d〉 | ↑−↑〉 H − µ+BS 5.394

|c〉 α| ↓−↑〉+ β| ↑−↓〉 H(−1 + 2
√

1 + (µ−BS

2H )2) 5.366

|b〉 | ↓−↓〉 H + µ+BS -5.360

|a〉 α| ↑−↓〉 − β| ↓−↑〉 H(−1− 2
√

1 + (µ−BS

2H )2) -5.400

Table 2.1: Levels of hydrogen in a magnetic field directed along z. The symbol | ↓−↑〉
denotes the state with mZ = −1/2 for the electron and mZ = +1/2 for the proton. The
constant H = 5.87 · 10−6 eV defines the hyperfine splitting, namely 4H/h = 1.420 GHz,
while µ+ = µe + µp and µ− = µe − µp (µe < 0.) The factors α and β can be presented
as α = sin θ, β = cos θ, where the mixing angle tan 2θ ≈ 0.05/BS(T ). At BS =8 T the
admixture of the “wrong” polarization is α ≈ 0.3% in the amplitude and ∼ 10−5 in the
sample.

In a magnetic field gradient a force −∇( ~µH
~B) pulls two lower energy states into the

stronger field and repels the higher two states outside. The 0.3 K cylindrical storage cell
is located in the bore of a superconducting ∼8 T solenoid. The polarized hydrogen is
confined along the cell axis by the magnetic field gradients, and by the wall of the cell
laterally (Fig. 2.2).

At the point of statistic equilibrium the state population follows the Boltzmann distri-
bution:

n ∝ exp (µeB/kT ) (2.1)
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CHAPTER 2. POLARIZED ATOMIC HYDROGEN TARGET 6

Figure 2.1: Splitting of hydrogen levels in magnetic fields (for low and high fields).

The cell is mainly populated with the states |a〉 and |b〉, with an admixture of the states
|c〉 and |d〉 of exp (−2µeB/kT ) ≈ 3 · 10−16. In the absence of other processes, the states
|a〉 and |b〉 are populated nearly equally. Since the state |a〉 has a | ↑−↓〉 component (see
Tab.2.1), the electron polarization of the gas would be ∼ (1− 10−5).

The hydrogen density is limited mainly by the process of its recombination into H2

molecules (releasing ∼4.5 eV). This process is stronger at lower temperatures. In gas, re-
combination in collisions of two atoms is kinematically forbidden and is allowed in collisions
of three atoms. On the walls, there is no kinematic limitation. At moderate gas densities
only the surface recombination matters. In case of polarized atoms, the cross section of
recombination is strongly suppressed, because two hydrogen atoms in the triplet electron
spin state have no bound states. This fact leads to the possibility of reaching relatively
high gas densities in the traps for polarized atoms.

A way to reduce the surface recombination on the walls of the storage cell is coating
them with a thin film (∼50 nm) of superfluid 4He. The trap itself is usually made of pure
copper. The helium film has a very low sticking coefficient for hydrogen atoms. In contrast,
hydrogen molecules in thermal equilibrium with the film are absorbed and frozen in clusters
on the metal surface of the trap [11].

The higher energy states leave the storage cell, or recombine within it into hydrogen
molecules which eventually are either frozen on the helium coated wall, or leave the cell
by diffusion. Outside of the helium covered cell the atoms promptly recombine on surfaces
and the molecules are either pumped away or are frozen on the walls.

The cell is filled with atomic hydrogen from an RF dissociator. Hydrogen passes through
a Teflon pipe to a nozzle, entering at ∼30 K a system of helium coated baffles, where it is
cooled down to ∼0.3 K. At 30 K no recombination occurs because of the high temperature,
while at 0.3 K it is suppressed by helium coating. In the input flow, the atoms and molecules
are mixed in comparable amounts, but most of the molecules are frozen out in the baffles
and do not enter the cell.

The gas arrives to the area of a strong field gradient which separates at this moment
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Figure 2.2: A sketch of the storage cell

the lower and higher atomic energy states, therefore a constant feeding of the cell does not
affect the average electron polarization.

This technique was first successfully applied in 1980 [12], and later a density1 as high
as 3 · 1017 atoms/cm3 in a small volume was achieved [10]. It was then proposed to use the
high density stabilized ultra-cold electron-spin-polarized atomic hydrogen in proton-spin-
polarized sources and targets [13, 14, 15] by means of extraction the gas from the storage
cell and creating a jet of polarized atoms. So far, the storage cell itself has not been put in
a high intensity particle beam.

For the project discussed a normal storage cell design can be used, with the beam
passing along the solenoid axis (Fig. 2.2). The double walls of the copper cell form a
dilution refrigerator mixing chamber. The cell is open on both ends toward the beam pipe.
The tentative cell parameters are:

• Solenoid length LS = 40 cm;

• Cell internal radius r◦ = 2 cm;

• Cell length LC = 45 cm;

• Maximum field BS = 8 T;

• Temperature T = 0.3 K.

The magnetic field distribution BZ(Z) on the axis of the solenoid is illustrated on
Fig. 2.3. The gas density dependence on the coordinate z along the solenoid axis follows

1This parameter is called concentration, but we will use the word density in the text, since the mass of
the gas is not important here.
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Eq. 2.1 and is shown on Fig. 2.3.
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Figure 2.3: Left plot: The relative difference of the longitudinal magnetic field in the
solenoid with the field at the solenoid center. Right plot: the gas relative density distribu-
tion along the solenoid axis. The field map of a uniform solenoid B8030-5 from AMI [31]
was used.

The effective length of such a target is about 20 cm. The solenoid field has to be
reasonably uniform in this volume of the cell, in order to avoid areas with the gas density
higher than on the axis, since such an area would increase the recombination speed without
increasing the luminosity. The field in the volume should not exceed the field at the solenoid
center by more than ∼ 2 · 10−3 (a ∼4% increase in the density).

For the guideline, we will consider a gas density of 3·1015 cm−3, obtained experimentally
[16], for a similar design.

2.2 Gas Properties

Important parameters of the target gas are the diffusion speed and heat conductance. At
300 mK the speed RMS is:

v =
√

8kT/πm = 80 m/s;

√
v2

z =
√

kT/m = 48 m/s. (2.2)

The number of collisions per second depends on the atomic scattering cross section σ ( [17]):

dncol

dt
= σ · 4n

√
kT

πm
= 4d2 · n

√
π

kT

m
, (2.3)

where n is the gas density, m is the atomic mass and d =
√

σ/π is the effective atom
diameter. The mean free path ` and its projection on a certain direction, say z, `z are:

` = v/
dncol

dt
= (πd2n

√
2)−1, `z =

√
v2

z/
dncol

dt
= (4d2n

√
π)−1. (2.4)
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There are several calculations of the hydrogen atoms cross sections [18, 19, 20, 21, 22] at
low temperatures. One should point out that in the bulk of the polarized hydrogen all the
atomic collisions happen in the triplet state of electron spins, while the converted atoms in
this gas would interact also in the singlet state. The interaction cross sections in these two
states must be different, since the triplet interaction potential is purely repulsive, while the
singlet one is partially attractive [23].

Reference conditions H polarized H unpolarized
No. Ref., date σ, 10−16 cm2 d, 10−8 cm σ, 10−16 cm2 d, 10−8 cm

1 [19], 1971 T>1 K 87.0 5.26 68.0 4.65
2 [20], 1977 T∼0 K 42.3 3.69 - -
3 [21], 1980 T∼0 K 6.5 1.44 4.9 1.25
4 [22], 1983 T=2.5 K ∼30.0 3.10 - -

Table 2.2: Cross sections of atomic interactions in polarized and unpolarized atomic hy-
drogen gas.

A large spread of the results (see Tab.2.2) requires a further investigation of the subject.
For these studies we accepted the value σ = 42.3 · 10−16 cm2, or d = 3.69 · 10−8 cm,
ignoring the difference between the triplet and singlet cross sections. This would provide
dncol

dt
≈ 1.4 ·105 sec−1 and ` = 0.57 mm, `z = 0.34 mm at 0.3 K and density of 3 ·1015 cm−3.

The average time for a “low field seeking” atom to travel to the edge of the cell at |z| =
22.5 cm was estimated using simulation, taking into account the gas density distribution
along Z and the repelling force in the magnetic field gradient. This is the cleaning time for
an atom with opposite electron spin, should it emerge in the cell, if it does not recombine
before. The cleaning time depends on the position of the atom’s origin (see Fig. 2.4, left).
The cleaning time depends on the gas parameters as follows:

τd ∝
d2

√
T

n, 〈τd〉 ≈ 0.7 s. (2.5)

The average cleaning time is about 0.7 s, while the average collision time with the walls is
about 0.5 ms. While its presence in the cell, the atom practically uniformly populates the
cell cross section.

This calculation was done for reasonably dense gas, when ` � r◦. At densities <
1012 cm−3 the mean free path is ` � r◦ and, since the collisions of atoms with the helium
coated walls are nearly elastic, the mean time to reach the cell edge is:

τf ≈ LC/4 ·
√

m

kT
≈ 2 ms. (2.6)

For the following calculations we use an effective value2:

τE ≈
√

τ 2
d + τ 2

f (2.7)

2 The gas mean free path at the high density is about 0.01 of the tube diameter. Therefore, at this
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Figure 2.4: Left: Simulated dependence of the cleaning time, or the average time needed for
a “low-field-seeking” atom to leave the cell, on the Z-coordinate of the atom’s origin. The
curve is fit to the simulation and is used for various calculations in this document. Right:
Simulated average drift time of a “spinless atom” to the area of a strong field gradient
(z=10 cm).

