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Geometry of the EGN Detector system.

Each sector has its local coordinate system with the origin at the ’per-
pendicular point’ P in the middle of the front surface of the first scintillator
layer. If the detector is installed perfectly, a perpendicular line from this
point will pass through the target. The z axis of the local coordinate system
is along this perpendicular and points away from the target. The negative
y axis passes through the vertex of the triangular scintillator layer that is
closest to the beam line. If the detector is oriented with the y axis pointing
upwards, the x axis to the left if one is looking downstream along the beam.

The nominal distance from the point P to target center is Ly. The nu-

merical value is
Lg = 5103.2 mm

Let the nominal target point at the end of this line be labelled S. Let the
actual target be at point T, which has coordinates in the CLAS coordinate
system of (0,0,0). From surveying, the absolute position of P can be deter-
mined, as can a point V on the local y axis, and a point W on the local x
axis. From these data the orientation of the first scintillator layer can be
determmned. The results of the survey can be represented by the following
coordinates in the CLAS frame,

Pr Vg Wy
P=1p, |, V=1uv|, W=] w,
pz vz wz

From these we can determine the position of S in the CLAS frame,

Sz
S=1 s,
Sz

In the local EGN detector frame these points are defined by the following
sets of coordinates:

-(3) () (F) ()

Any given point has coordinates (z',y, z') in the local frame, and coor-
dinates (z,y, 2) in the CLAS frame. The two sets are related by the trans-
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formation

[2)-(3)-+(?)

In particular, the coordinates for the point P are related by

(3)-(3)=()-(3)

This equation immediately determines the translation vector, so that the
transformation becomes

[2)-(2)=(2)

The rotation matrix can be decomposed into three parts, two of which are de-
fined by perfect alignment of the EGN sector and the third of which accounts
for misalignments. We write

R = RyRA
where R is a rotation around the x axis, and is given
1 0 0
Ry=] 0 cos@ sind
0 —sinf cosé

where the angle 6 = 25° is the nominal angle between the EGN perpendicular
line and the beam line. The matrix R, is a rotation around the beam z axis
and is defined by the sector. For definiteness I write it as

cos¢ —sing 0

Ry=| sing cos¢ 0

0 0 1
where ¢ = —Z + l“—";)i, and n is the sector number. The matrix A accounts
for misalignments by rotating the coordinates from the local system to the

ideal system which has the perpendicular line at an angle of 8 to the beam
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line and has its y axis in the plane defined by the ideal perpendicular line
and the beam line. The elements of the matrix A are very small, and we can
treat them as infinitesimal. To first order the matrix can be written as

where the e; << 1. In the following we work in an absolute frame that has

n = 0. The correction for n # 0 is trivial.
To make the infinitesimal nature of A explicit we can define

Az T — g Pz z! z'
AW=(Ay =(y—yo)=(py)+RaA(y’)—Rg(y’)

Az} z— 2z Pz z 2
Az Pz z' 0 e —ey z'
(2)-(3)-an(z)-a( 2 3 5)(7)
Az Pz ) z e2 —e 0 z

where Az, etc. are the differences between the survey values of a point in the
absolute coordinate system and the values that would exist if the detector
were perfectly aligned. For example, if we measure the point V, we will

obtain
Vz0 ﬂ
v | =| Vecosd
V.0 —Vsing

The deviations due to misalignment are then defined as
Avg Uy
Avy, | =1 v,_Vcosd
Av, v, + Vsind
A'U;,_- — Pz 0 €3 —E€g 0
Avy—p, | =Ry| —e3 0 e |4
Av, —p, e2 —e 0 0

Vp — Pu Ves
Rj'| vy—Vcosf—p, | = 0
v:+ Vsind —p, -Ve
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1 0 0 YV — Pr V83
0 cos@ -siné vy—Vecos—p, | = 0
0 sinf cosé v+ Vsind — p, Ve

Uz — Pz VCS
vycosf —p,cosf — v, sinf +p,sind ~V | = 0

(vy — py)sin + (v, — p.) cos Ve

Yy — Pz Vea
Avycos8 + Vcos?§ — p,cosf — Av,sinf + Vsin® @ + p,sinf -V | = 0
(Avy + Vcosd — py)sind + (Av, — Vsin@ — p,) cos 8 Ve

Ve ~ Pz VC3
(Av, cosf — p, cos @ — Av, sinf + p,sind | = 0
(Avy — p,)sin @ + (Av, — p,) cos 8 —Ve
from which we deduce
Uz — Pz

-~V

€3 =

and
_(Avy —py)sin 6 + (Av, — p;) cos
1%

If we measure the point W, we obtain for no misalignments
Wy |=| 0 cosé sind 0 |=1]20
Wy 0 —sind cost 0 0
[ Aw, w, — W
Aw, | = wy
\ Aw, w,
sz — Pz ( 0 €3 —E€g w 0
Aw, —p, | =Ry| —es 0 € 0 | =Ry| —Wey
Aw, - p, \ ez —e 0 0 We,

0 Aw, — p, 1 0 0 w,— W —p, Wy
—Wes | =R;'| Aw,—p, | =] 0 cos§ —sind wy — py =| (w, ~p,)co
Weg Aw, —p, 0 sin@ cosé Wy — P,

