Polarized Electron Beams and Polarimetry

E.Chudakov¹

¹Hall A, JLab

JLab Summer Detector/Computer Lectures http: //www.jlab.org/~gen/talks/polar_lect.pdf

Spin Physics

- History of Spin Physics
- Modern Studies in Spin Physics

Polarized Electron Beams

- Source of Polarization
- Electron Beam Polarimetry

Spin Physics

- History of Spin Physics
- Modern Studies in Spin Physics

- Source of Polarization
- Electron Beam Polarimetry

Motivation

Polarized beams and targets are used to study various effects of Spin Physics.

Present Motivation

- Studying the structure of composite particles (protons etc.)
- Studying the dynamics of strong interactions
- Search for "new physics"

Modern Studies in Spin Physics

2 Polarized Electron Beams

- Source of Polarization
- Electron Beam Polarimetry

History of Spin Physics

- Before 1925 atomic spectra \Rightarrow concepts of Quantum Mechanics
- 1925-1928 Completion of QM with the concept of spin
- up to now measuring anomalous magnetic moments
- 1956-1957 parity violation in weak interactions
- 1955 ... polarized proton beams
- 1975 ... polarized muon beams
- 1975 ... polarized electron beams
- 1987 ... proton spin puzzle

Introduction of Spin

Ralph de Laer Kronig early 1925 introduced spin (unpublished)

Wolfgang Pauli 1924-1925 exclusion principle 1927 non-relativistic

formalism

George Samuel Uhlenbeck Goudsmit late 1925 - introduced spin

Relativistic Description of Spin

Paul Adrien Maurice Dirac 1927 - equation for electron

Dirac's Equation

- Relativistic equation for fermions $s = \frac{1}{2}, \frac{3}{2}$
- Introduction of antiparticles
- Magnetic moment of fermions
- Basis for QED

Modern Studies in Spin Physics

Polarized Electron Beams
 Source of Polarization

• Electron Beam Polarimetry

Magnetic Moments of Pointlike Fermions

Magnetic moment:

$$\mu = \boldsymbol{g} rac{\boldsymbol{q}}{2m} \cdot \boldsymbol{S}$$
 ,

where: q, m, S are the particle's charge, mass and spin, g - gyromagnetic factor.

Dirac's equation with EM interaction for pointlike $S = \frac{1}{2}$: g = 2

Experimental values for (g - 2)/2

- e^-, e^+ : ≈ 0.001
- μ^-, μ^+ : ≈ 0.001
- p : \approx 1.79 composite
- **n** : ≈ -0.91 composite

Spin Physics

Lab

Anomalous Magnetic Moments of Pointlike Fermions

- Interactions of EM field with itself and with vacuum
- Calculable in QED

Precise measurements vs detailed calculations

- Substructure
- Electron: test for "pure" QED
- Muon: search for "new physics": existence of heavy particles (via loops), anomalous couplings etc.

Muon Magnetic Moment

CERN (1960-1970), BNL 1990-2000 spin precession experiments

- $p + A \rightarrow ... + \pi^- \rightarrow \mu^- + \nu_\mu$, μ - polarized!
- $\vec{\mu}^-
 ightarrow e^- +
 u_\mu + \overline{
 u}_e, \ \vec{p}_e pprox$ along S_μ
- Precession $\Delta \omega = \frac{g-2}{2} \frac{eB}{mc}$

Remarkably accurate!

Interactions with Spin: Symmetries

- Rotational symmetry 4 potentially different processes
- Parity conservation: $\sigma_{LL} = \sigma_{RR}$, $\sigma_{LR} = \sigma_{RL}$

Parity is non-conserving in weak interactions

Typical Experiments with Polarization

Beam, target polarizations \mathcal{P}_b , \mathcal{P}_t , Beam polarization is flipped periodically

Parity violating	Parity conserving
• Ex: $\mathcal{P}_b \neq 0$, $\mathcal{P}_t = 0$	• Ex: $\mathcal{P}_b \neq 0$, $\mathcal{P}_t \neq 0$
Measured:	Measured:
$A = \frac{N_L - N_R}{N_L + N_R} = \mathcal{P}_b \frac{\sigma_L - \sigma_R}{\sigma_L + \sigma_R}$	$\mathbf{A} = \frac{N_{LL} - N_{RL}}{N_{LL} + N_{RL}} = \mathcal{P}_{b} \mathcal{P}_{t} \frac{\sigma_{LL} - \sigma_{RL}}{\sigma_{LL} + \sigma_{RL}}$

Parity Violation in Electron Scattering

- $egin{aligned} &A = rac{N_L N_R}{N_L + N_R} = \mathcal{P}_b rac{\sigma_L \sigma_R}{\sigma_L + \sigma_R} \ &rac{\sigma_L \sigma_R}{\sigma_L + \sigma_R} \propto G_F Q^2 (1 4 \mathrm{sin}^2 heta_W) \ &A \sim 10^{-3} 10^{-6} ext{ very small!} \end{aligned}$
 - 1978, SLAC polarized \vec{e}^- beam
 - 1978 \vec{e}^- D scattering (DIS) $\Rightarrow \sin^2 \theta_W$
 - 2003, SLAC $\vec{e}^- e^-$ Møller scattering $\Rightarrow \sin^2 \theta_W$
 - 1989-2006 ē[−]p/He elastic ⇒ strange formafactors (Bates, JLab, Mainz)

Deep Inelastic Scattering

CERN (1987), muon beam "Proton Spin Crisis":

- Quark contribution to proton spin Δq ~ 15% against ~ 75% expected from quark models
- Studied at CERN, SLAC, DESY, JLab with polarized muon/electron beams and polarized target

- History of Spin Physics
- Modern Studies in Spin Physics

- Source of Polarization
- Electron Beam Polarimetry

How to Make Polarized Electrons?