At high enough densities we can define the diffusion factor:

D =
2

3σn

√
kT

πm
(2.8)

and the heat conductance (for a monoatomic gas):

χ =
4k

3σ

√
kT

πm
(2.9)

dependent on the atomic cross section σ and not dependent on the gas density.

2.3 Gas Lifetime in the Cell

For the moment we consider the gas behavior with no beam passing through it. Several
processes lead to loss of hydrogen atoms from the cell:

1) thermal escape through the magnetic field gradient;

2) recombination in the volume of gas;

3) recombination on the surface of the cell.

The thermal escape 1) can be estimated by calculation of the number of atoms crossing
per second the cell cross section Ss toward the cell edge with a longitudinal speed vz, that

density one may use the “viscose” approximation. At lower densities, like at the edge of the cell, or while
filling it, Knudsen or molecular approximations should be used. Since we have to understand the gas
behavior at very different densities, we have to provide a bridge between these regimes.
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mv2
z/2 > µB:

dnes

dt
= Sc · n ·

√
kT

2πm
· exp (−µeB/kT ) = E(T ) · n. (2.10)

The volume recombination can be neglected up to densities of ∼ 1017 cm−3 [10].
The surface recombination cross section can be characterized by a factor [10]:

Keff
s = 5 · 10−8 A

V
Λ2 exp (2εa/kT )

√
T

B2
, (2.11)

where A is the storage surface area, V is the storage volume, Λ = ~
√

2π
kTm

≈ 1.74 ·10−7/
√

T

is thermal de Broglie wavelength and ε ≈ 1 K is the H absorption energy on the He surface.
The sizes are measured in cm.

One should note that Eq. 2.11 presents a simplified model, ignoring the difference
between states |a〉 and |b〉. In reality, a small admixture of the opposite electron polarization
in the state |a〉 considerably increases its recombination rate with both |a〉 and |b〉 atoms.
Therefore, as a result, the state |a〉 is depleted faster than |b〉. If no relaxation between |a〉
and |b〉 happens (it may happen on magnetic impurities on the cell surface), the population
ratio |a〉/|b〉 drops with time and the recombination rate slows down.

The losses have to be compensated by constant feeding the cell with atomic hydrogen.
at a rate of Φ ∼ 1− 10 · 1015 atoms/s. The balance condition is:

Φ

V
= Keff

s (T ) · n2 +
E(T )

V
· n, (2.12)

where n is the gas density. Solutions for this equation for different feed rates, temperatures
and magnetic fields are presented on Fig. 2.5. It should be pointed out that the temperature
should not exceed ∼0.4 K, because of a high helium gas pressure beyond this.

The plots on Fig. 2.5 help to specify the optimal cell parameters:

BS > 7 T, T ∼ 0.3 K. (2.13)

For the BS = 8 T, T = 0.3 K and Φ = 1 ·1015 s−1 the calculated density is n ≈ 1 ·1016 cm−3,
not far from the reference value of 3 · 1015 cm−3. 3 The gas is mostly lost to recombination.
The average lifetime of an atom in the cell is nV/Φ ∼ 1 h. Comparing this lifetime with
the time to travel between the cell edges of ∼2.0 s we see that the gas has time to populate
the different field areas accordingly to Eq. 2.1.

For BS = 8 T and T = 0.3 K the filling rate of the cell and the decay rate, if feeding
stops, are shown on Fig. 2.6. In order to speed up filling a variable feed rate is needed.

2.4 Gas Population Dynamics and Proton Polariza-

tion

The cell is filled with a practically equal mixture of |a〉 and |b〉 states, but their lifetimes
in the cell are different. It has been already discussed in Sec. 2.3, that a small admixture

3 This value was measured at 0.2 K.
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Figure 2.5: Dependence of the stable gas density on the temperature (at 8 T) and the
magnetic field (at 300 mK) for different incoming fluxes of hydrogen. The incoming flux
has to balance the losses due to surface recombination and the thermal escape through the
field gradient. The latter component dominates at T > 0.55 K.

of ↑−↓ state in |a〉 leads to its faster depletion than the state |b〉. Therefore, after a certain
time, while the density in the cell has decreased, the cell will contain predominantly the
state |b〉 atoms, and the protons in the target will become polarized. This effect has been
observed [24]. The time scale for proton polarization build-up is about 10 min, and a
polarization of ∼80% was reached in a dynamic equilibrium. This effect can be destroyed
by magnetic impurities in the cell material, which cause |b〉→|a〉 mixing.

2.5 Unpolarized Contamination

There are several sources of unpolarized contamination in the target gas:

1) hydrogen molecules;

2) high energy atomic states |c〉 and |d〉;
3) excited atomic states;

4) other gasses, like helium and the residual gas in the the cell.

The contributions 1)-3) are present when the cell is filled with hydrogen. They are difficult
to measure directly, and we have to rely on calculations. We can also estimate their impact
indirectly, by making polarization measurements at different conditions, like the density,
temperature and beam current. In contrast, the contribution 4) can be easily measured with
the beam, taking an empty target measurement. Hydrogen can be completely removed from
the cell, by heating a small element inside the cell, which would remove the helium coating
on this element, and catalyze a fast recombination of hydrogen on its surface. However,
it is important to keep this contamination below several percent in order to reduce the
systematic error associated with the background subtraction.
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Figure 2.6: Left: density increase while filling the cell. The first ∼ 7 min the feed rate is
10 · 1015 atoms/s, after that it is 1 · 1015 atoms/s. Right: density drop when the feeding
gas flow stops. Both curves were calculated for BS = 8 T and T = 0.3 K.

For the moment we ignore a possible beam influence.

2.5.1 Contamination by Hydrogen Molecules

A hydrogen molecule at 0.3 K travel in the atomic gas in the same way as the atoms. The
average diffusion time of Eq. 2.5 should be corrected by a factor

√
3 due to the double mass

of the molecule, and by the ratio of the cross sections for molecular-atomic and atomic
collisions. For the latter we take the molecular-molecular collision cross section ( [20],
Tab.II) with d = 2.9 · 10−8 cm. The full correction factor is

√
32.92

3.72 ≈ 1 and therefore the
average diffusion is about the same as for atoms. In contrast with atoms, the molecules are
absorbed on helium coated surfaces. The atom’s rate of collisions with the walls is about
2000 s−1. Therefore, one may expect the lifetime of a molecule in gas as τM ∼ 1 ms.

The residual pressure of hydrogen in the vacuum chamber is less than 10−5 Torr, con-
tributing less than 10−7 to the contamination in the cell. The flux of molecules coming
with the input flow is less than 1014 s−1, contributing less than 10−7 to the cell volume.

A source of molecules is the recombination process, discussed in Sec. 2.3. The molecules
are produced on the cell surface, then escape into the volume. They have a high speed
and are in an highly excited states, since the recombination energy is about 4.5 eV. The
molecules kinetic energy can thermally stabilize in about 100 atomic collisions in less that
1 ms. It is considered that for full thermal stabilization about 100 collisions on the walls is
needed, which would take < 50 ms. Measurements [11] showed a time of about τM ∼ 20 ms.

The relative contamination on unpolarized atoms is:

η =
Keff

s n2 · τM

n
= Keff

s τMn ≈ τMΦ

V n
≈ 6 · 10−6 for n = 7 · 1015 cm−3 (2.14)

The contamination is proportional to the gas density. For the densities under consideration
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the contamination is negligible.
In conclusion, the molecular contamination should be below 10−5 and can be neglected.

2.5.2 Contamination by |c〉 and |d〉 States

In an ideal case of thermal equilibrium the contribution of the states |c〉 and |d〉 is ∼ 10−16.
The lifetime of such an atom in the cell is in fact shorter than the cleaning time (see Eq. 2.5),
since they have a high probabitlity to recombine with the |a〉 and |b〉 states, which populate
the cell. After recombination they produce molecules which do not contribute much to the
contamination, because of the short life time in the cell (Sec. 2.5.1). For this analysis, we
will use for the |c〉 and |d〉 same lifetime as the cleaning time (Eq. 2.5), τd = 0.7 s.

Transitions like |b〉→|c〉 are suppressed in comparison with the opposite transition,
by the Boltzmann factor of Eq. 2.1. The rate has been both calculated and measured
gbc ∼ 10−15 cm3s−1 [28] and the contamination is:

τd

nb

dnc

dt
≈ gbc exp (−2µeB/kT )nb · τd ∼ 10−15, (2.15)

where nb and nc denote the densities of the states. The effect is negligible.
Some atoms may be excited by collisions with the fast hydrogen molecules. It takes

about 100 collisions for a molecule to get thermalized. In this case, the Boltzmann factor
does not suppress the transition rate. About nm = 1015 molecules are produced in the cell
per second. Each is thermalized in about 0.001 s, since the collision rate is about 105 s−1.
The total rate of |c〉 production is gbcnbnm · τd · 10−3 ≈ 3 · 1012 s−1, or 3 · 10−6 of the atoms
in the cell. The average contamination is ∼ 4 · 10−6, which is low enough.

2.5.3 Contamination by Excited Atomic States

A large energy for ∼10 eV is needed to excite the atom in 1S state to the nearest 2S state.
Thermodynamically it is forbidden at 0.3 K. For an upper limit, let us suppose that there
is a source of such excitations at a level of the recombination rate of 1015 s−1 per cell, or
2 · 1012 s−1cm−3, calculated in Sec. 2.3. The lifetimes of excited states with L > 0 are
typically ∼ 10−9 s, reducing the contamination to a ∼ 10−11 level. The excited S states
live longer and the state 2S is metastable. However, the S states are subjected to selection
of Eq. 2.1, similar to the 1S state. The results of Sec. 2.5.2 apply, and the density of atoms
with opposite electron spin should be negligible.