(wy — py)si
so that

€ =

s0

_ (w, —p,)sin@ — (w, — p,) cos 8

W

€3




and . '
_ (wy —p,)sind + (w, — p,) cos @

€q = W
These measurements over-determine e; and give e, and ey as well. Other
points could be measured to give more over-determination.
With the matrix A and the vector P determined, the absolute coordj-
nates of any point in the calorimeter sector can be determined from its local
coordinates using the equation

x Pz z
yl=| b | +RRA| ¥
z P: z'

Ignoring the ¢ rotation, we obtain

1 0 0 1 €3 —ey 1
RgA=| 0 cos@ sin@ -ez 1 ~e3¢08 0 + ey sin §
0 —sinf cos# es —e; 1 ez sin @ 4 e, cos
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—sinf — ey cos b



Coordinates of the strips
In the local coordinate system, the beam vertex of the triangle for layer

L is at
y_(L) = —1829.74 — 4.3708(L — 1)

The top of the triangle (the side at large scattering angle) is
y+(L) = 1899.56 + 4.5419(L ~ 1)
The active triangular region is bounded by the three lines:

y+ztand =y_(L)

and
y—ztand =y_(L)
and
y =y (L) = 1899.56 + 4.5419(L — 1)
where

tand = 1.95325

The y coordinate of the lower edge of a U strip in layer number L is given
by
y = —1829.74 — 4.3708(L — 1) + (U — 1)w, (L)

where
wy(L) = 103.655 + 0.2476(L — 1)

is the strip width for the U strips in layer L. The upper edge of the strip
is obtained by setting U=U+1. The edges of the V strips are given by the

equation
y+ztan8 =y_(L) + w,(L)(37 — n)y/1 + tan? ¢
and the edges of the W strips are given by

y—ztand =y_(L) + wu(L)(37 — n)y/1 + tan? @

where n is the strip number (1 is the shortest strip and 36 is the longest).
The widths of the V and W strips are given by

w, = 94.701 + 0.2256(L — 2)
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and
wy, = 94.926 4 0.2256(L — 3)

Each strip has a trapezoidal portion on its light collection end that ex-
tends beyond the triangular region defined above. The trapezoid has right
angles at the end of the strip, and distance from the end to the triangular
region is given by two distances

w {tan?8 -1
d = == -
2 h=dr + 2 ( tan @ )

where w is the width of the strip. For the first 15 layers
dy = 36.4, L<15
and for the remaining layers
dy = 25.4, L>15
The z spacing between layers is (according to Cassim Riggs)
Az = 12.381 mm
so that the z coordinate at the front face of each layer of scintillator is
z2(L) =12.381L

Geometry of strips n terms of dimensioned quantities on C. Riggs’ draw-

ings::
U layers:
Top:
ye=0C
y-=C—-A
V edge:
=C-A A:c
v= D
W edge:
—c-a+2
y= D-'B



Width of strips:
w= A/36

Edges of strips:
y=y-+(n-1w

where n = 1 gives the bottom edge of strip 1 and n = 2 gives the top edge
of strip 1 and the bottom edge of strip 2, etc.
Trapezoidal extensions of U strips on W ends.

D
d1=d2+zw
dy=B—-2D

where d, is the extension on the bottom side, and d, is the extension on the
top side of the strip.

V layers:
yy=F
y-=-B
V side:
side s BiF
y= G-—H"
W side: B4 F
y=-B+ 55"
Width of each strip:
w=D/36

Boundaries of strips:

y__B_B+F B+Ff

G_Ha:+(37—n)w\/1+(G_H

where for example, n = 37, gives the boundary of the active area on the V

side.
W layers:

Y+ =A-C



V edge:
A-J

W edge:

width of strips:

Edges of strips:

A—J A—JN?
i z+(n—37w 1+(T)

y=—C+J+

Dimensions of trapezoid on end of strips:

di=vVF?4 J?
d2=d1+wtan(20—g)

where
A-J

tanf = ———



Triangular stacks
The calorimeter can be subdivided into triangular stacks, each one di-
rected back towards the target. A convenient labelling for these stacks is

provided by the number N, where
N=UU~-1)4+V-W+1

subject to the subsidiary condition for a valid combination that
S=U+V+W=173o0r 74

With this numbering scheme, the cell #1 is at the vertex near the beam,
with U = I,V = W = 36, and S = 73. The final cell in this scheme is
at U = 36,V = 36,W = 1, for which N = 362 = 1296. In general, if
U+S=20+V+Wis even(odd) the triangular cell pomts toward(away
from) the beam. The center of the cell is at

y = —1829.74 — 4.3708(L — 1) + (U — .5)w, (L)
ztand = (W — V)w,(L)

or

z = 511970(W — V)w,(L)
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The lead sheets are on the average 2.387 mm thick. They arecut to cover
the active triangular area as well as the extension on the light collection
side of the layer defined by the length dj. Layers 4,7, 10, etc. have the
vertex at the beam side clipped off. Their dimensions do not follow a simple
formula. On the average, the z coordinate of the front surface of each layer
of lead is 100.00 mm greater than the z coordinate of the front surface of the
preceding layer of scintillator. In the following table layer 2 of the lead is

between scintillator layer 1 and 2, etc. There is no layer 1 of lead.
LAYER BASE HEIGHT TRUNCATION -