Two methods are currently used:

- Linac's injectors: polarized photoeffect
- Storage rings: gradual polarization by Sokolov-Ternof effect

Polarized Electron Guns

- High polarization > 50%
- High current > 100µA
- Fast polarization flipping > 10Hz
- Stability against the helicity flip
 GaAs guns
- GaAs wafer
- Optical pumping by circularly polarized light
- Electron extraction into vacuum from the Cs and O₂ treated surface
- Super-lattice cathodes $\mathcal{P} > 85\%$

Electron Gun at JLab

- $\bullet \sim 100 \text{ kV}$ electron extraction
- Lifetime depends on the full charge extracted
- QE decrease
- Very high vacuum needed (ion bombardment kill the cathode)
- Laser spot can be moved to recover QE

- History of Spin Physics
- Modern Studies in Spin Physics

Electron Beam Polarimetry

Requirements for Polarimetry

In precise PV experiments the systematic error is dominated by polarimetry!

- Typical systematics error > 1.5%
- In some special cases $\sim 0.5\%$
- Requirements for future experiments < 0.5%

Methods Used for Electron Polarimetry

Spin-dependent processes with a known analyzing power. Atomic Absorption

 $\vec{e}^{-} \sim 50 \text{ keV}$ decelerated to $\sim 13 \text{ eV}$ $\vec{e}^{-}(13eV) + Ar \rightarrow A\vec{r}^{*} + e^{-}, A\vec{r}^{*} \rightarrow Ar + (h\nu)_{\sigma}$ Atomic levels: $(3p^{5}4p)^{3}D_{3} \rightarrow (3p^{6}4s)^{3}P_{2}$ 811.5nm fluorescence Potential $\sigma_{syst} \sim 1\%$. Only relative so far, invasive, diff. beam

Spin-Orbital Interaction Mott scattering, 0.1-10 MeV: $e^- \uparrow + Z \rightarrow e^- + Z \sigma_{syst} \sim 3\%$, $\Rightarrow 1\%$ (?) invasive, diff. beam

Spin-Spin Interaction

- Møller scattering: $\vec{e}^- + \vec{e}^- \rightarrow e^- + e^-$ at >0.1 GeV, $\sigma_{syst} \sim 3-4\%$, $\Rightarrow 0.5\%$ Mostly invasive, diff. beam
- Compton scattering: e⁻ + (hν)_σ → e⁻ + γ at >0.5 GeV ~ 1-2%, ⇒0.5%. non-invasive, same beam

Mott Polarimetry

0.1-10 MeV: $e^- \uparrow + Au \rightarrow e^- + Au$ Analyzing power \sim 1-3%:

- Nucleus thickness: phase shifts
- Spin rotation functions
- Electron screening, rad. corr.
- No energy loss should be allowed
- Single arm background
- Extrapolation to zero target thickness

 e⁻ ↑ < 5 μA - extrapolation needed

JLab: $\sigma(\mathcal{P})/\mathcal{P} = 1\%(Sherman) \oplus 0.5\%(other)$ (unpublished) $\oplus \sigma(extrapol)$

Møller

- Detecting the γ at 0 angle
- Detecting the e⁻
- Strong <u>dA</u>/dk' good σE_γ/E_γ
 A ∝ kE at E < 20 GeV
- $T \propto 1/(\sigma \cdot A^2) \propto 1/k^2 \times 1/E^2$
- $\mathcal{P}_{laser} \sim 100\%$
- Non-invasive measurement

Syst. error $3 \rightarrow 50$ GeV:

 $\sim 1. \rightarrow 0.5\%$

$$\vec{e}^{-} + \vec{e}^{-} \rightarrow e^{-} + e^{-}$$
 QED.

- Detecting the e⁻ at θ_{CM} ~ 90°
- $\frac{dA}{d\theta_{out}}|_{90^\circ} \sim 0$ good systematics
- Beam energy independent
- Coincidence no background
- Ferromagnetic target P_T ~ 8% Syst. error $\sim 3\%$ typically, (0.5%)

Compton Polarimeters: Best Accuracy at High Energy

SLAC SLD

Laser:

- 532 nm, 50 mJ at 7 ns \times 17 Hz
- Crossing angle 10 mrad
 Detector:
- e⁻ 17-30 GeV gas Cherenkov
- γ detector calorimeter

Stat: 1% in 3 min

	$\sigma(\mathcal{P})/\mathcal{P}$	
source	SLD	ILC
	1998	Goal
Laser polarization	0.10%	0.10%
Analyzing power	0.40%	0.20%
Linearity	0.20%	0.10%
Electronic noise	0.20%	0.05%
total	0.50%	0.25%

M.Woods, JLab Polarimetry workshop, 2003 Cal-

Møller Polarimeter with Saturated Iron foil

JLab, Hall C, M. Hauger et al., NIM A 462, 382 (2001)

- External B_Z ~ 4 T
- Target 4-10 μm, perp. to beam
- \mathcal{P}_t not measured
- Important: annealing, etc.

source	$\sigma(A)/A$	
optics, geometry	0.20%	
target	0.28%	
Levchuk effect	0.30%	
total	0.46%	
\Rightarrow 100 μ A	?	

Tests for high current

- Beam $\sigma_X \approx 50 \mu \text{m}$ > $r = 12 \mu \text{m}$
- At 20µA accidentals/real≈0.4

Current Studies

- A 1µA thick half-foil
- Higher duty factor

Summary

Physics with polarized electron beams

- Studying the structure of composite particles (protons etc.)
- Studying the dynamics of strong interactions
- Search for "new physics"

Features

- Polarization ~ 80%
- Polarimetry $\sigma \mathcal{P} \sim 1\%$