2.5.4 Helium and Residual Gas

This contamination does not depend on presence of hydrogen in the cell and therefore can
be directly measured with the beam and properly subtracted. However, in order to reduce
the systematic errors, the background should not exceed several percent.

The superfluid helium vapor pressure depends strongly on temperature, rising by a
factor of 103 between 0.3 K and 0.4 K [25]. A special technique, called “film burners” [25],
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is used to prevent the superfluid helium to flow to the warmer parts and evaporate there.
At 0.3 K the gas density is about 2 · 1012 cm−3 of electrons, measured in the functioning
storage cell with the film burners running4. Since the acceptance of the polarimeter is
limited to an area less that 30 cm along the beam, the effective target length for helium
and hydrogen are comparable and the background from helium should be about ∼ 6 · 10−4

for the cell density of ∼ 3 · 1015 cm−3.
At JLab, the accelerator residual gas pressure at room temperature is about 1·10−5 Torr.

It mainly consists of N2 and water. The corresponding electron density is 3 · 1012 electrons
·cm−3, or about 0.1% of the electron density of the atomic hydrogen.

The estimated backgrounds are low enough to provide their accurate measurement and
subtraction.

4 A typical pressure 8 · 10−7 Torr was measured at a room temperature of about 300 K, at a distance
from the cryogenic cell, which corresponds to a density of 3 ·1010 atoms·cm−3. From this measurement one
can derive the density in the cryogenic cell at 0.3 K as n0.3K = n300K ·

√
300K/0.3K = 1012 atoms·cm−3,

using the Knudsen rule [29].



Chapter 3

Beam Impact on Storage Cell

Let us now discuss possible implications of sending a high intensity electron beam through
the storage cell, on the properties of the cell. We consider the following effects:

1) gas heating by the ionization losses (Sec. 3.1);

2) gas excitation and depolarization by the ionization losses (Sec. 3.2);

3) gas depolarization by the RF electromagnetic radiation of the beam (Sec. 3.3);

4) heat load on the cell (Sec. 3.4).

The calculations were done for the CEBAF beam structure (see Sec. A.1.1), but could
be applied to other continuous beam accelerators.

3.1 Gas Heating by Beam Ionization Losses

In gaseous hydrogen a beam particle releases on average 6.3 MeV/(g/cm2) by ionization.
In the target considered, of the thickness ∼ 6 · 1016 atoms/cm2, the average loss is 0.6 eV
per one beam particle. A part of this energy goes to δ-electrons which may leave the cell
spiraling in the magnetic field if their energy is large enough. A reasonable cut-off for
the δ-electron kinetic energy is T1 ∼ 1 keV. At this energy the electron would lose about
100 eV in the target due to ionization losses and carry away the rest of its energy. For the
maximum energy we selected T2 ∼ 0.2Tmax = 0.2Ebeam. Then, the full energy carried away
by δ-electrons knocked out by one beam particle would be [26]:

E = 0.15 MeV/(g/cm2) · ln
T2

T1

≈ 1.8 MeV/(g/cm2) (3.1)

The energy absorbed in the target is α = 4.5 MeV/(g/cm2) from one beam particle. The
full energy absorbed per unit length of the target per second is:

J = α · Ib

qe

n

NA

, (3.2)

16



CHAPTER 3. BEAM IMPACT ON STORAGE CELL 17

where NA is the Avogadro number and n is the gas density.
The heat conductance in gas is given in Eq. 2.9. Let us assume that the beam profile is

flat within a radius rb, which is an approximation in case the beam is not smeared off by
a fast raster and is a good model in the presence of a fast raster. Then, solving the heat
flow equation for a very long tube, assuming the fixed temperature T0 on the tube wall at
r◦ we obtain:

∆T (r) = T (r)− T0 =
J

2πχ
ln

r◦
r

r > rb

∆T (r) = T (r)− T0 =
J

2πχ

[
ln

r◦
rb

+
1

2
(1− r2

r2
b

)

]
r < rb (3.3)

The temperature increase reaches the maximum at the beam center:

∆T (r) = α · Ib

qe

n

NA

3σ

8kπ
√

kT
πm

[
ln

r◦
rb

+
1

2

]
(3.4)

and is proportional to the gas density. For Ib = 100 µA, n = 3 · 1015 cm−3, σ = πd2, where
d = 3.7 · 10−8 cm [20] (see also Tab. 2.2), and T = 0.3 K we get:

∆T (0) = 0.030 K ·
[
ln

r◦
rb

+
1

2

]
(3.5)

With no convection flow in the gas, the gas density in the absence of external forces follows
the Knudsen rule [29]:

n ·
√

T = const (3.6)

With the external force of µe
dB
dz

the density, normalized to one at the initial temperature
T◦ is:

n(z) = n◦

√
T◦
T
· exp

(∫ z

0

dξ
dB

dξ

µe

kT (ξ)

)
. (3.7)

At the center of the solenoid dB
dz
≈ 0 and the density is well described by Eq. 3.6. At the

center, the density drops by about 10% and Eq. 3.5 looks like:

∆T (0) = 0.027 K ·
[
ln

r◦
rb

+
1

2

]
(3.8)

Very similar results were obtained by solving the appropriate kinetic equations numerically.
It was shown also that the temperature practically stays flat along z up to the area of lower
density.

With no raster (rb ≈ 200 µm) ∆T (0) = 0.14 K. A raster of rb = 2 mm would decrease
it by a factor of ∼2: ∆T (0) = 0.075 K.

No serious implication of such a heating is seen. The recombination rate depends only
on the temperature on the cell walls, which stays at 0.3 K. The mean polarization should be
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not affected in a noticeable way, since the population of oppositely polarized states in the
equilibrium would go from ∼ 10−16 to ∼ 10−11. The target density change is not important.
The average probability to escape through the magnetic gradient would slightly increase,
which would move slightly the “filling” curves on Fig. 2.5.

The uncertainty in the gas properties (see Sec. 2.2) may change the results by a factor
of two. Even with the double temperature rise no dramatic effect should occur, but one
may consider using a fast raster in this case.

The conclusion is that the heating by beam ionization losses should not make a serious
impact on the gas storage cell. In order to decide whether a fast raster is needed, a
thorough comparison of the theoretical calculations for the transport parameters in the
atomic hydrogen has to be done, because of the large difference of the predicted atomic
cross sections.

3.2 Depolarization by Ionization

Using the estimates from Sec. 3.1 we obtain that a 100 µA, 0.85 GeV electron beam would
loose to ionization and atom excitation ∼ 1.4 · 1013 eV · s−1 per 1 cm of its path. This
creates a certain number of free electrons (primary ionization), which may also ionize other
atoms (secondary ionization). In hydrogen at normal conditions, it takes on average ∼40 eV
of the energy loss to create one electron-ion pair. At very low gas density, many of the
secondary electrons will escape the volume without ionizing the gas. We use here the value
of 40 eV/pair as a lower limit. Then, about ∼ 3.5 · 1011 pairs · s−1cm−1 are produced,
which means that about 10−5 of all hydrogen atoms in the cell are ionized per second. The
contamination depends on the recombination time and on the spacial distribution of the
electrons and ions produced.

Here we face two problems. First, in contrast with neutral atoms, which spread laterally
over the cell in ∼1 ms because of diffusion, the charged particles would stay in the beam
area, moving along the magnetic field lines. Second, the recombination rate of an electron
and proton is kinematically forbidden in 2-body collisions, and, in contrast with gas at
normal conditions, the 3-body collision rate is very low. The protons will get thermalized
in ∼1 ms, while electrons in ∼10 ms. The charged particles may leave the cell when they
reach the magnetic field gradient. Protons and electrons may recombine with atoms into
H+

2 and H− ions, however, again, this recombination is kinematically forbidden in 2-body
collisions.

Single protons do not make a background for Møller scattering, but the single electrons
and H+

2 or H− ions may. Assuming the beam area of 4 · 10−4 cm2 and the cleaning time
of the ions and electrons of 0.7 s (the normal diffusion time to the cell edge), we obtain a
contamination of ∼16%.

A way to remove the charged particles from the beam area is to apply an electric field,
perpendicular to the cell axis. The Larmore frequency is ωL = qeB/m = 1.4 · 1012 s−1 for
electrons and 0.8 · 109 s−1 for protons. With the typical time between collisions of τ =
10−5 s−1 for atoms, ωLτ � 1 and the charged particles will drift in the crossed fields with
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the speed v = ~E× ~B/B2. With a field of 1 V/cm, at 8 T the speed is 12.5 m/s. Therefore,
the lifetime of the charged particles in the beam will be 0.0002 m/12.5 m/s=1.6 · 10−5 s,
and the potential contamination will be reduced to about 10−5 level. The positive and
negative particles will move to the same direction and eventually recombine on the wall.

There might be a complication in this scheme. The beam creates a radial average
electric field. One can calculate it, averaging the field created by one bunch (Eq. A.7) over
the repetition time T :

Er(r) =
q

2πε◦

1√
2πσBz

· (1− exp(− r2

2σ2
Br

))
1

r

1

T

∫ T/2

−T/2

dt · exp(− t2

2τ 2
B

),

and, since T � τB:

Er(r) =
Ib

2πε◦c
· (1− exp(− r2

2σ2
Br

))
1

r
(3.9)

also presented on Fig. 3.1. The maximum field of ∼0.2 V/cm is reached at r ≈ 0.2 mm.

Figure 3.1: Average radial electric field of a 100 µA beam, depending on the distance from
the center. For the transverse beam distribution a Gaussian with σBr = 0.15 mm is taken.
No rastering is assumed.