2 152.096
3 152.454
4 152.948
5 153.174
6 153.532
7 154.033
8 154.252
9 154.610
10 155.118
11 155.328
12 155.688
13 156.203
14 156.406
156 156.766
16 156.820
17 157.090
18 157.449
19 157.898
20 158.168

147.264
148.890
149.372
148.636
149.943
150.433
150.007
150.996
151.492
151.379
152.048
152.552
152.750
153.101
153.153
153.417
153.768
154.206
154.470
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LAYER BASE HEIGHT TRUNCATION

21 158.527 154.821 0
22 158.975 155.258 1.000
23 159.246  155.523 0
24 159.605 155.873 0
25 160.054 156.311 1.000
26 160.324 156.575 0
27 160.683 156.926 0
28 161.130 157.363 1.000
29 161.400 157.628 0
30 161.760 157.979 0
31 162.208 158.415 1.000
32 162.478 158.681 0
33 162.838 159.032 0
34 163.286  159.468 1.000
35 163.556  159.733 0
36 163.916 160.084 0
37 164.364 160.521 1.000

38 164.634 160.786
39 164.994 161.137

Walls of the Containment Box

The side walls of the containment box can be represented by six planes
of 1.5” thick aluminum. The vertices of the planes can be represented by 12
points at the front of the box and by 12 points at the rear of the box, six for
the outside and six for the insides surfaces. The labelling of these points is
indicated in the figure. The coordinates of the points in the local detector
frame are
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P7  2259.10 2255.70 480.72
P8  -2259.10 2255.70 480.72
P9 -231943 2138.86 480.72
P10 -65.02  -2264.50 480.72
P11  65.02 -2264.50 480.72
P12 231943 2138.86 480.72
P7 222331 2215.06 480.72
P8 -2223.31 2215.06 480.72
P9 -2269.36 2125.85 480.72

P4’ -42.34  -2051.61 P10’ -42.34  -2224.05 480.72

P5 4234 -2051.61 P11’ 42.34 -2224.05 480.72

P6> 2089.43 1946.89 0. P12’ 2269.36 2125.85 480.72

The six surfaces can be characterized by the following outward pointing

normal vectors:

P1 2079.19 2076.73
P2 -2079.19 2076.73
P3 -2139.49 1959.89
P4 -65.02 -2092.05
P5 65.02 -2092.05
P6 2139.49 1959.89
P1’ 2043.41 2036.09
P2’ -2043.41 2036.09
P3’ -2089.43 1946.89

ceePPpooocoooe

e y z
m 0 c0s(20.42) -sin(20.42)
n, .87848 -.44975 -.161259
n; -.87848 -.44975 -.161259
ng .79367 .40978 -.44963
ng -.79367 .40978 -.44963
ng 0 -.94127 -.33765
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CLAS ELECTROMAGNETIC CALORIMETER (WBS 6.6.5) 8/13/96

Item

Lead

Box 1-6

Devices

Scintillator
Lead/Scint.

PMTs

Calorimeter

Fiber Readout

HV-System
ADCs, TDCs

Timing-Disc.
Linear Eleetr.

Cables

Crates & PS

Forward carriage

Misc. Items

Activity

Procurement
Processing

Walls & plates
Pushers

PMT support
Assembly

Wall removal
Bending
Gluing

Surface milling

Procurement
Testing

Stacking
Teflon

Procurement
Testing
Bases

Laser calibr.

Final Assembly
testing

Fibers

Parts
Assembly
Machining
Testing
Adapt. guides
Procurement

Procurement
Testing
Procurement
Testing

Energy sums
Splitters

Delay

HV

Trigger
Ribbon ax
Assembly
Fastbus
Camac & NIM

Procurement

Cost(K$) % completef:i value (K$)

90
60

660
216
100

40

10
20
30
30

2000
100

100
30

400
15
130
60

50
60

225
50
300
40
20

85
150

225
10
100
10

60
20

200
20
20
o0
50
60
50

150

200
400

100
100

100
100
100
100

100
100
100
100

100
100

100
100

100
100
100

95

90
85

100
100
100
100
100

100
100

100
100
100
160

80
100

80
100
100

a0

20
100
100

Eng., Install.

Grand Total

90
60

660
216
100

40

10
20
30
30

2000
100

100
30

400
15
130
57

45
o1

225
50
300
40
20

55
150

225
10
100

6472 (97.1%)

est. complet.(C

6/94
3/96

5/95
5/95
12/95
10/95
9/94
7/94
7/94
9/94

9/95
10/95

3/96
6,/94
9/95
12/95
12/95
9/96
8/96
9/96
9/95
7/94
5/96
6,/96
6/96
6/96
12/95

9/95
9/95
9/95
12/95
9/96
9/96
10/96
12/95
6,94
10/96
10/96
7/96
5/96
5/95
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