This field will not affect the particle motion in a 1 V/cm external field.
The problem of charged particles will be solved, providing a reasonable scheme to mount

electrodes inside the storage cell is found. The electrodes should provide a good thermal
contact with the cell, while being electrically insulated from it, be covered with the He film
and be robust at 0.3 K. Several options are being considered.

3.3 Depolarization Caused by the Beam RF radiation

The beam pulses (bunches) produce an electromagnetic wave. This electromagnetic field
is calculated in Sec. A.1.2, where all the definitions needed are given.
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The magnetic field of the solenoid BS splits the ground states of hydrogen into four
states with different energies, their properties are summarized in Tab.2.1.

The dominant transitions caused by an external electromagnetic wave are those with
either electron or proton spin flip. The magnetic field of the wave has to be perpendicular
to z to cause a flip, since, say 〈 − |σ̂x|+〉 = 1. Indeed, the magnetic field created by the
beam is circular and always perpendicular to z (see Eq. A.9). The operator describing the
interaction includes both the electron and the proton contributions µeσ̂

e
x + µpσ̂

p
x, but the

proton contribution is relatively much smaller and we neglect it. Then, we are left with
two transitions, which at BS = 8 T happen at frequencies:

|a〉 → |d〉 ⇒ νad = 224.92 GHz (3.10)

|b〉 → |c〉 ⇒ νbc = 223.50 GHz (3.11)

The probability of a transition, say |a〉 → |d〉, caused by a harmonic perturbation µe ·B ·eiωt,
per time unit is:

dVa→d

dt
=

2π

~
|〈d|µe ·B · σ̂e

x|a〉|
2 δ(~ω − (Ed − Ea)) (3.12)

We neglect the small mixing in the state |a〉 (α → 0) and obtain:

dVa→d

dt
=

2π

~2
|µe ·B|2 δ(ω − ωad) (3.13)

3.3.1 Calculation for the CEBAF beam structure

Let us take into account that the bunches appear at a given frequency, using the Fourier
series expansion of Eq. A.18-A.19. Because of non-uniformity of the magnetic field BS in
the volume of the trap there is a considerable spread of ωad in the gas sample. We should
take into account the appropriate density dP

dωad
. This density is peaked at the maximum

field in the solenoid and has a tail to lower frequencies (see Fig. 3.2). In [25] an RF
absorption spectrum for a hydrogen trap at 5 T was presented. The shape of the spectrum
is comparable to the simulated one on Fig. 3.2.

The probability of a transition per second can be expressed as:

dVa→d

dt
=

2π

~2

∞∑
k=−∞

∣∣∣µeB̂k(r)
∣∣∣2 ∫ ∞

−∞
dωad

dP

dωad

δ(ωad − ω◦k). (3.14)

Using Eq. A.20 we obtain:

dVa→d

dt
=

∞∑
k=−∞

dP

dωad

∣∣∣∣
ω◦k

1

2π
·

(
µ◦µeIb

~r◦

)2

· exp(−ω2
◦k

2τ 2) ·G2(r). (3.15)

In order to evaluate the contamination caused by the conversion discussed, we should
take into account several features of the trapped gas. First, the cleaning time (the average
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Figure 3.2: Simulated spectra of the transitions on the axis of the hydrogen trap at 7.997 T,
for a solenoid B8030-5 from AMI [31]. AMI (American Magnetics, Inc.) provided us with
the field distribution of this magnet. The magnet has a 10−5 uniformity inside the 1 cm
diameter central sphere. The density of atoms depends on the field as exp(−µeB/kT ). The
transitions |a〉 → |d〉 and |a〉 → |c〉, along with the beam frequency grid are shown.

time it takes a “low-field-seeking” atom in |c〉 or |d〉 state to leave the cell) depends on the
Z-position of the atom’s origin (see Fig. 2.4). Second, the cleaning time is ∼1000 times
larger than the wall collision time (see Sec. 2.2). Therefore, the atoms in |c〉 and |d〉 states,
although created by the RF-induced conversion mostly in the beam area, populate the cell
cross section practically uniformly before leaving the cell, and we need to calculate only
the the average conversion rate over the cell cross section. The full conversion rate inside
a cylinder of radius R is:

dVa→d

dt
(r < R) =

1

πR2

∫ R

0

dr · 2πr · dVa→d

dt
(3.16)

Using the approximation from Eq. A.12 we obtain:

dVa→d

dt
(r < R) ≈

∞∑
k=−∞

dP

dωad

∣∣∣∣
ω◦k

1

2π
·

(
µ◦µeIb

~

)2

· exp(−ω2
◦k

2τ 2) · 2

R2
· (1.205 + ln

R

5σBr

)

(3.17)
In order to evaluate the contamination we must take into account the cleaning time τd

dependence on the Z-coordinate of the atom (see Fig. 2.4), and, therefore, its dependence
on the transition frequency ωad = ω◦k. Taking the full cell radius R = r◦:

Nd

Na

≈ 1

π
·
(

µ◦µeIb

~r◦

)2

· (1.205 + ln
r◦

5σBr

)
∞∑

k=−∞

dP

dωad

∣∣∣∣
ω◦k

· exp(−ω2
◦k

2τ 2)Ib · τdk, (3.18)

where Nd is the concentration of the oppositely polarized |d〉 state, while Na is the concen-
tration of the trapped |a〉 state. The index k in τ dk indicates that the cleaning time for a
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|d〉-state atom depends on the transition frequency, via its dependence on the location of
the |a〉→|d〉 conversion point.

The non-uniformity of the magnetic field and the associated non-uniformity of the gas
density lead to a strongly peaked gas spectral distribution, which overlaps with a multitude
of ω◦k peaks, as shown on Fig. 3.2, obtained by simulation of a trap in the field of a highly
uniform solenoid. One should be able, by adjusting the magnetic field, tune the cell in a
way that the beam resonances stay beyond the peaks in the gas spectral density, in order to
reduce the transitions. It may help to use a solenoid with a more uniform field, in particular
more uniform in the area close to the beam. Then, more atoms on the beam path stay
beyond the RF grid. Calculating the sum of Eq. 3.18 we add several most contributing
terms (see Tab.3.1).

The average contamination calculated for 100 µA beam is:

N−

N+

≈ 0.0015% (3.19)

The effect depends quadratically on the beam current and is very sensitive to the value
of the magnetic field. By tuning the field one can increase the transition rate of either
|a〉→|d〉 or |b〉→|c〉 by a factor of 100. This can be used to study the effect, but would
require a possibility to trim the field on a 10−4 level.

The Uncertainty of the Calculations

The calculation is sensitive to several parameters which have some degree of uncertainty.

The beam parameters mostly are known well enough. The most uncertain parameter
is the beam spot size, which depends on the optics of the given beam tune. We used a value
of σBr = 100 µm. Since the dependence on this value is logarithmic, in case of σBr = 30 µm
(the reasonably minimal radius) the effect grows to ≈ 0.0018%.

The gas parameters , namely the atomic cross section, is known with a considerable
uncertainty (see Table 2.2). The cleaning time is proportional to this cross section. We used
the value σ = 42.3 · 10−16 cm2 [21]. The highest value obtained in another calculation [19]
was about twice larger. This would increase the contamination to about ≈ 0.003%. The
value we used was calculated for polarized gas (atoms collide in spin triplet state only).
The calculations [19] and [21] predict a slightly lower cross section in unpolarized gas. In
fact, we are interested in collisions of oppositely polarized atoms, therefore we consider the
value we used as an upper limit.

The magnetic field uniformity affects the spectral density of the gas at the RF res-
onances. We used the field of an appropriate solenoid. We also calculated the effect for a
very simple solenoid of the same size, with a constant current density. The contamination
went up to ≈ 0.003%.
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k ν = ν◦k, Z, dP/dω, τ dk, contribution
GHz cm GHz−1 sec to contamination

transition |a〉→|d〉
1 224.550 4.33 0.0549 0.550 0.87E-05
2 224.051 5.30 0.0225 0.401 0.26E-05
3 223.552 5.85 0.0156 0.318 0.14E-05
4 223.053 6.24 0.0118 0.261 0.90E-06
5 222.554 6.55 0.0082 0.220 0.53E-06
6 222.055 6.80 0.0068 0.188 0.38E-06
7 221.556 7.02 0.0057 0.162 0.27E-06
8 221.057 7.22 0.0055 0.141 0.23E-06
9 220.558 7.39 0.0047 0.124 0.17E-06

10 220.059 7.55 0.0036 0.109 0.12E-06
11 219.560 7.70 0.0038 0.097 0.11E-06
12 219.061 7.83 0.0032 0.086 0.82E-07
13 218.562 7.96 0.0029 0.077 0.67E-07
14 218.063 8.08 0.0025 0.069 0.51E-07

total 0.16E-04

transition |b〉→|c〉
1 223.053 4.54 0.0419 0.518 0.63E-05
2 222.554 5.40 0.0229 0.385 0.26E-05
3 222.055 5.91 0.0148 0.308 0.13E-05
4 221.556 6.29 0.0103 0.254 0.77E-06
5 221.057 6.59 0.0086 0.214 0.54E-06
6 220.558 6.84 0.0070 0.183 0.38E-06
7 220.059 7.06 0.0057 0.158 0.27E-06
8 219.560 7.25 0.0051 0.138 0.21E-06
9 219.061 7.42 0.0045 0.121 0.16E-06

10 218.562 7.58 0.0038 0.107 0.12E-06
11 218.063 7.72 0.0036 0.095 0.10E-06
12 217.564 7.85 0.0030 0.085 0.76E-07
13 217.065 7.98 0.0029 0.076 0.65E-07
14 216.566 8.09 0.0025 0.068 0.50E-07

total 0.13E-04

Table 3.1: Calculation of the sum in Eq. 3.18 for AMI solenoid [31] includes adding the
results for several resonant frequencies, see Fig. 3.2. Each frequency is associated with a
certain Z-coordinate of the atom in the cell. The field at the center of the solenoid was
7.998 T.
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We conclude that the contamination discussed is below ≈ 0.005% within reasonable
variations of the input parameters. The effect is proportional to q2 · F = I2

b /F , where q
is the bunch charge. The repetition rate F defines the density of the resonant frequency
lines. The contamination, while negligible at a continuous beam accelerator like CEBAF,
can become prohibitively large at a storage ring, unless the bunch length is much longer
than at CEBAF (0.5 ps).

3.3.2 Calculation for a Randomized Beam

Let us compare the results obtained for a resonant beam structure, with a somewhat
simplified case of a “randomized structure”, when bunches are arriving at random instead
of a fixed frequency (499 MHz at CEBAF). Let us first calculate the probability that a
single bunch causes the transition, using the Fourier transform as in Eq. A.17:

B̂ = B◦(r) · τ · exp(−ω2τ 2

2
) (3.20)

V B
a→d =

2π

~2

∫ ∞

−∞
dω

∣∣∣µe · B̂
∣∣∣2 δ(ω − ωad) = 2π

(
τµeB◦(r)

~

)2

· exp(−ω2
adτ

2) (3.21)

We obtain:

V B
a→d =

(
Ib

F

)2 (
µ◦µe

2π~r◦

)2

· exp(−ω2
adτ

2)G2(r) (3.22)

At r = r◦ = 2 cm V B
a→d = 1.8 · 10−14, while at the point of the highest field r = 160 µm

V B
a→d = 1.5 · 10−10. One bunch does not change the gas polarization in any noticeable way.

If the beam bunches were arriving at random, we could obtain the transition probability
per second by multiplying the result of Eq. 3.22 by the repetition rate F :

dVa→d

dt
=
I2

b

F

(
µ◦µe

2π~r◦

)2

· exp(−ω2
adτ

2)G2(r) (3.23)

which, at r = 160 µm, is Va→d = 7.5% s−1 and at r = r◦ is 0.9 · 10−5 s−1. The fraction of
the atoms in the cell, converted per second at a given radius is shown on Fig. 3.3 In the
same way as for Eq. A.12, for R > 5σBr:

dVa→d

dt
(r < R) ≈ I2

b

F

(
µ◦µe

2π~r◦

)2

· exp(−ω2
adτ

2) · 2r2
◦

R2
· (1.205 + ln

R

5σBr

)

R=r◦=
1

2π2

1

F

(
µ◦µeIb

~r◦

)2

· exp(−ω2
adτ

2) · (1.205 + ln
r◦

5σBr

) (3.24)

The conversion rate in a small cylinder R = 5σBr = 0.5 mm around the beam is 3.6% s−1,
while in the full cell of R = r◦ = 2 cm the rate is 0.9 · 10−4 s−1. The average cleanup time
is 0.7 s2.5 reduces the contamination to 0.6 · 10−4 s−1. This result is slightly larger than
the result3.19 obtained for the realistic beam structure optimized to avoid the resonances.
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Figure 3.3: The fraction of the atoms in the cell, converted per second at a given radius
2πr
πr2
◦

dVa→d

dt
. Most of the transitions happen at r ≈ 200 µm.

3.3.3 Depolarization Caused by the RF Radiation of Single Elec-
trons

Single electrons, passing by an atom, create strong fields. Let us consider a possible depo-
larization from single electrons, in the same way as was done in Sec. 3.3.2 for a bunch, but
using the field created by the electron and integrating the effect down to the atom radius.

The electron electric field in its CM frame is boosted to the lab frame in the same way
as in Sec. A.1.2:

BT (r, t) =
qeγ

4πε◦c

1

r2
· 1

(1 + (γct/r)2)3/2
. (3.25)

The Fourier transform is:

B̂T (r, ω) =
qeγ

4πε◦c

1

r2
· 1√

2π

∫
dωe−iωt 1

(1 + (γct/r)2)3/2
. (3.26)

Let us evaluate this function for ωad ∼ 2π · 220 GHz·rad. The useful range of t is t <
10r/(γc) < 3 · 10−14 s. At this value of t the exponential is close to 1, since ωadt ≈ 0.04.
Therefore:

B̂T (r, ωad) ≈
qeγ

4πε◦c

1

r2
· 1√

2π

2r

cγ
=

qeµ◦

2π
√

2π

1

r
(3.27)

In the same way as Eq. 3.23:

dVa→d

dt
=
Ib

qe

2π

(
qeµ◦µe

2π
√

2π~r

)2

(3.28)

Integrating over the radius, assuming a dependence as 1/r2
a for r < ra (ra ∼ 10−8 cm is the

atom radius) and 1/r2 for r > ra, with a cell radius of r◦:

dVa→d

dt
=
Ib

qe

2π

(
qeµ◦µe

2π
√

2π~

)2

π · (1 + 2 ln
r◦
ra

) ∼ 10−12 s−1. (3.29)

The transition probability is negligible.
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3.4 Cell Heating

Due to calculations in Sec. A.1.2 the total RF radiation coming with the beam has a power
of ∼2 mW at 100 µA. It is argued in Sec. A.1.5 that copper at 0.3 K is nearly purely
reflective to the electromagnetic waves and that the energy loss by the 100 µA beam from
the eddy currents or wave absorption should not exceed ∼ 3 µW. This can be compared
with ∼1 mW of power released in the cell by recombination of hydrogen. The power of the
dilution refrigerator considered is about 20 mW, therefore no problem should occur.

The power released in the cell by beam ionization losses (see Sec. 3.1) is about 40 µW,
which is not a matter of concern.

Beam interactions with the gas include also Mott and Møller scattering. At very low
momentum transfers this scattering is integrated into the ionization losses. Potentially, the
higher energy recoil particles can be absorbed in the cell material and provide additional
heating. We estimated the full power, transferred to protons in Mott scattering, making
a cut off for the momentum transfer at 2 keV (the atom size), as ∼ 2 · 10−8 W, which is
negligible.

A problem may occur with a beam halo, or with a poor beam tune, when the beam is
scraping on aperture elements upstream of the target. High energy electrons would make
showers in the dilution refrigerator and a large fraction of their energy will be absorbed.
The refrigerator may quench. This effect should be limited to ∼5 mW, which is about 107

electrons at 3 GeV. In order to protect the target a shielding must be installed in front of
it. A 1-inch diameter beam pipe should be surrounded by a lead shielding about 20 cm
thick and broad enough to cover the sensitive cryogenic elements.

The heat load from thermal radiation in the beam pipe is very large. Therefore, a set
of cold screens must isolate the cell from the rest of the beam pipe. The screens must have
about 1 cm diameter holes for the beam.
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Application of the Atomic Target to
Møller Polarimetry

This feasibility study is limited to the possible application of the target discussed to the
existing Møller polarimeter in Hall A at JLab [7]. The results are, however, more generic
and are largely applicable to other conditions.

4.1 Polarimeter Parameters

4.1.1 Polarimeter Acceptance

Hall A polarimeter selects electrons, scattered close to the horizontal plane, in angular
ranges of about 75◦ < θCM < 105◦ and −5◦ < φCM < 5◦, where θCM and φCM are the polar
and azimuth angles of the scattered electrons in the center of mass frame. Coincidences of
two secondary electrons are identified and counted. The acceptance of the polarimeter may
be distorted by the strong magnetic field of the target trap. Monte Carlo simulation of the
polarimeter optics shows that a 7 T solenoid in the target area would rotate the scattering
plane by about 5◦, and the polarimeter acceptance changes from −5◦ < φCM < 5◦ to
about 0◦ < φCM < 10◦. This makes no effect on the results. The polarimeter acceptance
depends on the longitudinal coordinate of the interaction point. At the lowest beam energy
the dependence is the strongest and the effective target length is about 10 cm. At higher
energies the effective length is larger.

4.1.2 Target Density and Statistical Accuracy

The beam polarization at JLab is normally about 80%. The target of supermendur is 30 µm
thick along the beam, containing about 6.7 · 1021 electrons/cm2. The target polarization
is about 8%. At the regular beam current used for polarimetry of 0.3 µA the coincidence
counting rate is about 50-200 kHz, depending on the beam energy. At the average rate
of 100 kHz, a relative statistical accuracy of 1% can be achieved in about 2 min. A
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hydrogen target 10 cm long1 with a density of 3 · 1015 electrons/cm3 provides 3 · 1016

electrons/cm2. The maximum beam current allowed by the accelerator can be used with
the hydrogen target. We assume here an easily available current of 30 µA, though currents
up to 100 µA have been delivered . The time needed to achieve the same 1% accuracy
would be 2 min×6.7·1021cm−2

3·1016cm−2 × 0.082 × 0.3µA
30µA

≈ 30 min. This is an acceptable time, in
particular if the measurements are done in parallel with the main experiment.

4.1.3 Filling and Cleaning Time

Preparations of the cell include ramping the magnetic field (less than 1 h), building the he-
lium film (less than ∼5 min) and hydrogen filling (∼10 min - see Sec. 2.3). Cleaning the cell
from hydrogen can be done in different ways, like by reducing the magnetic field, by forced
recombination of hydrogen etc. The gas can be relatively quickly removed by enforcing
hydrogen recombination on a special element inside the cell (see Sec. 2.3). This procedure
has to be optimized, since the full energy released by recombination is ∼1 J. A large power
released can cause all the helium film to evaporate. Therefore, the recombination should
go gradually, perhaps at the edge of the cell, in a low density area.

4.1.4 Background

The no-target background was measured by the Hall A Møller polarimeter in situ, at room
temperature, with the 4. GeV electron beam of 30 µA. The coincidence rate was about
1 Hz, corresponding to about 1% of the expected coincidence rate with the hydrogen target
at this beam current. The single-arm rate was about 600 Hz. Although noticeable, this
background can be easily measured on the regular basis by removal of the atomic hydrogen
gas from the cell (see Sec. 4.1.3).

Another source of background is electron-nuclei scattering on the target material. The
polarimeter aperture accepts particles with the energies from 30% to 70% of the beam
energy. Since the electrons, “regularly”scattered at small angles, practically preserve their
initial energy, only radiative scattering may provide a background for the polarimeter.
Indeed, the observed “single arm” background in Hall A polarimeter, amounting to about
40-80% of the “double arm” coincidence rate, is well described by radiative elastic scattering
off the target nuclei. Coincidence requirement reduces this background to a sub-percent
level, though its exact measurement on this level is difficult. In case of the hydrogen target
the initial “single arm” background is expected to be 5-10 times lower, which should limit
a possible coincidence background to about 0.1%.

A way to measure the residual gas background, coming from helium and other residual
gasses in the beam pipe, is to measure the counting rate before filling the cell with hydrogen.
One can monitor the gas pressure throughout the polarization measurement using a long

1 The effective target length depends on the beam energy, because of the polarimeter acceptance. At
the lowest energy considered - 0.850 GeV, the effective length is about 10 cm, while at 5 GeV it is about
20 cm
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pipe attached to the edge of the cell, where the hydrogen density is very low. This method
has been used before (see Sec. 2.5.4).

An additional, and a very powerful way to measure the background continuously would
be to equip the Møller polarimeter with microstrip detectors, located between the target
and the first quadrupole magnet, in order to measure the trajectories of the scattered
electrons and reconstruct the point of interaction origin. An accuracy of about 5 mm for
the longitudinal coordinate of the origin point would be sufficient to limit the selected
interactions to the central area of the target only, while the rate measured at the edges of
the cell will provide the background.

4.1.5 Target Polarization Reversal

Target polarization reversal is useful for reduction of the beam current asymmetries, driven
by the beam helicity, or other possible false asymmetries. These beam asymmetries at
JLab are sometimes as high as 1%, but typically they are better than 0.1%. With the
ferromagnetic targets the Møller asymmetry observed is about Pbeam · Ptarg · AM ∼ 4%,
where P-s denote the beam and target polarizations and AM ≈ 7/9 is the analyzing power
of the process. Evidently, a false asymmetry of 1%, coming from the beam would give a
25% relative error for the beam polarization measurements. The beam current monitors
are used to correct for the beam asymmetry. Since these devices are not very linear at
low currents used, the residual relative error for the beam polarization could be about 1%.
Fortunately, averaging the results obtained with opposite target polarizations cancels out
this false asymmetry. In practice, the target polarization of Hall A polarimeter is reversed
every 2-5 min.

If the hydrogen target is used, the asymmetry observed would be about 50%. Therefore,
the influence of the beam asymmetry would be a factor of 10 smaller than now. Further-
more, the hydrogen target would operate at beam currents of 30-100 µA. The beam current
monitors are more precise in this range than at 0.3-1 µA used with the ferromagnetic tar-
gets. One may conclude that the frequent target polarization reversal is not needed for
polarimetry with the hydrogen target.

If polarimetry is running in parallel with the main experiment, the hydrogen target
may become the source of a sizable false asymmetry, in particular for parity violation
experiments where the effect measured could be ∼ 10−6, or even smaller. To cancel out
a possible false asymmetry one has to take data with opposite polarizations of the atomic
hydrogen target. Inverting the target polarization, say, once per day should not pose a
technical problem. It may happen at low beam energies that the target solenoid affects
the beam focusing for the main experiment. In such a case it might be not useful to take
data during the solenoid reversal. This would limit the reasonable frequency of the target
reversals.



CHAPTER 4. MØLLER POLARIMETRY WITH ATOMIC TARGET 30

4.1.6 Effective Target Polarization

The effective target polarization, after subtracting the non-hydrogen background (see Sec.
4.1.4) is very close to 100%. The identified sources of depolarization are listed in Tab. 4.1.

No δP description Beam dependence
estimate upper limit source Section Ib f(Ib)

1 0.0005% 0.001% |a〉 state | ↑−↓〉 component 2.1 - -
2 0.001% 0.002% H2 molecules 2.5.1 - -
3 0.0004% 0.001% |c〉 and |d〉 states 2.5.2 - -
4 10−11 10−11 excited states 2.5.3 - -
5 10−11 10−10 gas heating 3.1 100 µA ∝ Ib

6 0.0003% 0.001% free electrons / ions 3.2 100 µA ∝ Ib

7 0.002% 0.005% transitions by beam RF 3.3.1 100 µA ∝ I2
b

0.004% 0.01% total

Table 4.1: The identified sources of the target depolarization.

We would like to emphasize that the estimates for contributions 1-4 (not associated with
the beam) are bases on the well studied properties of such storage cells. The parameter
to control is the lifetime of polarized gas in the cell (with feeding turned off). This easily
measurable parameter provides the rate of atoms recombinations and conversions. The
contamination scales with this rate, and the relations are well understood.

The components 5-7, are associated with the beam. Again, the gas lifetime provides a
critical parameter to understand the additional average conversion rate. Also, these effects
can be studied by varying the beam current and other beam parameters.

The component 7 depends on the beam parameters as I2
b /F . One may use a different

CEBAF repetition rate (so called “G0 structure”). Keeping the same current one may
use a rate of about 20 times lower than normal, increasing the depolarization effect #7
by a factor 20. But the most sensitive test would be tuning the magnetic field of the
solenoid to overlap a peak in the gas spectral density distribution with a beam resonance,
increasing the effect of depolarization by a factor of ∼100. This will help to put a limit on
the depolarization at a 0.01% level.

The component 6 can be studied by varying the cleanup voltage. With voltage set to
zero the effect is about 104 higher. This will allow to put a limit on the depolarization at
a 0.01% level.

The component 5 can be studied by measuring the dependence of the gas density in the
beam area on the beam current, using the Møller scattering rate. The density is a known
function of temperature, which defines the gas polarization.

The upper limit on the expected target depolarization is about 0.01%, which is well
below the other experimental errors.
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4.1.7 Polarimetry Systematic Error

Adding in quadrature the systematic errors, important for the present Hall A Møller po-
larimeter, gives the total systematic error of about 3%. Scaling these errors to the hydrogen
target option leaves only those:

– Average analyzing power 0.3%;

– Background 0.1%.

At this level of accuracy, some other errors, neglected before, may become significant and
more work has to be done to identify them. Still, a 0.5% error seems achievable and a 1%
error certain.

4.2 Target Influence on the Beam

The possibility of the polarimeter operation in parallel with the experiment is very impor-
tant. Several problems may, however, occur.

The beam optics, in particular at low energies, might be distorted by the solenoid field,
which couples the X and Y projections of the trajectory. This may affect the beam focusing
at the main target, 17 m downstream of the polarimeter target. The first evaluation by the
JLab beam optician was favorable for energies larger than about 2 GeV, but more work is
needed.

Another possible influence comes from interactions with the atomic hydrogen target.
The target thickness of 3 · 1016 electrons/cm2 can be compared with the existing residual
gas, which in a ∼50 m long beam pipe section gives a comparable amount of ∼ 2 · 1016

electrons/cm2. No considerable deterioration of the beam quality would be caused by
the hydrogen target due to interactions. The influence of the multiple scattering in the
polarimeter target on the beam spot on the main target can be compared with the influence
made by the residual gas. A 10 m long section of the beam pipe filled with residual gas,
about 40 m upstream of the main target, would give the same effect as the hydrogen target.
Therefore, no significant change of the beam spot should happen because of the hydrogen
target.
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Conclusion

The considerations above show that a stored, longitudinally electron-spin-polarized atomic
hydrogen can be used as a pure, 100% polarized gas target. A thickness of at least 6 · 1016

electrons/cm2 can be reached with a target diameter of 4 cm and a length of 20 cm along the
beam. Møller polarimeter, equipped with such a target would provide a superb systematic
accuracy of about 0.5%. The polarized hydrogen gas should be stable in presence of a
100 µA CEBAF beam. Some care should be taken in tuning the magnetic field of the
storage cell in order to avoid the resonant depolarization of the gas by the beam.
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Auxiliary Calculations

A.1 Beam-Induced Effects

A.1.1 Parameters of the Beam and the Trap

Beam

The beam parameters considered are as follows:

– σBt = τ = 0.5 ps - bunch time width (RMS) in LAB frame

– σBr = 100 µm - bunch radial width (RMS) in LAB frame

– F = 499 MHz - bunch repetition rate

– γ ∼ 104 - beam γ-factor

– Ib = 100 µA - the highest beam beam current used with polarized beams

Gaussian shapes are assumed for both the longitudinal and transverse beam profiles.

Hydrogen Trap

The atomic hydrogen trap consists of a copper pipe being a part of the dilution refrigerator,
kept at 300 mK.
The parameters of the copper pipe are:

– L = 0.4 m - pipe length

– r0 = 0.02 m - pipe diameter

– σ = 1011 (ohm·m)−1 - copper conductance at 300 mK

– CCu = 1.5 · 10−3 J · kg−1 ·K−1 - copper specific heat at 300 mK

– ρCu = 8960 kg ·m−3 - copper density

– T ∼ 0.3 K - the temperature

– dN
dV
∼ 3 · 1015 atoms/cm2 - the gas density
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Other Parameters and Constants Used

Some derived parameters are used:

– q = Ib/F = 0.2 pC - bunch charge

– σBz = σBt · c = 150µm - bunch longitudinal width (RMS) in LAB frame

– ρ(z, r) = q/(
√

2πσBz)·exp(−z2/(2σ2
Bz)) × (1/(2πσ2

Br)·exp(−r2/(2σ2
Br)) - charge density

of a bunch (LAB)

– ωb = 2π/σBt = 1.3 · 1013 s−1 - typical frequency associated with the bunch length. We
will show later that this is indeed the characteristic frequency of the process.

– ω◦ = 2π · F - bunch repetition frequency

– T = F−1 - repetition period

The values of used constants:

– ε◦ = 8.854 · 10−12 F/m

– µ◦ = 4π · 10−7 N/A2

– k = 8.6173 · 10−5 eV/K - Boltzmann constant

A.1.2 Calculation of the Electromagnetic Field

The bunch creates an electromagnetic pulse in the pipe. The fields are calculated in two
steps: at first, the electric field created by the bunch charge is calculated in the rest frame
of the bunch, then the field is boosted to the Lab frame. The variables in the bunch rest
frame are marked with prime sign. In this frame, only the radial component of the field
matters.

Let us assume that the bunch moves along the z axis in the Lab frame and crosses z = 0
at t = 0. The bunch rest frame has the same orientation as the Lab frame and its center
is at the center of the bunch. We are mostly interested in the field close to the beam, the
accuracy at the peripheral area of the pipe is not very important. The bunch size (RMS)
in the bunch rest frame is γ times larger than in the Lab frame, namely 25-150 cm at beam
energies of 0.85-5.0 GeV, which is much larger than the cell radius of 2 cm. In the limit
r � σBzγ the flux through a cylinder of the radius r is:

ε◦E
′

r(z
′
, r) · 2πr =

∫ r

0

dξ · 2πξ · ρ′(z′ , ξ) = ρ
′
(z

′
) · (1− exp(− r2

2σ2
Br

)) (A.1)

where

ρ
′
(z

′
) =

q√
2πσBzγ

· e−
z
′2

2(σBzγ)2 (A.2)

is the longitudinal charge density along the bunch. The radial component of the electric
field is:

E
′

r(z
′
, r) =

q

2πε◦

1√
2πσBzγ

· exp(− z
′2

2(σBzγ)2
)(1− exp(− r2

2σ2
Br

))
1

r
(A.3)
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Now, let us boost the field into the Lab frame using the Lorentz formula:

Er(z, t) = γ(E
′

r(z
′
)− ~V × ~B

′
(z

′
)) (A.4)

Br(z, t) = γ(B
′

r(z
′
) + ~V × ~E

′
(z

′
)/c2) (A.5)

z
′
= γ(z − V · t) (A.6)

where ~V ∼ (0, 0, c) is the bunch velocity (along z in our case).
We calculate the radial electric field and the tangential (along φ) magnetic field. Indeed,

~V × ~E
′
(z

′
, r) = V · E ′

r is directed along ~dφ. Using c−2 = ε◦µ◦ we obtain:

Er(z, r, t) =
qγ

2πε◦

1√
2πσBzγ

· exp(−(z − V t)2γ2

2(σBzγ)2
)(1− exp(− r2

2σ2
Br

))
1

r
=

=
qµ◦c

2π
√

2πτ
· exp(−(z/c− t)2

2τ 2
)(1− exp(− r2

2σ2
Br

))
1

r
(A.7)

The field profile repeats the bunch profile. The field is γ times larger than in the rest frame
and is located in a thin disk around the bunch. In order to see the dependence of the result
on the input parameters more clearly let us define a dimensionless function:

G(r) = (1− exp(− r2

2σ2
Br

))
r◦
r

; G(r◦) = 1 (A.8)

where r◦ is the pipe radius. In the same way

BT (z, r, t) =
qµ◦

2π
√

2πτr◦
· exp(−(z/c− t)2

2τ 2
) ·G(r) = Er(z, r, t)/c (A.9)

For the conditions used the fields in the pulse reach their maximum at r = 160 µm, namely
Er(0, r, 0) = 4.31 · 104 V/m and Br(0, r, 0) = 1.44 · 10−4 T, while at r=2 cm the fields are
478 V/m and 1.59 · 10−6 T (see Fig. A.1).

Let us re-write Eq. A.9:

BT (z, r, t) = BT (r) · exp(−(z/c− t)2

2τ 2
) (A.10)

The energy of the field flows along the beam S = Re(EH∗)/2 = |B|2 c/µ◦/2 The density
of the energy flux of the electromagnetic field of a bunch, passing through the pipe cross
section is:

dw(r)

dS
=

c

2µ◦
BT (r)2 ·

∫ ∞

−∞
dt exp(− 2t2

2τ 2
) =

1

2µ◦
BT (r)2 ·

√
πcτ =

µ◦c

4
√

πτ

(
q

2πr◦

)2

·G(r)2 (A.11)
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Figure A.1: Left: Tangential magnetic field of the 100 µA CEBAF beam at the pulse
maximum. Right: The density of the energy flux of the beam electromagnetic field.

The radial dependence of the flux is show on Fig. A.1. In order to integrate the power flux
over the pipe cross section let us make an approximation for R > 5σBr:

1

r2
◦

∫ R

0

dr · 2πr ·G(r)2 =

∫ R

0

dr · 2πr
(1− e

− r2

2σ2
Br )2

r2
= 2π

∫ R/σBr

0

dξ
(1− exp(−ξ2/2))2

ξ

≈ 2π · (1.205 + ln
R

5σBr

) (A.12)

The full power of radiation coming down the pipe is determined using the repetition rate
F :

W = F
∫ r◦

0

dr · 2πr · w(r)

dS
≈ µ◦cI2

b

8π
√

πτF
(1.205 + ln

r◦
5σBr

) ≈ 2 mW (A.13)

A.1.3 Electromagnetic Radiation from Beam Pipe Irregularities

Additionally to the radiation coming with each beam bunch there is a radiation, detached
from beam, generated on beam pipe irregularities, like pipe diameter changes. The beam
loses energy due to this radiation, in contrast with the radiation described in Sec. A.1.2.
The radiation is minimized if the beam pipe has the same diameter everywhere. In our
case, beyond the ends of the cell pipe there must be a break to a larger vacuum chamber
in order to provide the thermal insulation needed. This break acts like a cavity. Let us
approximate this cavity with a regular cavity used in the beam lines at CEBAF. A typical
voltage generated on this cavity by the beam bunch of a given charge is η ∼10 V/pc. From
this, we can estimate the full power lost by the beam to radiation:

Wc = η · I2
b /F ≈ 0.2 mW (A.14)

Only a small fraction of this radiation enters the downstream beam pipe, most of it would
escape the beam area transversally, since the vacuum chamber is wide in this area.

Therefore, inside the trap pipe, the radiation from pipe irregularities is at least 10-100
times weaker than the radiation created by the passing beam and we neglect it.
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A.1.4 Spectral Density of the Electromagnetic Field

In order to estimate the impact of the electromagnetic radiation we have to calculate its
spectral density. At a given point (z = 0 for example) the field has a form of Eq. A.10:

f(t) = f◦ · exp(− t2

2τ 2
), (A.15)

where f◦ is a function of the radius r. Here we use a shorter symbol τ for the RMS of the
bunch duration τ = σBt. First, let us calculate the Fourier transform of one single bunch:

f(t) =
1√
2π

∫ ∞

−∞
dω · f̂(ω)eiωt, (A.16)

where

f̂(ω) =
1√
2π

∫ ∞

−∞
dt · f(t)e−iωt = f◦ · τ · exp(−ω2τ 2

2
) (A.17)

The spectrum starts dropping at frequencies ν = ω
2π
∼ 1

τ
= 320 GHz.

The bunches arrive with a period T . The appropriate Fourier series is:

f(t) =
∞∑

k=−∞

f̂k · eiω◦kt, (A.18)

where ω◦ = 2π/T and

f̂k =
1

T

∫ T/2

−T/2

dt · f(t)e−iωt ≈ 1

T

∫ ∞

−∞
dt · f(t)e−iωt = f◦

√
2π · τ

T
· exp(−ω2

◦k
2τ 2

2
)

= f◦
τω◦√
2π

· exp(−ω2
◦k

2τ 2

2
). (A.19)

The integral can be taken in the infinite limits since the width of the bunch is much smaller
than the period: τ � T .

The Fourier series for the magnetic field at z = 0 is (see Eq. A.9 and Eq. A.8):

B̂k(r) =
τω◦√
2π

· exp(−ω2
◦k

2τ 2

2
)

qµ◦

2π
√

2πτ
·G(r) =

µ◦Ib

2πr◦
· exp(−ω2

◦k
2τ 2

2
) ·G(r) (A.20)
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A.1.5 Eddy Currents

A bunch moving inside of the conductive pipe induces an electric charge image on the pipe,
which moves along the pipe with the bunch, creating “eddy currents”. These currents flow
in a thin “skin” of the pipe, the skin depth depends on the characteristic frequency of
the electromagnetic pulse. The length of the electromagnetic pulse, created by a point-like
moving charge at a distance r = 0.02 m from the beam axis is about r/γ ∼ 2 µm � σBz =
150 µm - the bunch length. Therefore the pulse shape repeats the bunch shape and we
may use ωb for the characteristic frequency.

Skin Depth and Power Absorption

The skin depth δ estimate is crucial for the power loss calculation. The effect depends, along
with already defined frequency ω and conductance σ, on several important parameters:

– τc - mean collision time of electrons in the material

– ` - mean free path of electrons in the material

– ωp =
√

N ·q2
e

ε0me
≈ 1.6 · 1016 s−1 - the plasma frequency, where N is the electron density and

qe ,me are the electron charge and mass.

At frequencies ω � ωp three different physics regimes occur, depending on the relative
values of these parameters:

(1) Normal skin effect - low frequency regime: ωτc � 1 and ` � δ. The smallest spacial
parameter is the mean free path `. So, on the length of the mean free path the field
does not change much. In this case a local (the same space and time) relation ~j = σ ~E
is valid.

(2) Anomalous skin effect - a thin skin depth: δ � ` and δ � `/ωτc, while there is no
limit for ωτc. The lowest spacial parameter is δ.

(3) High frequency, or infrared limit - ωτc � 1 and `/(ωτc) � δ. In normal metals at
normal temperatures this condition is fulfilled in the infrared range.

In order to calculate the power loss let us consider the Maxwell equations for conductors

in empty space, neglecting the term ∂ ~D
∂t

:

rot ~H = ~j; rot ~E = −∂ ~B

∂t
(A.21)

div ~B = 0; div ~D = 0 (A.22)

Assuming no magnetic materials: ~B = µ◦ ~H. Let us consider the simplest low frequency
regime (1), which adds an equation:

~j = σ ~E (A.23)

Then:

∆ ~H = µ◦σ
∂ ~H

∂t
(A.24)
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Assuming a time dependence as e−iωt we obtain:

∆ ~H = −iµ◦σω ~H (A.25)

Let us consider high enough frequencies, that the skin depth is much smaller than the
conductor size. On the boundary with metal the tangential components of ~H and ~E are
conserved. Let us assume that metal occupies all space at z > 0. ~H depends only on
time and z. Since div ~H = 0 and the field somewhere inside the metal is zero, Hz = 0
everywhere. We can rewrite Eq. A.25 as:

∂2 ~H

∂2z
+ k2 ~H = 0, (A.26)

where
k =

√
σµ◦ω/2(1 + i) (A.27)

Then, considering a solution as ~H0exp(ikz) we obtain

~H = ~H0exp(−z/δ)exp(iz/δ − ωt) (A.28)

where

δ =

√
2

σωµ◦
=

√
2ε◦c2

σω
(A.29)

is the skin depth in the “low frequency” approximation (1). The electrical field is calculated
using Eq. A.23

~E = ζ ~H × ~n, (A.30)

where ~n is a vector normal to the surface and ζ is called impedance:

ζ =

√
ωµ◦
2σ

(1− i) =

√
2ε◦c2

σω
(1− i) (A.31)

Both the ~H and ~E are tangential on the surface and are the same inside and outside of the
conductor. The power flux into the conductor is described by Poynting vector averaged
over time:

S = Re( ~E ~H∗)/2 = Re(ζ |H| |H|∗)/2 = Re(ζ) |H|2 /2 =

√
ωµ◦
2σ

|H|2 /2 = ωδµ◦ |H|2 /4

(A.32)
If we apply the “low frequency” limit to our case we obtain:

δlf =

√
2ε◦c2

σω
= 1.1 · 10−9 m (A.33)

Now, let us return to our case. Our characteristic frequency is ωb � ωp. The other
parameters for copper at 0.3 K were estimated using the known conductance, density and
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assuming that there is one free electron per atom. This estimate is valid, in fact, in the
low frequency limit. We assume that all the electrons are drifting in electrical field with
a velocity vd = qeE/me · τc, depending on the time between collisions τc. The current in
the conductor is j = Nqevd. On the other hand, the current can be expressed using the
conductance: j = σE, and

τc =
σme

Nq2
e

≈ 4.2 · 10−11 s (A.34)

We see that ω◦τc ≈ 550 � 1. Therefore the low frequency approximation (1) is not
applicable in our case. In order to estimate the mean free path ` in this framework we have
to know the electric field in the metal. Let us make an upper limit estimate. We will see
later that in our case the maximum magnetic field parallel to the metal surface is about
B = 2 · 10−6 T. In the low frequency approximation the associated electric field inside the
metal is B · c

√
2εω/σ ≈ 0.03 V/m. Therefore vd ≈ 20 m/s and

` ≈ vd · τc ∼ 10−9 m (A.35)

Therefore `/(ωτc) ∼ 10−12 m seems much smaller than a reasonable skin depth δ and we
can use the “infrared” approximation (3) of the skin effect. Indeed, we will prove that
δ � `/(ωτc).

A solution for the “infrared” approximation [30] gives

δ = c/ωp = 1.8 · 10−8 m, (A.36)

not dependent on the frequency. It is about 20 times larger than the “low frequency”
estimate of Eq. A.33. The field inside the metal drops exponentially.

It is pointed out in [30] that Eq. A.36 is obtained neglecting the electron collisions
and therefore no absorption of electromagnetic waves in the metal happens. Indeed, the
impedance obtained is purely imaginary:

ζ = −iωδµ◦ (A.37)

while the energy absorption is defined by real the part of ζ.
Since it is not clear how good is the assumption for no electron collisions we will try

to estimate the losses in a different phenomenological approach. The skin depth can be
evaluated using the generalized refractive index of the metal:

n = nR − i · nI , (A.38)

where nR and nI are positive and the latter is responsible for the the wave attenuation.
The wave inside the metal is suppressed by a factor exp(−ωz · nI/c) and the skin depth is:

δ =
c

ωnI

(A.39)

There is a general description of the refractive index using a simple model for electron
motion in material [32]:

n2 = 1 +
σ

iε◦ω(1 + iωτc)
, (A.40)
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where σ is the conductance and τc is the mean time between collisions for the electrons in
metal. It is evaluated as:

τc ≈
m · σ
N · qe

, (A.41)

At low frequencies, such as ωτc � 1, an approximation is valid:
n2 ≈ − iσ/(ε◦ω), and

n =

√
σ

2ε◦ω
(1− i) (A.42)

The wave inside the material is suppressed by a factor exp(−ωz · nI/c) and the skin depth
is:

δ =
c

ωnI

=

√
2ε◦c2

σω
(A.43)

the same as in Eq. A.33. We calculated the refractive index in the range of

2.5 · 1010 s−1 � ω � 2 · 1016 s−1 (A.44)

or
7.5 cm � λ � 100 nm,

relevant for our case.

n2 = − σ

ε◦ω2
b τc

(1− i · 1

ωbτc

) = A · eiφ0 , (A.45)

where A ≈ σ
ε◦ω2

b τc
and φ0 ≈ π + ε + 2πm. In order to keep nR > 0 and nI > 0 we select

m = 1. So,

n =
√

Aei( 3
2
π+ε/2) ≈

√
σ

ε◦ω2
b τc

(
1

2ωbτc

− i) ≈ 3− 1500i, (A.46)

the refractive index is nearly purely imaginary and the skin depth

δ =

√
ε◦τcc2

σ
≈ 1.8 · 10−8 m, (A.47)

does not depend on the frequency and matches very well the result in Eq. A.36!
In order to estimate the absorption let us use the general wave reflection/refraction

formalism. In case of a plane wave propagating in a medium with the refractive index
n = n1 normally to a plane boundary of another medium with n = n2 the relative reflected
intensity can be expressed as:

Irefl

I0

=
|n1 − n2|2

|n1 + n2|2
(A.48)

Assuming that the first medium is vacuum and using Eq. A.38 for the second one:

Irefl

I0

=
|(1− nR) + i · nI |2

|(1 + nR)− i · nI |2
=

(1− nR)2 + n2
I

(1 + nR)2 + n2
I

(A.49)

Using Eq. A.46 we see that about 5 · 10−6 of the incident power is not reflected but,
presumably, absorbed. For an ideal metal (σ →∞) n is purely imaginary and 100% of the
wave is reflected. In “low frequency” limit about 1 · 10−4 is not reflected, to be compared
with 0.25 · 10−4 obtained using Eq. A.32.
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Wave Absorption and Average Heating

Let us assume that the “low frequency” formula Eq. A.32 is applicable for the energy
absorbed in the pipe, but let us use the skin depth as a parameter:

S =
ωδ

4µ◦
|B|2 (A.50)

The power release in the pipe is calculated in the same way as Eq. A.11, using ω = ωb =
2π/σBt

P = F · 2πr0L ·
∫ ∞

−∞
dt S = δ

I2
b µ◦ · L

F · 8
√

πτ 2r0

(A.51)

For estimating the upper limit on the power let us use the larger skin depth we obtained
in Eq. A.36 δ = 1.8 · 10−8 m:

P ≈ 3 · 10−6W (A.52)

We should keep in mind that in this approximation the impedance is nearly purely imagi-
nary and the power absorption should be much lower than described by Eq. A.50. Therefore
we can say that in fact

P < 3 · 10−6W (A.53)

This value can be compared with the known power release in such cells during normal
operations. With the typical hydrogen atoms recombinations rate of 1015 s−1 (see Sec. 2.3)
the power release is the cell is ∼1 mW. The CEBAF beam average influence is negligible.

Heating by a Beam Pulse

The beam pulse releases some finite power into the cell. Due to a very small heat capacity
of copper at 0.3 K, the temperature rise during the pulse might not be negligible. Here we
estimate this effect. Let us calculate the temperature rise of a copper ring of the radius r◦,
length ∆z and thickness δ, cause by one beam pulse:

∆T =
2πr0∆z

2πr0∆zδ · ρCu · CCu

·
∫ ∞

−∞
dt S =

I2
b µ◦

F2 · 16π
√

πτ 2r2
0 · ρCu · CCu

≈ 2 · 10−7 K (A.54)

The effect is negligible.
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